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Abstract: Variable annuities (VAs) and other long-term equity-linked insurance products are typically
difficult to hedge in the incomplete markets. A state-dependent fee tied with market volatility for VAs
is designed to contribute the risk-sharing mechanism between policyholders and insurers. Different
from prior research, we discuss several aspects on a fair valuation, fee-rate determination and hedging
with volatility-dependent fees from the perspective of a VA hedger. A method of efficient hedging
strategy as a benchmark compared to other strategies is developed in the stochastic volatility setting.
We illustrate this method in guaranteed minimum maturity benefits (GMMBs), but it is also applicable
to other equity-linked insurance contracts.
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1. Introduction

A variable annuity (VA) is a tax-deferred and unit-linked insurance product, which
provides various forms of guarantee riders to investors by allowing equity participation
in a collective investment. With a variable annuity, investors make payments until their
retirement and then begin receiving regular retirement benefit from the insurance company.
VA guarantees can be classified into two broad types: guaranteed minimum death benefits
(GMDBs) and guaranteed minimum living benefits (GMLBs). The GMLBs include guaran-
teed minimum maturity benefits (GMMBs), guaranteed minimum income benefits (GMIBs),
and guaranteed minimum withdrawal benefits (GMWBs). While VA policyholders can
benefit from the guarantee, a cost of insurance is charged in the form of a percentage fee on
the account value, which could impact both the insurer’s hedging performance and the
policyholders’ surrender decision on the policy.

In contrast to a fixed percentage fee which has been the insurer’s dominant premium
structure in VA markets, in the past decade, the actuarial literature begins to investigate
the issues on policy design and risk management of VA products with alternative state-
dependent fees initiated by the industry. Generally, the state-dependent fee structure allows
VA insurers to align their premium rate with the market variables and helps reduce their
hedging difficulty. To be specific, based on the fact that the embedded put option liability
of VAs are in-the-money when the account value is low, Bernard et al. (2014) are the first
to propose a barrier-type state-dependent structure where fees are only charged when
the account value is below a threshold level. To better match the moneyness/riskiness of
the embedded guarantee of VAs over time, Bernard and Moenig (2019) propose a time-
dependent fee structure in a discrete model, where a higher constant fee rate is charged on
the account in early years of the VA contract than the later years. They demonstrate that
such a time-dependent structure could help lower the fee rates of VAs without reducing
the insurer’s profit, thus making VAs more attractive to potential investors. Landriault
et al. (2021) generalize the fee rate proposal of Bernard et al. (2014) and investigate the
impact on VAs with a high-water mark (HWM) fee structure, which is commonly used
in the hedge fund industry by rewarding the VA insurer when the fund outperforms the
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past. They find that under appropriate market conditions, the HWM structure can benefit
the welfare for both policyholders and the insurer. The above designs of state-dependent
fees are established on the performance of the underlying fund process of VAs, which is
triggered by a threshold level of account value or the operation time of the policy.

In May 2014, a VA contract called Polaris Choice IV was launched by American General
Life in the U.S. market. In Polaris Choice IV, the premium for a variety of optional VA
riders is adjusted based on a non-discretionary formula tied to the change in the Volatility
Index (VIX), an index of market volatility reported by the Chicago Board Options Exchange
(CBOE). In a nutshell, the non-discretionary formula is used to calculate the annual fee rate
applicable after the first Benefit Year in the following form:

Initial Annual Fee Rate + [0.05% × (Average Value of the VIX − 20)], (1)

where the initial annual fee rate is set to 1.1% for a policyholder aged from 65 to 85 at the
inception of the contract. Since VIX is a measure of overall market volatility, the VIX-linked
fee structure (1) can be regarded as state-dependent while it is charged in proportion to the
level of VIX. We should note that the underlying fund and its corresponding volatility are
negatively correlated due to the well-documented leverage effect, and hence the put option
liability of VA guarantees is typically very expensive when the market is volatile. Such a
volatility-dependent fee structure can provide a better alignment between the insurer’s
fee incomes and their put option liability embedded with VA guarantees. In line with
the fee rate structure of Polaris Choice IV, Cui et al. (2017) model a guaranteed minimum
maturity benefit with VIX-linked fees in a Heston-type stochastic volatility setting. Their
numerical examples show that the VIX-linked fee reduces the sensitivity of the insurer’s
liability to market volatility when compared to a VA with the traditional fixed fee rate. It is
noteworthy here that the fee structure proposed by Cui et al. (2017) is not directly tied to
the average value of the VIX as used by Polaris Choice IV, but it is linked to the squared
volatility of the market index for keeping the affinity of the modeling and thus producing
analytical Heston-based formulas for VA valuation. Kouritzin and MacKay (2018) further
assess the effectiveness of the VIX-linked fee structure in decreasing the sensitivity of the
insurer’s liability to volatility risk for a GMWB contract.

While most of the actuarial literature on state-dependent fees are mainly focused on
the valuation and surrender analysis of VAs (e.g., Bauer et al. (2017); Bernard et al. (2014);
Kirkby and Aguilar (2023); MacKay et al. (2017, 2023) and reference therein), there is quite
a limited number of studies on the hedging problem of VAs with state-dependent fees.
Delong (2014) considers an incomplete financial market by modeling the dynamics for the
account value and the underlying investment asset with a general two-dimensional Lévy
process. Under the quadratic optimization criterion based on a difference between the costs
of a hedging portfolio and the insurer’s liability, the author determines a self-financing
strategy under the barrier-type state-dependent fees proposed by Bernard et al. (2014). To
compare the various types of state-dependent structures, Wang and Zou (2021) propose a
stochastic control framework for a representative insurer who seeks an optimal fee structure
of VAs to maximize their business objective, which is defined as discounted “received
management fees” minus “expenses for providing VA guarantees”. Their solutions echo
the theoretical result of Bernard et al. (2014) that the optimal fee structure is of a barrier-
type and time dependent, and the insurer should charge fees only when the VA account
value hits the reflection boundary from below. Although it is not a direct hedging strategy
for VAs, the solution of the method by Wang and Zou (2021) can suggest an optimal fee
structure which helps mitigate the insurer’s hedging risk. Generally, an adoption of state-
dependent fees causes a path dependency of the underlying fund process, which makes
the hedging solution of VAs non-trivial. In particular, the intricacy of the hedging problem
under volatility-dependent fees also arises from the fact that the presence of the stochastic
volatility typically leads to an incomplete market in which perfect hedging strategies do
not exist, depending on the available trading opportunities. Due to the scarcity of hedging
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approaches from the existing literature, this paper aims to fill this gap by proposing an
optimal hedging strategy for VAs with volatility-dependent fees.

In an incomplete market, a hedger is faced with the problem of searching for strategies
that reduce the risk as much as possible. In practice, a super-hedging strategy can often
be too expensive. For this reason, Föllmer and Leukert (2000) investigate the possibility of
investing less capital than the super-hedging price of the liability. This leads to a shortfall,
the risk of which, measured by a suitable risk measure, should be minimized. For example,
Kolkiewicz and Liu (2012) propose to hedge a version of the guaranteed minimum with-
drawal benefit by using a European option whose payoff is determined by minimizing the
mean-square hedging error. A common criticism of methods based on mean-square error is
the fact that they treat gains and losses symmetrically, and the related shortfall risk which
appears in that case should be minimized to protect the investor against the resulting loss.
In the literature, alternative risk measures accepted by the investor on minimizing shortfall
risk can be found in Föllmer and Leukert (1999, 2000), Cvitanic (2000); Pham (2002), Cong
et al. (2013, 2014), among others. For path-dependent options, Kolkiewicz (2016) finds a
general method of constructing static hedging strategies under the Black–Scholes setting
to minimize the expected shortfall. This methodology is in line with the concept of the
quantile hedging strategy consisting of super-hedging a modified claim φH, where H is the
payoff of a contingent claim and φ is the solution of the statistical optimization problem
based on the optimal randomized test (see Föllmer and Leukert (2000) for reference).

The objective of this paper is to extend the theoretical result of Kolkiewicz (2016) and
develop a numerical approach of constructing static hedging strategies for path-dependent
options that minimize, for a given time interval, the shortfall risk, which we define as
the expectation of the shortfall weighted by some loss function. In particular, we are
interested in extending the theoretical result of Kolkiewicz (2016) beyond the Black–Scholes
framework with a Heston-type stochastic volatility of the market and hedging a VA rider
tied to the volatility-dependent fees as proposed by Cui et al. (2017). The method consists
of two main steps. In the first step, we formulate an optimal static hedging problem by
identifying the risk for the GMMB liability with volatility-dependent fees under a certain
risk measure, which we call the residual risk. At this stage, the initial price of the option
and the hedging target are treated as given and we solve the problem numerically for
each hedging period. In the second step, the hedger replicates this optimal static hedge
by establishing an investment portfolio consisting of a non-risky bond and one or more
risky securities, such as an underlying market index and numerous vanilla options. On the
practical level, such an optimal hedging strategy could be determined by the approximate
weights of hedger’s replicating portfolio identified from a certain regression approach.
The resulting optimal static hedging strategy, which is adapted to the stochastic volatility
and allows a more general modeling of dependency among risk factors, can be viewed
as a benchmark to compare other strategies, such as traditional dynamic hedging and
short-dated static hedging.

The remainder of this paper is organized as follows. In Section 2, we introduce the
model hypotheses and discuss the pricing condition for VA insurers on how to identify
the structure of a volatility-dependent fee for a mitigation of their hedging difficulty. In
Section 3, with a goal of minimizing the insurer’s expected shortfall risk, we formulate
the optimal hedging strategy for a GMMB under Heston-type volatility-dependent fees.
In Section 4, we describe the numerical procedure for the proposed hedging strategy and
illustrate it with examples. Section 5 concludes the paper.

2. Pricing a GMMB with Heston-Type Volatility-Dependent Fee

In this section, we discuss the problem of pricing a guaranteed minimum maturity
benefit with volatility-dependent fees. Different from the derivation by Cui et al. (2017),
in Section 2.1, we first demonstrate that the characteristic function for the underlying
fund value of a GMMB deducted by a volatility-dependent fee can be found as a mod-
ified version of the one from Heston (1993), and then we present the pricing result for
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GMMB in Section 2.2. In Section 2.3, we explore some hedging objectives of VA insurers
who may use them to identify the exact structure of the volatility-dependent fee from a
practical viewpoint.

To VA insurers, the inclusion of a state-dependent fee is expected to bring a more ade-
quate coverage of the true hedging cost of VA guarantees. For instance, a state-dependent
fee rate, ct(Ft, vt, t), t ≥ 0, can be generally tied to the time of the inception t, the value of the
fund Ft and the level of market variance or squared volatility vt. Specifically, the purpose of
charging a volatility-dependent fee is to increase the fee income in order to compensate for
the corresponding heightened cost of insurance occurring when the volatility of the equity
index is high. As proposed by Cui et al. (2017), the variable fee is an increasing function of
the squared volatility level in the sense that

ct(vt) ≡ ct := a + bvt, (2)

where a ≥ 0 is the base fee rate and b ≥ 0 is the sensitivity parameter of the fee rate function
ct with respect to the squared volatility vt.

In this paper, we focus on a theoretical development of the hedging strategy for a
GMMB rider as described in Cui et al. (2017). If the policyholder is alive at the maturity
T, she/he is entitled to receive the greater of the investment account value FT and the
guarantee level GT at T, i.e., max(FT , GT). In consequence, the risk exposure of a GMMB to
the insurer is the put option liability (GT − FT)

+, where the volatility-dependent fees are
deducted from the account value at the rate of ct.

2.1. Modeling Fund Dynamics with Volatility-Dependent Fees

We generalize a Heston-type volatility-dependent fee structure where the fee rate is a
linear function of the current market variance as described in (2). Consider a probability
space (Ω,F ,P) with the natural filtration {Ft, t ≥ 0} generated by the equity index St,
t ≥ 0, and its squared volatility vt, where P is the physical probability measure. In the
framework of Heston (1993), the equity index S follows the dynamics{

dSt = µStdt +
√

vtStdW̃x
t , S0 > 0,

dvt = κ∗(v̄∗ − vt)dt + σ
√

vtdW̃v
t , v0 > 0,

(3)

where µ represents the physical return, and W̃x
t and W̃v

t are two correlated standard
Brownian motions under P with correlation ρ ∈ [−1, 1]. The constant κ∗ > 0, determines
the speed of adjustment of the volatility towards its long-run mean v̄∗ > 0, and σ > 0 is
the volatility of the volatility. The variance process vt is strictly positive when the Feller
condition, 2κ∗v̄∗ > σ2, is satisfied.

In our problem, we assume that a VA fund manager invests in a single market index S
so that the fund performance of a GMMB fully tracks the equity index. Due to the fact that
a volatility-dependent fee is charged from the fund for covering the insurance claim, we
define Ft(a, b) ≡ Ft, which is continuously deducted by a fee at the rate of ct(vt). Then, the
instantaneous return of the VA account is equal to the one of the market index subtracting
the instantaneous rate of fee deduction, i.e.,

dFt

Ft
=

dSt

St
− ct(vt)dt,

and thus, we arrive at the following description of the dynamic of the log-price of the fund
value, xt = ln Ft: dxt =

(
µ − ct(vt)−

1
2

vt

)
dt +

√
vtdW̃x

t ,

dvt = κ∗(v̄∗ − vt)dt + σ
√

vtdW̃v
t , v0 > 0.

(4)
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In the Heston model, the risk-neutral measure used for pricing purposes is obtained
by specifying a constant volatility risk premium λ. Under the equivalent risk-neutral
probability measure Q, the fund value process (4) can be represented as{

dxt = (α − βvt)dt +
√

vtdWx
t ,

dvt = κ(v̄ − vt)dt + σ
√

vtdWv
t , v0 > 0,

(5)

where r is a constant risk-free interest rate, κ = κ∗ + λ, v̄ = κ∗v̄∗/(κ∗ + λ). Wx
t and Wv

t
are Q–Brownian motions correlated by dWx

t dWv
t = ρdt. Under the linear fee structure ct

with respect to the variance, the resulting dynamic system (5) follows a Heston stochastic
volatility model with the modified rates of α = r − a and β = b + 1

2 . We thus can revise the
pricing formula of Heston (1993) and obtain the characteristic function for the log-price
of the fund xT in the presence of volatility-dependent fees. It is noteworthy here that an
equivalent representation for this characteristic function based on the Laplace transform
technique can be found in Cui et al. (2017).

According to Heston (1993), the characteristic function for the log-price of the fund xT ,
which is conditional on the initial states of log-price xt and variance vt, can be represented
in the following way:

ϕVA(u, t; a, b) := ϕVA(u, xt, vt, τ) = exp(A(u, τ) + B(u, τ)xt + C(u, τ)vt), (6)

where τ = T − t and the functions

A(u, τ) =
∫ τ

0
(αiu − r)ds + κv̄

∫ τ

0
C(u, s)ds = (αiu − r)τ + κv̄IC(τ),

B(u, τ) = iu,

C(u, τ) =
−a1 − C1

2a2(1 − Ge−C1τ)

(
1 − e−C1τ

)
,

with the parameters a0 = 1
2 (iu)(iu − 2β), a1 = ρσ(iu)− κ, a2 = 1

2 σ2, C1 =
√

a2
1 − 4a0a2,

G = −a1−C1
−a1+C1

, and IC(τ) =
1

2a2

[
(−a1 − C1)τ − 2 ln

(
1−Ge−C1τ

1−G

)]
.

The characteristic function (6) leads to analytic formulas for the valuation of GMMB
guarantees under the volatility-dependent fee.

2.2. Option Pricing in GMMB

In model (5), the dynamic of the fund value Ft in a guaranteed minimum maturity
benefit depends on the market volatility and the state-dependent fee structure adopted by
a VA policymaker. Given a deterministic maturity guarantee GT , the payoff of the GMMB
at maturity T can be written as

max(FT , GT) = (FT − GT)
+ + GT = FT + (GT − FT)

+, (7)

from which we can observe that the payoff of the GMMB can be represented either as a sum
of a European call and the guaranteed amount or a sum of a European put and the fund
value. Based on the above decomposition and the Fourier transform technique utilized by
Heston (1993), in Proposition 1, we present a pricing formula for a GMMB.

Proposition 1. In the Heston model, at time t < T, the price of a GMMB with the maturity payoff
max(FT , GT) and the volatility-dependent fee structure in (2) has the form of

Pt = C∗(t, T, Ft, vt; a, b) + e−r(T−t)GT = e−r(T−t)EQ
t [FT(a, b)] + P∗(t, T, Ft, vt; a, b), (8)

where the respective time-t call and put option prices are given by

C∗(t, T, Ft, vt; a, b) := FtP1(t)− e−r(T−t)GTP2(t). (9)
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and
P∗(t, T, Ft, vt; a, b) := e−r(T−t)GTP3(t)− FtP4(t). (10)

In (9), the probability functions

P1(t) =
1
2
+

1
π

∫ ∞

0
ℜ
[

e−iukϕVA(u − i, t; a, b)
iuϕVA(−i, t; a, b)

]
du,

P2(t) =
1
2
+

1
π

∫ ∞

0
ℜ
[

e−iukϕVA(u, t; a, b)
iu

]
du,

P3(t) =
1
2
− 1

π

∫ ∞

0
ℜ
[

e−iukϕVA(u, t; a, b)
iu

]
du,

and

P4(t) = ϕVA(−i, t; a, b)

[
1
2
− 1

π

∫ ∞

0
ℜ
[

e−iukϕVA(u − i, t; a, b)
iuϕVA(−i, t; a, b)

]
du

]
,

where ϕVA is the characteristic function given in (6). ℜ denotes the real part of a function. In (8),
we define EQ

t as the expectation evaluated at time t ∈ [0, T] under Q. Then, the time-t fund value
can be calculated as

e−r(T−t)EQ
t [FT(a, b)] =

∫ ∞

−∞
gT(x)pT(x)dx =

1
2π

∫ ∞

−∞

∫ ∞

−∞
e−iu(ln s)ϕVA(u, t; a, b)duds. (11)

In (11), gT(x) = g(ln FT(a, b)) = FT(a, b). The inverse Fourier transform, qT(x) =
1

2π

∫ ∞
−∞ e−iuxϕVA(u, 0; a, b)du, is the probability density function of the log-price of the

underlying fund xT = ln FT(a, b). In Proposition 1, we compute the respective prices of
the embedded call and put options for a GMMB in (8). In addition, the corresponding
put option price of (GT − FT)

+ can be alternatively derived using the put–call parity. It
should be noted that the model hypotheses and pricing results presented in this section are
consistent with the ones in Cui et al. (2017), where the authors derive the put option price
as in (10).

2.3. Fee Rate Determination in GMMB

In what follows, we describe how VA insurers can determine the structure of a
volatility-dependent fee (2) by specifying the levels of a and b. The insurer’s objective is to
minimize the expected shortfall of the difference between a GMMB liability and the fees to
be collected throughout the lifetime of the contract.

Unlike standard exchange traded options, most insurance companies charge for the
downside protection by deducting an ongoing fraction of invested assets instead of an
upfront fee (Milevsky and Salisbury 2006). By (7), the insurer’s risk is in the form of a put
option, and the related potential liability is paid by the fees. Such a liability can be viewed
as the insurer’s residual risk that is paid by the fees financed from the fund throughout the
lifetime of the contract:

P∗(T, T, FT , vT ; a, b) ∼ fee(0, T, F0,T , v0,T ; T), (12)

which, with a proper selection of a and b, suggests that the expectation of their difference

E[P∗(T, T, FT , vT ; a, b)− fee(0, T, F0,T , v0,T ; T)] −→ 0.

In (12), P∗(T, T, FT , vT ; a, b) = (GT − FT)
+ denotes the payoff of the GMMB put liabil-

ity at maturity T. In (12), fee(0, T, F0,T , v0,T ; T) denotes the accumulated value at time T of
the fees collected over the entire period [0, T], in which F0,T and v0,T are the paths of the
fund and the variance over the time period [0, T], respectively. The symbol “∼” suggests a
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high degree of closeness between the amount of state-dependent fees, fee(0, T, F0,T , v0,T ; T),
and the put payoff P∗(T, T, FT , vT ; a, b) at T.

The fee(0, T, F0,T , v0,T ; T) in (12) is collected for the purpose of covering the costs of
the GMMB liability P∗(T, FT , vT ; a, b) at maturity T. Any mismatch between the cost of the
put option liability and the fees leads to either overcharging the policyholder or increasing
the hedging difficulty of the issuer when the fees are insufficient. Under the assumed form
of the fee rate, ct = a + bvt, for any ∆ ∈ (0, T), the time-∆ value of expected fees collected
from ∆ to time T can be represented as

ξ(∆, T, F∆, v∆; ∆) := EQ
[∫ T

∆
e−r(s−∆)(a + bvs)Fsds|F∆

]
. (13)

The entire fees collected from 0 to T, fee(0, T, F0,T , v0,T ; T), can be decomposed as

fee(0, ∆, F0,∆, v0,∆; T) + fee(∆, T, F∆,T , v∆,T ; T),

where fee(0, ∆, F0,∆, v0,∆; T) denotes the collected fees from time 0 to ∆ and accumulated
at time T at the risk-free rate r. Similarly, fee(∆, T, F∆,T , v∆,T ; T) denotes the fees financed
from time ∆ to T and accumulated to T. These fees can be represented as follows:

fee(0, ∆, F0,∆, v0,∆; T) :=
∫ ∆

0
er(T−s)(a + bvs)Fsds, (14)

and

fee(∆, T, F∆,T , v∆,T ; T) :=
∫ T

∆
er(T−s)(a + bvs)Fsds. (15)

We need the above decomposition of fee(0, T, F0,T , v0,T ; T) for presenting the risk
related to writing a GMMB contract with the state-dependent fees at any ∆, ∆ ∈ [0, T].
Later, we will use this when formulating a criterion for the fee rate determination.

Both the expected fees defined in (13) and the corresponding costs of the put liability
in a GMMB depend on time, the fund value, and the market volatility. At time ∆ ∈ [0, T],
we are interested in the risk related to writing a GMMB contract, measured by d(∆; a, b)
as a difference between the price of put liability and the expected fees. According to the
representation below, d(∆; a, b) measures the degree of the expected fees collected for
covering the cost of put option, or the expected loss at time ∆ to the insurer. We thus can
formulate some criterion on d(∆; a, b) to determine the volatility-dependent fee structure.
With the arguments of a and b, the expected loss d(∆; a, b) is defined in the following way:

d(∆; a, b) := e−r(T−∆)EQ
∆ [P

∗(T, T, FT , vT ; a, b)− fee(0, T, F0,T , v0,T ; T)]

= e−r(T−∆)EQ
∆

P∗(T, T, FT , vT ; a, b)− fee(0, ∆, F0,∆, v0,∆; T)︸ ︷︷ ︸
known at ∆ and realized under P

−fee(∆, T, F∆,T , v∆,T ; T)


= P∗(∆, T, F∆, v∆; a, b)− ξ(∆, T, F∆, v∆; ∆)︸ ︷︷ ︸

expected fee from ∆ to T in money at ∆

− fee(0, ∆, F0,∆, v0,∆; ∆)︸ ︷︷ ︸
simulated from the past market data under P

(16)

= C∗(∆, T, F∆, v∆; a, b) + GTe−r(T−∆) − F∆ − fee(0, ∆, F0,∆, v0,∆; ∆). (17)

From (16), the insurer may assess the expected loss d(∆; a, b) at future time ∆, at which
he/she has received a varying level of the fees, fee(0, ∆, F0,∆, v0,∆; ∆), depending on the past
market experience during the period [0, ∆]. In consequence, among the feasible pairs of
(a, b) constrained by the initial budget the insurer could select the most favorable rate that
leads to an optimization of the expected loss d(∆; a, b), given the fees that have been realized
with the past market performance during the period [0, ∆]. We thus obtain the distribution
of d(∆; a, b) by simulating the paths of the underlying fund F0,∆ and the variance v0,∆
under the real-world probability measure P. In addition, Equation (17) holds due to the
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put–call parity and the time–∆ call price C∗(∆, T, F∆, v∆; a, b) is given in (9). Compared to
(16), expression (17) reduces the computational burden without simulating the expected
fees in (13), while fee(0, ∆, F0,∆, v0,∆; ∆) has been realized from the single path of the fund
jointly with the corresponding path of the variance by time ∆ ∈ [0, T]. In particular, at
the inception of the contract, i.e., ∆ = 0, the expected loss-at-issue between the cost of
put liability and the expected fees collected throughout the lifetime of the contract can be
represented as

d(0; a, b) = P∗(0, T, F0, v0; a, b)− ξ(0, T, F0, v0; 0) = C∗(0, T, F0, v0; a, b) + GTe−rT − F0. (18)

For business operations, a hedging duration could be set on a fixed basis within the
hedger’s budget period (see reference in Friedman and DeCorla-Souza (2012)). Suppose
that an insurer performs a hedging strategy on VA contracts within the budget period [0, ∆].
To reduce the hedging difficulty, the insurer selects an optimal fee structure to meet his
business target during the pricing stage. As mentioned in Wang and Zou (2021), such a
criterion for the fee-rate determination can be subjective and the difference between ex-
pected “fee revenue” and “cost of liability” is maximized over the lifetime of the contract to
compare a variety of state-dependent fee structures for policyholders with a mean-variance
type preference. In this paper, we consider the alternative identification of the optimal fee
structure by minimizing the hedging risk at or prior to the end of the budget period.

For instance, at time ∆ ∈ [0, T], we want to determine the constants a and b in ct =
a + bvt by minimizing the hedging risk quantified by the expected shortfall E[d+(∆; a, b)],
where d+(∆; a, b) := max(d(∆; a, b), 0). By the definition of d(∆; a, b) in (16), this ensures
that the issuers can optimally cover the ongoing GMMB liability by expecting a fair amount
of ongoing fees at a fixed ∆, ∆ ∈ [0, T]. The optimization problem is governed by the global
constraint d(0; a, b) = 0 and that leads to the following optimization problem:

(a∗, b∗) = arg min
a,b

EQ
∆
[
d+(∆; a, b)

]
(19)

with a nonlinear constraint
d(0; a, b) = 0. (20)

It is important to note that the optimization in (19) is performed under the risk-
neutral measure Q, where the expectation operator EQ

∆ on the shortfall risk of the ex-
pected loss d+(∆; a, b), as indicated in (16), is conditional on the past path of the fees,
fee(0, ∆, F0,∆, v0,∆; ∆), realized under P. In the literature, such an expected shortfall is a
coherent risk measure that has desirable theoretical properties (see, for example, Artzner
et al. (1999) and Acerbi et al. (2001)).

We should also mention that the condition (20) suggests an exact matching or a
zero expected loss-at-issue between the cost of GMMB liability and the fee expenses at
origination of the contract. Thus, the expected present value of the fee expenses deducted
from the VA fund can be represented in the following way:

P∗(0, T, F0, v0; a∗, b∗) = ξ(0, T, F0, v0; 0) = F0 − e−rTEQ[FT(a∗, b∗)]

= F0 −
1

2π

∫ ∞

−∞

∫ ∞

−∞
e−iu(ln s)ϕVA(u, 0; a∗, b∗)duds, (21)

which, by (11), is evaluated under Q and amounts to the insurer’s initial budget limit for
hedging a lifelong GMMB.

An alternative objective of the insurer could be minimizing the shortfall risk d+(∆; a, b)
over a period of time but not limited to a specific ∆. This leads to formulating the optimiza-
tion problem on averaging the expected shortfalls in the sense that

(a∗, b∗) = arg min
a,b

1
n

n

∑
i=1

EQ
∆
[
d+(∆i; a, b)

]
(22)
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with a nonlinear constraint
d(0; a, b) = 0,

where ∆i ∈ [0, T] for i = 1, 2, · · · , n.
We next determine the optimal pair of (a∗, b∗) by solving problem (19). As explained

in the previous paragraphs, the VA insurer could be faced with minimizing the expected
shortfall at different time periods over the lifetime of the contract. In the following, we
explain the numerical procedure that we have used to determine the optimal pair of a∗ and
b∗ for each fixed ∆:

(P1) Using the Euler scheme, simulate a path of the fund value Ft jointly with the variance
process vt, for t ∈ [0, T] by discretizing the time with N intervals under P. We fix the
set of random numbers for simulating both the underlying fund and the variance
paths under volatility-dependent fees with different levels of a and b.

(P2) For a fixed ∆ ∈ [0, T], determine d(∆; a, b) using the path of the fund value jointly
with the path of the corresponding variance from the previous step. We approximate
fee (0, ∆, F0,∆, v0,∆; ∆) by integrating along the fund value and variance paths and
evaluating the call option price with the current conditions at ∆ according to (15).

(P3) Repeat Steps (P1)–(P2) M times and find EQ
∆ [d

+(∆; a, b)] based on M numbers of
d(∆; a, b), as well as the Value-at-Risk (VaR) of d(∆; a, b), which measures the prof-
itability of the GMMB assessed at time ∆.

(P4) Use the Matlab “fmincon” (function-minimization-with-constraint) function to min-
imize EQ

∆ [d
+(∆; a, b)] with the global constraint d(0; a, b) = 0 and thus obtain the

optimal pair (a∗, b∗) at ∆.
(P5) Given the optimal pair of (a∗, b∗) at ∆, compute the corresponding EQ

∆ [d
+(∆; a, b)]

and the Value-at-Risk of d(∆; a∗, b∗) based on M numbers of d(∆; a∗, b∗).

We should emphasize that a selection for the rates of a and b based on a certain optimal
criterion is at the insurer’s discretion. Given the market parameters used in Section 4.2, we
illustrate with an example and mainly focus on the assumption that the insurer wants to
optimize his/her business objective with an optimal pair of a∗ and b∗, by minimizing the
expected shortfall EQ

∆ [d
+(∆; a, b)] at a future time ∆. In Section 4.2, a similar optimization

procedure will also be implemented to identify the optimal rates of a∗ and b∗ under the
proposed criterion (22).

3. Efficient Hedging of Path-Dependent Options under the Heston Model

Based on the fee rate selected by some optimization criterion discussed in Section 2.3, in
this section we determine an optimal hedging strategy for a GMMB contract with volatility-
dependent fees under the assumption that the market index S follows the Heston model
with stochastic volatility. We should note that the two optimization problems formulated
in Sections 2.3 and 3 are independent: one is at the stage of creating the GMMB product (its
fee structure), and the second is related to the hedging of this given product. In Section 3.1,
we formulate the optimal hedging problem and present its solution in Section 3.2.

3.1. Static Hedging of a GMMB Contract

Due to the path-dependent nature of the contract, the insurer’s risk at a future hedging
time Th ≤ T, given by (GTh − FTh)

+, can be decomposed in terms of the risk due to the
uncertain terminal value of the equity index STh and risk due to the uncertain shapes of the
paths of the index and its volatility conditional on STh = s. The latter can be represented as

L(s) :=
(

GTh − Fs
Th

)+
, s ∈ R+, (23)

with

Fs
Th

= s · exp
(
−

∫ Th

0
csds

)
= s · exp

[
−
(

aTh + b
∫ Th

0
vs

t dt
)]

, (24)
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where the integrated variance
∫ Th

0 vs
t dt is conditional on STh = s. We use the symbol vs

t
to account for the variance processes that evolves with the fixed terminal value of the
underlying STh = s. Fs

Th
denotes the terminal fund value FTh conditional on the fixed

underlying STh = s, which jointly evolves with the variance path vs
t in [0, Th].

The presence of the stochastic volatility of the equity index thus makes the market
incomplete. The liability L(STh) is path dependent because it is jointly linked with the
index S and the path of the equity volatility, or equivalently, the path of the equity variance
v0,T in [0, T]. Our objective is to hedge the path-dependent liability L(STh) by using only
properly selected path-independent European-style options on the equity index at maturity,
STh . Since the option is selected at time zero and held until maturity, the hedging is static
in nature.

To determine an optimal hedge, the insurer could be interested in minimizing a
particular loss function, such as the mean-square value of the difference between the
overall liability L(STh) and the payoff of hedging portfolio h, in the sense that

hms := arg inf
h∈L2

(
STh

)EP
[(

L(STh)− h(STh)
)2
]
, (25)

with L2(STh

)
denoting the set of measurable and square integrable functions of STh . It is

well known that the solution to (25) can be represented explicitly as

hms(s) := EP[L(STh)|STh = s
]
, (26)

indicating that hms is mean-self financing, and thus the cost of setting it at time zero is the
same as the cost of a put option liability (21). For more details about this strategy and its
properties, we refer to Kolkiewicz and Liu (2012).

For the criterion of mean-square error, however, gains and losses are treated sym-
metrically and the insurer’s budget constraint is ignored. From the perspective of risk
management, a more natural approach is the one where we consider only the insurer’s loss,
in which case the payoff function hopt of the optimal hedge solves the problem

hopt = arg inf
h
EP[lp

(
L(STh)− h(STh)

)]
, (27)

where lp(x) = (x+)p, p ≥ 1, is a weight function. For p = 1, problem (27) corresponds
to the minimization of the expected shortfall, but, in the general case, we minimize the
expected shortfall weighted with the function lp. The optimal payoff hopt is subject to the
constraint that the expected value of the payment hopt(STh) does not exceed the given
budget V0 at time Th:

EQ[hopt
(
STh

)]
≤ V0. (28)

3.2. Construction of Optimal Hedging Option

Here, we present a solution to the optimization problem (27) and (28). The approach
we take to determine this solution follows the same steps as in Kolkiewicz (2016); however,
in the current problem we assume that the volatility is stochastic and such that its dynamic
can be described by the Heston model.

To define the set of admissible functions h, we first define the following set:

H0 := {functions h on R+ such that h(s) ∈ supp(L(s)) for s ∈ R+},

with A denoting the closure of a set A and supp() denoting the support of a random
variable. For a given initial capital V0, we characterize admissible hedging options by
defining the following set of admissible functions h

H := {h ∈ H0 : EQ[h(STh)
]
≤ V0},
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and the hedging strategy is bounded in the following sense:

HhL ,hU := {h ∈ H : hL(s) ≤ h(s) ≤ hU(s) for s ∈ R+},

where hL and hU are exogenous functions that allow us to represent the problem of find-
ing an optimal option as an optimization problem over functions that take values in a
bounded interval.

Because of the general budget requirement such thatEQ[hL(STh)
]
≤ V0 ≤ EQ[hU(STh)

]
<

∞, the selection of the respective lower and upper bounds of hL and hU does not form
binding constraints in the optimization problem and hence it has no impact on the optimal
hopt. On the practical level, such a pair of hL and hU can be selected for GMMBs in
mutiple ways. For instance, the expression of the put option liability (23) suggests that
the fund value FTh charged with volatility-dependent fees is no greater than the equity
index STh = s. Thus, we can take the lower bound hL =

(
GTh − s

)+ as the payoff of a
standard European put option on the tradeable index. Meanwhile, the upper bound hU
can be set to the guarantee level of GT , at which the put liability is capped for all s ∈ R+.
Or, we can simply set two constants hL = 0 and hU = GT to ensure that the hedging
strategy h is bounded over the support of the liability risk L(STh). In consequence of either
way, the bandwidth, hU − hL, is independent of the variability of L(STh) caused by the
integrated variance

∫ Th
0 vs

t dt. An alternative way to set the levels of hL and hU is based
on the distributional quantiles of the overall liability L(STh) so then they depend on the
volatility risk. Conditionally on STh = s, the variability of Fs

T and hence L(s) is due only to
the volatility-dependent fees written in (24) as a linear function of an integral of volatility.
As a result, the level of the bandwidth, hU − hL, is dependent on the path of the integrated
variance, which reflects the impact of charging volatility-dependent fees on the hedging
risk (see the numerical results in Section 4.2).

For αH > αL, we take hU(s) = qL
αH

(s) and hL(s) = qL
αL
(s), in which qL

αH
(s) and qL

αL
(s)

denote the respective αH and αL-quantiles of the residual risk L(s). Under the Heston
framework, we have the following characterization of the optimal static hedging option
in Theorem 1, by extending the theoretical result of Kolkiewicz (2016) beyond the Black–
Scholes model. The proof of the result stated in Theorem 1 is similar to the one in Kolkiewicz
(2016) and, therefore, only the main steps of the proof, together with additional explanations
that are pertinent to the stochastic volatility model, are presented in Appendix A.

Theorem 1. For a GMMB liability whose price of the underlying S follows a Heston model, the
solution to the optimization problem in (27) can be represented in the form

hopt(s) = hL(s) + γ̃(s)[hU(s)− hL(s)], (29)

where

γ̃(s) = 1 − le

(
s, c · (hU(s)− hL(s))

1−p dQ
dP (s)

)
(30)

with a continuous Radon–Nikodym derivative dQ/dP. With its distribution of the liability FL on
STh = s, the inverse function le takes the value in [0, 1], which is given by

le(s, y) =
hU(s)− F−1

L (1 − y)
hU(s)− hL(s)

1[1−αH ,1−αL ]
(y) + 1(1−αL ,∞)(y), y ∈ R. (31)

Then, a unique c is selected based on the budget constraint

EQ[hopt(STh)
]
= V0. (32)

In Theorem 1, the Radon–Nikodym derivative, dQ/dP, is determined in the Heston
model. The above theorem shows that in our problem the optimal hedging option hopt is
a continuous function for all loss functions with p ≥ 1. This smoothness property of hopt
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implies that we would be able to approximate it closely on bounded intervals by piecewise
linear functions, which can be represented in the form

β0s + β1 +
m

∑
i=1

αi(γi − s)+,

for suitably chosen constants β0, β1, αi and γi, i = 1, · · · , m. In other words, we will be able
to approximate closely the optimal static hedging strategy for a GMMB liability if there are
sufficiently many vanilla options on the market.

4. Implementation of the Method and Numerical Examples

In this section, a framework that admits the Heston-type stochastic volatility is consid-
ered for hedging the GMMB contract with volatility-dependent fees. It extends the results
of hedging path-dependent options from the Black–Scholes framework to the Heston model
in the spirit of Kolkiewicz (2016). In Section 4.1, we characterize an exact simulation based
on the method of Broadie and Kaya (2006) for constructing the conditional residual risk
described in (23). Then, we describe a numerical procedure to implement the construction
of the optimal hedging strategy using Theorem 1. Numerical examples are presented in
Section 4.2.

In practice, one challenge to implement the theoretical result in Theorem 1 is how to
find the distribution of conditional residual risk L(s) that we have defined in (23). In the
Black–Scholes setting, a Brownian bridge technique can be developed so that it is possible
to obtain an analytical form of the optimal static hedge for the path-dependent options
or simulate the distribution of L(s) with the Brownian bridge technique, conditional on a
fixed benchmark value, i.e., STh = s (see Kolkiewicz (2016), for example). In the Heston
framework, the bridge techniques for approximating the distribution of L(s) can be hardly
achieved due to the complexity of joint distribution between the equity process and its
stochastic volatility, and thus the simulation method is expected to be applied. Another
challenge for constructing the optimal hedging strategy in the stochastic volatility setting
is to find the Radon–Nikodym derivative dQ/dP that reconciles the distributions of the
equity index S under both the physical and risk-neutral measures, which is desirable for
determining the optimal ratio γ̃ by the Neyman–Pearson lemma with the Heston model.

4.1. Sampling Method and Numerical Procedures

The objective of this section is to address the above challenges and then illustrate
Theorem 1 with some numerical examples. To this end, in this section we characterize an
exact simulation method based on the approach formulated by Broadie and Kaya (2006) for
constructing the conditional residual risk described in (23). We also describe a numerical
procedure to approximate the optimal hedging strategy stated in Theorem 1.

Finding the optimal hedging option characterized in Theorem 1 requires two main
components: the residual risks L(s), s ∈ R+, and the derivative dQ/dP. To find the residual
risks we use the following method:

(1) By using the method of Broadie and Kaya (2006), we simulate values from the joint

distribution of STh and
∫ Th

0 vsds.
(2) We group the simulated pairs by partitioning the range of STh into a certain number

of bins. For instance, we take sufficient numbers of terminal underlying STh located
in a small interval [s, s + δ), δ → 0. and jointly collect the corresponding conditional
integrated variances

∫ Th
0 vs

t dt for STh ∈ [s, s + δ).
(3) For each bin, we estimate Fs

Th
, and hence the liability L(s), by using (24).

We should note that the sampling method of Broadie and Kaya (2006) not only en-
ables us to characterize the path dependency of the overall liability L(STh) driven by the
integrated variance and the underlying equity index, but also it works out a theoretically
exact simulation for computing efficiency and accuracy of the modeling.
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To find the Radon–Nikodym derivative, we use the work of Drǎgulescu and Yakovenko
(2002), where the authors derived an analytical solution for the probability density func-
tion of equity index returns based on the Heston model. To be specific, by setting yt =
ln(St/S0) − µt, the Heston-type stochastic volatility can be represented in terms of the
centered log-return yt and the variance vt such that dyt = − vt

2 dt+
√

vtdW̃x
t . In consequence,

the time-dependent transition probability Pt[y, v|y0 = 0, v0] evolves with the Fokker-Planck
equation:

∂

∂t
P = κ∗

∂

∂v
[(v − v̄∗)P] +

1
2

∂

∂y
(vP) + ρσ

∂2

∂y∂v
(vP) +

1
2

∂2

∂y2 (vP) +
σ2

2
∂2

∂v2 (vP),

which, by time t, yields the probability density function of centered returns y (D–Y formula)
given by

fY(y) := Pt(y) =
1

2π

∫ ∞

−∞
exp[iξy + Ft(ξ)]dξ, (33)

where

Ft(ξ) =
κ∗v̄∗

σ2 Γt − 2κ∗v̄∗

σ2 ln
[

cosh
Ωt
2

+
Ω2 − Γ2 + 2κ∗Γ

2κ∗Ω
sinh

Ωt
2

]
,

with Γ = κ∗ + iρσξ and Ω =
[
Γ2 + σ2(ξ2 − iξ

)]1/2.
Denote by f and g the respective probability density functions for the centered return y

and the underlying equity index S. By the change in variable, we obtain gS(s) = fY(y(s))/s.
Under the Heston framework, we thus express the continuous Radon–Nikodym deriva-
tive by

dQ
dP (s) =

gQS (s)
gPS (s)

=
fQY (y(s))
f PY (y(s))

, for s ∈ R+.

In the following, we present the numerical procedure on how to determine the optimal
hedging option hopt numerically for the GMMB liability defined in (23):

(S1) Determine the optimal pair of (a∗, b∗) constrained by the criterion (19) or (22). For
the selected pair of (a∗, b∗) determined in the pricing stage of a GMMB contract,
calculate the price of a GMMB liability as the initial hedging budget by (21) and that
V0 = P∗(0, Th, F0, v0; a∗, b∗)erTh at the hedging time Th.

(S2) Use the exact simulation of Broadie and Kaya (2006) to simulate sufficient sets of STh ,∫ Th
0 vsds and FTh . Then, take sufficient numbers of terminal underlying STh in [s, s + δ)

and collect the corresponding conditional integrated variances
∫ Th

0 vs
t dt for STh ∈

[s, s + δ). Finally, obtain the corresponding numbers of Fs
Th

under the fee rate structure

of ct = a + bvt by (24) for the approximate distribution of L(s) =
(

GTh − Fs
Th

)+
in

[s, s + δ), δ → 0. The mean-square hedging option hms can be approximated using the
following unbiased and asymptotically consistent sample means

hms(s) ≈
1
M

M

∑
i=1

(
GTh − Fs

Th

)+
.

(S3) For selected values αL and αH from the interval (0, 1) such that αL < αH , find the
corresponding empirical quantiles of the distributions of L(s) at each STh = s. Then,
obtain the lower and upper bounding functions hL and hU as the corresponding
quantiles of L(s), s ∈ R+.

(S4) To determine hopt in Theorem 1, we need to approximate le(s, y) and γ̃(s). By con-
structing the mesh of points



Risks 2024, 12, 7 14 of 20

M := {(sm(i), zm(j)) : sm(i) = smin + i
∆s

Ks
, i = 0, · · · , Ks

zm(j) = −hU(sm(i)) + j
∆z(i)

Kz
, j = 0, · · · , Kz},

where ∆s := smax − smin and ∆z(i) := hU(sm(i))− hL(sm(i)).

(i) Select ŝ(l), l = 1, · · · , k, in each small interval (sm(i − 1), sm(i)] for approx-
imating the distribution at s = sm(i). Then, obtain a sufficient number of

residual risks of L(sm(i)) =
(

GTh − Fŝ(l)
Th

)+∣∣ST = sm(i) in each small inter-
val (sm(i − 1), sm(i)]. From these points, use a kernel density estimator to
find an estimate ŝL

i of the density of L(sm(i)), which will be used to evaluate

the conditional expectation of EP
[
(L(sm(i)) + zm(j))+

∣∣STh = sm(i)
]

for each
equally spaced mesh of points zm(j) from M. This gives the approximation
of ĝ0(sm(i), zm(j); 1). For the bounds hL(sm(i)) and hU(sm(i)), take the αL and
αH-quantiles of the distribution of L(sm(i)) for evaluating g(sm(i), zm(j); p)
over M. Note that the functions ĝ0 and g are both defined in (5.6) from
Kolkiewicz (2016).

(ii) Based on relation (5.7) in Kolkiewicz (2016), use a central finite difference to
approximate l̂e(s, y) in (31) by inverting the derivative of ĝ.

(iii) Use the bisection method to fit the value of c by the budget constraint in (32).
ˆ̃γ(s) and ĥopt(sm(i)) are then determined by all the elements obtained by the
aforementioned steps with the Radon–Nikodym derivative dQ/dP.

(S5) Repeat the above processes and get all hopt(sm(i)) for i = 1, · · · , Ks.

4.2. Numerical Examples

In this section, we present a numerical result of Theorem 1 with the optimal rate of
volatility-dependent fees determined by the pricing criteria in Section 2.3. We use the
following base parameters: S0 = F0 = GT = GTh = 100, ρ = −0.3, κ∗ = 3, v0 = v̄∗ = 0.04,
µ = 0.15, r = 0.05, σ = 0.4, λ = −0.15, αL = 0.05, αH = 0.95, Ks = Kz = 150 and T = 30.
The parameter of the weight function p is set to be one for hedging the GMMB with a
non-parametric expected shortfall risk.

Based on the Monte Carlo method with M = 106 repetitions and N = 100 intervals,
in Table 1 we identify the optimal pairs of (a∗, b∗) with a T-year GMMB for the insurer
who wants to minimize the shortfall risk EQ

∆ [d
+(∆; a∗, b∗)] at a specific ∆ ∈ [0, T], under

the condition that the embedded put option liability is fairly priced at time zero. We also
present the Value-at-Risk of the expected loss d(∆; a∗, b∗), which, as indicated in Section 2.3,
reflects the level of insurer’s profitability at time ∆ by offering the GMMB rider.

Table 1. Optimal pairs of (a∗, b∗) that solve the problem (19) with the base parameters.

∆
Optimal
(a∗, b∗)

EQ[d+(∆; a∗, b∗)
]

VaR0.90(d(∆; a∗, b∗)) VaR0.95(d(∆; a∗, b∗)) VaR0.99(d(∆; a∗, b∗))

0.3 (0, 0.6471) 0.2822 0.7493 0.7755 0.9621
0.6 (0, 0.6472) 0.0967 0.3757 0.6283 1.1457
0.9 (0.0206, 0.1283) 0.0389 −0.0080 0.2863 0.8696
1.2 (0.0214, 0.1093) 0.0103 −0.5704 −0.2422 0.3841
1.5 (0.0213, 0.1125) 0.0018 −1.1967 −0.8605 −0.2170
1.8 (0.0197, 0.1513) 0.0002 −1.8782 −1.5261 −0.8785
2.1 (0.0235, 0.0571) 0 −2.7251 −2.3735 −1.7085
2.4 (0.0169, 0.2220) 0 −3.3442 −2.9519 −2.2616
2.7 (0.0075, 0.4579) 0 −3.3409 −2.9116 −1.9572
3.0 (0.0041, 0.5448) 0 −4.0911 −3.4009 −2.2567
3.3 (0.0039, 0.5483) 0 −4.9313 −4.1798 −2.8882
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With an optimal pair of a∗ and b∗, in Figure 1 we are interested in the distributional
characteristics of d(∆; a∗, b∗) over different levels of ∆, which evolves with the correspond-
ing variance of the fund whose distributions are presented in Figure 2. In Figure 2, we
observe that the distribution of the variance v∆ appears to be stationary over the selected
levels of ∆. We also discover from both Figure 1 and Table 1 that the expected shortfall and
its corresponding VaRs on the loss-at-time ∆, d(∆; a∗, b∗), turn smaller and the latter one
becomes negative for a larger ∆, while the distribution of the underlying fund shifts to the
right. This observation indicates that the insurer could suffer an expected deficit in the early
years of the contract and then profit from the growth of his fee revenue in proportion to the
fund value and a decrease in the cost of put option liability in the later years. Moreover,
with a smaller optimal base rate a∗ and the corresponding larger sensitivity parameter
b∗, we find that a fair volatility-dependent fee rate can be more sensitive to the market
volatility in the early or later years of the contract, while both parameters of optimal (a∗, b∗)
are more stable for a certain period, i.e., when ∆ ∈ [0.9, 1.8].
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Figure 1. The respective probability densities of the expected loss d(∆; a∗, b∗) (left panel) and the
fund value F∆ under P (right panel).
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Figure 2. The probability densities of the time–∆ variance v∆ measured under P.

As an alternative criterion discussed in Section 2.3, during a period of time the in-
surer could consider minimizing average of the expected shortfalls, 1

n ∑n
i=1 E

Q
∆ [d

+(∆i; a, b)],
as described in (22). For example, by a subjective choice of ∆i over the time set T =
{0.3, 0.9, 1.8, 2.7}, we show the feasibility of such an approach with the optimal pair of
a∗ = 0.0178 and b∗ = 0.1993, while the corresponding minimum of the expected average
shortfall is equal to 0.3308.

For illustrative purposes, we select a pair of a∗ = 0.0075 and b∗ = 0.4579 satisfying
condition (20), assuming that the insurer wants to minimize the shortfall risk at ∆ = 2.7.
With this pre-selected fee structure of ct = 0.0075 + 0.4579vt, the insurer decides to hedge
the GMMB liability for a specific time interval. In the following analyses, we compare the
hedging results between the proposed optimal static hedging strategy and the benchmark
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mean-square approach. In particular, we are interested in the hedging performance of the
proposed strategy based on a variety of market conditions, such as equity return µ and the
length of hedging period Th chosen by the hedger. Correspondingly, Figures 3–6 display the
resulting optimal hedging strategy for GMMB with volatility-dependent fees (left panels),
which, by Theorem 1, is derived from the distributions of underlying equity index under
both risk-neutral and physical probability measures (right panels). For illustrative purposes,
we demonstrate the optimal hedging strategy in the range where the probability density
of the underlying equity index is near and above zero. The following Scenarios 1–4 are
considered in our analyses:
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Figure 3. The optimal static hedging option conditional on STh = s (left panel) and the probability
densities of the underlying STh with the Heston-type stochastic volatility (right panel) for Scenario 1.
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Figure 4. The optimal static hedging option conditional on STh = s (left panel) and the probability
densities of the underlying STh with the Heston-type stochastic volatility (right panel) for Scenario 2.

0 50 100 150 200 250
0

10

20

30

40

50

60

70

h
L

h
U

h
opt

h
ms

0 100 200 300 400 500 600
0

0.005

0.01

0.015

0.02

0.025

density under P

density under Q

Figure 5. The optimal static hedging option conditional on STh = s (left panel) and the probability
densities of the underlying STh with the Heston-type stochastic volatility (right panel) for Scenario 3.
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Figure 6. The optimal static hedging option conditional on STh = s (left panel) and the probability
densities of the underlying STh with the Heston-type stochastic volatility (right panel) for Scenario 4.

Scenario 1: when µ = 10% and Th = 1, the expected shortfalls of hopt and hms are in the
respective sizes of 0.0746 and 0.1178, while the corresponding standard deviations are
0.0890 and 0.1421, respectively, with c = 0.2150 and V0 = 2.1712.
Scenario 2: when µ = 15% and Th = 1, the expected shortfalls of hopt and hms are in the
respective sizes of 0.1157 and 0.1215, while the corresponding standard deviations are
0.1396 and 0.1463, respectively, with c = 0.2150 and V0 = 2.1712.
Scenario 3: when µ = 10% and Th = 5, the expected shortfalls of hopt and hms are in the
respective sizes of 0.0249 and 0.1168, while the corresponding standard deviations are
0.0535 and 0.2506, respectively, with c = 0.0825 and V0 = 15.6066. Note that a longer
hedging maturity T > ∆ is conjectured for examining the hedging performance outside the
hedger’s initial budget period that was used to set the level of ct in Section 2.3.
Scenario 4: when µ = 15% and Th = 5, the expected shortfalls of hopt and hms are in the
respective sizes of 0.1006 and 0.1138, while the corresponding standard deviations are
0.2681 and 0.2393, respectively, with c = 0.0825 and V0 = 15.6066.

In our problem, the only source of path-dependency of the GMMB liability when it
is conditional on a fixed equity index STh = s is the associated volatility-dependent fees
charged with the path of variance during the period [0, Th]. Given a level of variance
vt ∈ [0, 0.09], the rate of ct = 0.0075 + 0.4579vt changes between 0.75% and 4.8711% around
its average level of c̄ = 0.0075 + 0.4579v̄∗ = 2.5816%. Since the fee is charged in a relatively
low amount at a fixed STh = s, it leads to a narrower bandwidth in Figures 3 and 4 between
hL(s) and hU(s) for a shorter hedging period Th = 1. For a hedger who targets the shortfall
risk at a larger maturity Th = 5, we observe from Figures 5 and 6 that the bandwidth
between hL and hU stays in a wider range, indicating that the varying level of volatility-
dependent fees has a greater impact on the risk of the GMMB liability.

The numerical results show that the optimal hedging option hopt outperforms its coun-
terpart, the mean-square one hms. For instance, when µ = 0.10 and Th = 1, the expected
shortfalls from hopt and hms are 0.0746 and 0.1178, respectively, which is a reduction of
36.67% in shortfall risk. The standard deviation of the shortfall risk from hopt is reduced
by 37.36% when compared to hms. Depending on the model parameters, we find that the
optimal hedging option can reduce the expected shortfall by an amount ranging from 4%
to 46%. Due to its limited variation of the conditional liability caused by the volatility-
dependent fees, in all scenarios the hedging strategies share a similar payoff to a standard
European put option liability for GMMBs. On top of the fact that an optimal pair of a∗

and b∗ identified in the pricing stage can already reduce the potential expected shortfall
based on a certain insurer’s criterion, as noted in Section 3.2, a desirable replication of the
hedging strategy by standard European options can be another reason for the relatively
small size of the expected shortfall risks resulted from both hopt and hms in Figures 3–6.
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5. Concluding Remarks

The main objective of this paper is to extend a theoretical result that characterizes an
optimal static hedging strategy for a path-dependent GMMB liability in the incomplete
Heston market. In this paper, we demonstrate the feasibility of the optimal hedging
method, which can be considered a benchmark when compared to other strategies with
the introduction of stochastic volatility and/or the other more complex path-dependent
feature embedded with VAs. We have discussed several aspects on the valuation, fee
determination, and static hedging strategy for GMMB in a logical sequence, so that it is
convenient for VA hedgers to practice the strategy with a volatility-dependent fee design.
The resulting optimal static hedging strategy also enriches the existing literature about the
hedging approach for VAs with state-dependent fees.
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Appendix A. Proof of Theorem 1

The proof is similar to the one presented in Kolkiewicz (2016) in the context of hedging
path-dependent options under the Black–Scholes framework, and here only main steps are
shown in the stochastic volatility setting.

In the spirit of Föllmer and Leukert (2000), we want to characterize the optimization of
the static hedging strategy as the solution based on the statistical optimal randomized test.
For a function γ(STh) ∈ [0, 1], the optimization problem of each admissible static hedging
strategy, with its assumed form of h = hL + γ(hU − hL), is equivalent to determining the
optimal ratio γ̃ in the sense that

γ̃
(
STh

)
= arg min

γ(STh
)∈[0,1]

E
[
E
[((

L(STh)− hL(STh)− γ(STh)
(
hU(STh)− hL(STh)

))+)p
∣∣∣∣STh

]]
= arg min

γ(STh
)∈[0,1]

EP
[(

hU(STh)− hL(STh)
)pg

(
STh , 1 − γ(STh); p

)]
, (A1)

where the differentiable function g(s, z; p) is convex and non-decreasing in z ∈ [0, 1], which
is given by (4.2) in Kolkiewicz (2016).

For a a new probability measure Q̃ on STh = s ∈ R+ defined by dQ̃ = const ·
(hu(s)− hL(s))dQ, we select the bounds hL and hU such that EQ[hL(STh)

]
≤ V0 and
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V0 ≤ EQ[hU(STh)
]
< ∞. This allows us to rewrite the budget constraint EQ [

h(STh)
]
≤ V0

for problem (A1) as

EQ̃[γ̃(STh)
]
≤ H̃0 :=

V0 −EQ[hL(STh)]

EQ[hU(STh)− hL(STh)]
∈ [0, 1]. (A2)

Using the method of Karlin (2003), Kolkiewicz (2016) derives the equivalent condition
for γ̃ to be optimal as

EP
[(

hU(STh)− hL(STh)
)pgz

(
STh , 1 − γ̃(STh); p

)
γ̃(STh)

]
(A3)

≥ EP
[(

hU(STh)− hL(STh)
)pgz

(
STh , 1 − γ̃(STh); p

)
γ(STh)

]
,

where gz(s, z; p) is the derivative of the function g in (A1), which is strictly increasing in
z ∈ [0, 1]. Under a new integrable measure P̃ defined by dP̃ = const · (hU(s)− hL(s))

p ·
gz(s, 1 − γ̃(s); p)dP, the problem of finding the maximum of the right-hand side of (A3)
with respect to γ, subject to the constraint (A2), can be recognized as looking for the most
powerful test for the hypothesis Q̃ against the alternative P̃ at the level φ := H̃0, where the
optimal test γ̃ can be structured in line with the Neyman–Pearson lemma in terms of the
likelihood ratio

Λ(s) :=
dP̃
dQ̃

= const · (hU(s)− hL(s))
p−1 · gz(s, 1 − γ̃(s); p)

dP
dQ .

Since gz is strictly increasing in z ∈ [0, 1], for a constant c, we obtain that (1) the optimal
test γ̃ = 1 on the set {Λ(s) > c} = {s : (hU(s)− hL(s))

p−1 · gz(s, 0; p) dP
dQ > c}; (2) γ̃ = 0

on the set {Λ(s) > c} = {s : (hU(s)− hL(s))
p−1 · gz(s, 0; p) dP

dQ > c}; (3) the optimal test

γ̃ is satisfied with the level condition on the set {Λ(s) = c} = {s : (hU(s)− hL(s))
p−1 ·

gz(s, 1 − γ̃(s); p) dP
dQ = c}. Then, as demonstrated in Kolkiewicz (2016), the optimal test γ̃

can be summarized in the following way:

γ̃(s) := 1 − le

(
s, c · (hU(s)− hL(s))

1−p dQ
dP

)
, (A4)

where the constant c is chosen to satisfy the budget constraint EQ̃[γ̃(STh)
]
= H̃0.

In the stochastic volatility setting, we would like to make the following comments
on the theoretical result presented in (A4). First, the expression (A4) is derived based on
the invertibility of the function gz, which needs to be approximated by a kernel density
when the conditional loss L(s) is simulated in our numerical results. Second, since in the
incomplete Heston market there exists infinitely many equivalent martingale measures, the
Radon–Nikodym derivative dQ/dP could be derived in multiple forms. In this paper, we
utilize the theoretical result based on the D–Y formula, which leads to the Radon–Nikodym
derivative as a continuous function of the underlying index S ∈ R+. Finally, the uniqueness
of the constant c can be demonstrated based on the invertibility of gz and the continuity of
dQ/dP. The proof of this uniqueness follows the derivation by Kolkiewicz (2016) and it is
omitted here.
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