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Abstract: Under the revised market risk framework of the Basel Committee on Banking Supervision,
the model validation regime for internal models now requires that models capture the tail risk in
profit-and-loss (P&L) distributions at the trading desk level. We develop multi-desk backtests, which
simultaneously test all trading desk models and which exploit all the information available in the
presence of an unknown correlation structure between desks. We propose a multi-desk extension
of the spectral test of Gordy and McNeil, which allows the evaluation of a model at more than one
confidence level and contains a multi-desk value-at-risk (VaR) backtest as a special case. The spectral
tests make use of realised probability integral transform values based on estimated P&L distributions
for each desk and are more informative and more powerful than simpler tests based on VaR violation
indicators. The new backtests are easy to implement with a reasonable running time; in a series of
simulation studies, we show that they have good size and power properties.

Keywords: backtesting; risk management; value-at-risk; model validation; Basel regulations

1. Introduction

In this paper, we propose a multi-desk extension of the spectral backtest
of Gordy and McNeil (2020). Our test is designed to address the requirement that banks
should implement backtests of their risk models at the desk level. Although banks are
required to report the results of single-desk value-at-risk backtests at the desk level, our
proposal is for a test that simultaneously assesses the quality of all desk-level risk models,
with respect to outcomes in the tail.

There are a number of potential advantages of our test. First, it may detect deficiencies
in desk models that are missed when trading desk data are aggregated into a single portfolio.
Aggregation will result in the loss of information and the netting effect across desks will
potentially mask situations where an under-estimation of risk in one trading desk model is
compensated for by the over-estimation of risk in another trading desk model. Moreover,
when desks are tested jointly, we effectively increase the amount of data with respect to a
single test at the level of the trading book, which improves the testing power. Furthermore,
by embedding our test in the spectral framework, we are able to test the performance of risk
models at a range of confidence levels, and not simply at a single level, as in standard VaR
backtesting. To place our proposal in context, we give a brief review of the development of
backtesting for the trading book in the following paragraphs.

Over the last three decades, a method of testing value-at-risk (VaR) predictions using
historical data, known as backtesting (Jorion 2007), has become the industry standard for
the validation of internal models of market risk. Under the previous regulatory frameworks
of Basel II and Basel II.5 (see BCBS 2006, 2011), backtesting required the comparison of
one-day-ahead VaR forecasts at the 99% probability level with the ex-post realised losses
and was based on so-called VaR violation indicators. Most proposed backtests for the
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accuracy of VaR forecasts are of a univariate nature and are based on univariate time series
of VaR violations for a single portfolio, such as the entire trading book of a bank.

Christoffersen (1998) defined criteria, known as the unconditional coverage and in-
dependence hypotheses, that should be satisfied by credible VaR forecasts. The former
is the requirement that the expected number of violations of VaR forecasts at probability
level α over n time periods should be n(1 − α), while the latter is the requirement that
such violations should occur independently in time. The criteria can also be combined
to obtain the conditional coverage hypothesis. An early approach to verifying the un-
conditional coverage hypothesis can be found in Kupiec (1995), while an approach to
testing for the independence of the sequence of VaR violation indicators was presented
by Christoffersen (1998). Tests of the independence hypothesis generally require an as-
sumption about the dependence structure under the alternative hypothesis and can have
very limited power to detect departures from independence caused by other forms of serial
dependence. Moreover, as pointed out in Campbell (2007), joint tests of the unconditional
coverage and independence hypothesis are not automatically preferable to separate testing;
poorly performing VaR models, which violate only one of the two hypotheses, are less
likely to be detected by a joint test than by two separate tests.

Since a reasonable model of a profit-and-loss (P&L) distribution should deliver accept-
able VaR estimates at a range of probability levels, the revised regulatory requirements for
the measurement of market risk (BCBS 2019)1 emphasise that backtesting should be carried
out at multiple probability levels beyond the usual 99% level. In these new regulations, the
expected shortfall risk measure plays an important role in the formula used to determine
the required capital for market risk in the trading book. Since the expected shortfall is
defined as the mean of the losses that are greater than the VaR at level α, a good estimate
of the expected shortfall requires a P&L forecast that is accurate for VaR estimation at a
range of α values in the tail of the distribution. Kratz et al. (2018) proposed a simultaneous
multinomial test of VaR estimates at different α levels and suggested that such a test could
be viewed as an implicit backtest of the expected shortfall. Alternative multilevel VaR
tests were also developed by Campbell (2007), who proposed a Pearson’s chi-squared test
for goodness of fit, and Pérignon and Smith (2008), who developed a likelihood-ratio test
generalising the unconditional coverage test of Kupiec (1995).

Testing the accuracy of VaR forecasts at more than one α level implies that we move
away from a simple assessment of the validity of VaR to a more thorough assessment of the
forecast of the P&L distribution from which the VaR forecast is calculated. If the P&L dis-
tribution is adequately estimated, the resulting VaR estimates must be accurate for every α
level in [0, 1]. In the extreme case that we test at every α level, we backtest the complete
P&L distribution. One advantage of backtesting the forecast of the P&L distribution (or
a region theoreof) is that we exploit much more information in comparison to using the
series of VaR violation indicators at a single α level. The latter may take only the values one
or zero, depending on whether a VaR violation has occurred or not, and, for typical α levels
in the region of 99%, violations are rare and the resulting indicator data are sparse.

Backtests of the forecast of the P&L distribution can be based on realised probability-
integral transform (PIT) values. These are transformations of the realised value of P&L by
the cumulative distribution function of the model used to forecast P&L at the previous
time point. An ideal forecaster, i.e., a forecaster in the sense of Gneiting et al. (2007)
who has knowledge of the correct model, would produce independent and uniformly
distributed PIT values. Berkowitz (2001) proposed the first backtest of this kind based on
the transformation of realised PIT values to a normal distribution under the null hypothesis.

The spectral tests of Gordy and McNeil (2020) are constructed by transforming PIT
values with a weighting function, referred to as a kernel, and are available in both un-
conditional coverage and conditional coverage variants. Their form is very flexible and
they include many of the previously proposed approaches to backtesting as special cases.
Under the spectral backtesting philosophy, the risk modelling group or banking regulator
can choose the kernel to apply weight to the area of the forecast distribution that is of
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primary interest—for example, a region in the area around the 99% quantile. Among the
tests subsumed in this framework are the test of Kupiec (1995), which corresponds to a
kernel equivalent to the Dirac measure at a specific probability level α, and the test of
Berkowitz (2001). The spectral risk measure test of Costanzino and Curran (2015) and the
expected shortfall test of Du and Escanciano (2017) are further special cases obtained by
choosing a kernel truncated to tail probabilities.

While the test of Gordy and McNeil (2020) can be viewed as an absolute test of model
adequacy for a single candidate model, a weighted approach to forecast comparison in
specific areas of a forecast distribution was proposed by Amisano and Giacomini (2007).
Their weighted likelihood ratio test is a relative test that compares the performance of
two competing density forecasts and is based on the weighted averages of the logarithmic
scoring rule, where the weights are chosen according to the preferences of the risk modelling
group. Diks et al. (2011) proposed similar tests but based them on conditional likelihood
and censored likelihood scoring rules, while Gneiting and Ranjan (2011) applied the
(quantile-weighted) continuous ranked probability score instead of the logarithmic score.

In contrast to the rich variety of tests available for the backtesting of a univariate series
of density forecasts, or comparing competing sets of forecasts, the literature on multivariate
backtesting is much more sparse. Multivariate extensions of univariate VaR backtests have
not been widely developed, although Berkowitz et al. (2011) already sketched a number
of ideas. We are aware of two papers by Danciulescu (2016) and Wied et al. (2016) that
deal with the multivariate backtesting of VaR, in the sense of backtesting VaR forecasts for
several portfolios (or desks) simultaneously.

Danciulescu (2016) suggests a test for the unconditional coverage hypothesis and a
test for the independence hypothesis using multivariate portmanteau test statistics of the
Ljung–Box type, which are applied to the multivariate time series of VaR violation indicator
variables. The test for the independence hypothesis simultaneously tests for the absence
of cross- and autocorrelations in the multivariate time series of VaR violation indicator
variables up to some finite lag K. In Wied et al. (2016), multivariate tests are proposed for
the detection of clustered VaR violations, which would violate the conditional coverage
hypothesis. They argue that their test can detect the clustering of VaR exceedances for a
single desk, which would indicate that the probability of VaR violations is varying over
time, as well as the clustering of VaR exceedances across desks at different lags, which
would cast doubt on the assumption of independent VaR violations for different desks at
different time points.

Unfortunately, due to the sensitivity of the data concerned, there are very few empiri-
cal studies of bank-wide P&L backtesting and even fewer studies of desk-level data. One
exception is Berkowitz et al. (2011), who analysed daily realisations from the P&L dis-
tribution and daily forecasts of VaR (calculated by the widely used historical simulation
method) for each of four separate business lines at a large international commercial bank.
In this study, various univariate tests, including the Markov test of Christoffersen (1998)
for the conditional coverage hypothesis, the CaViaR test for autocorrelation of Engle and
Manganelli (2004), and the unconditional coverage hypothesis test of Kupiec (1995), were
used to backtest the VaR for each trading desk separately. Moreover, the tests were as-
sessed based on their finite sample size and power properties in a Monte Carlo study. The
authors found that the VaR models for two out of the four business lines were rejected
due to volatility clustering and that the model of a third business line was rejected by the
unconditional coverage hypothesis test of Kupiec (1995).

The remainder of our paper is organised as follows. In Section 2, we explain the
testing approach based on PIT values and recapitulate the main details of the spectral test
of Gordy and McNeil (2020). We then show how this may be extended to obtain multivariate
spectral tests based on a single spectrum or multiple spectra in Section 3. In Section 4,
we carry out a simulation study to analyse the size and power of the proposed tests for
different amounts of data, different numbers of desks, different choices of kernels, and
different deviations from the null hypothesis. Concluding remarks are found in Section 5.
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2. Spectral Backtests of Forecast Distributions
2.1. Realised PIT Values

Let (Ω,F ,P) denote a probability space and let (Lt)t∈N be a time series defined on this
space representing losses (positive numbers) and profits (negative numbers) on a portfolio
of risky assets. For every t ∈ N, define the conditional loss distribution function Ft by

Ft(xt | xt−1, . . . , x1) = P(Lt ≤ xt | Lt−1 = xt−1, . . . , L1 = x1)

and assume that Ft is an absolutely continuous function of xt. If we now define the
process (Ut)t∈N by U1 = F1(L1) and Ut = Ft(Lt | Lt−1, . . . , L1) for t ≥ 2, then the result
of Rosenblatt (1952) implies that (Ut)t∈N is a sequence of independent and identically
distributed (iid) standard uniform variables. Note that this holds in general without any
assumption of stationarity for (Lt)t∈N. This is important because the time-varying nature
of the functions Ft may come both from the time-varying nature of the underlying risk
factors affecting the portfolio value (for example, equity prices and interest rates) as well
as changes in the composition of the portfolio caused by rebalancing and capital inflows
and outflows.

We assume that, at each time t, a risk modelling group at a bank or other financial
institution makes a forecast F̂t of Ft based on the information available to it up to time
t − 1, which includes {L1, . . . , Lt−1} and possibly additional information. The correspond-
ing random variables Pt obtained by setting Pt = F̂t(Lt | Lt−1, . . . , L1) for t ∈ N are
referred to as the realised PIT values. For an omniscient or ideal forecaster in the sense of
Gneiting et al. (2007), which is a forecaster who possesses extra information about the exact
form of the function Ft at every time point, it would follow that F̂t = Ft and the realised
PIT values would be iid uniform. For an ordinary mortal forecaster, we effectively hold
them to this ideal standard and test the extent to which the realised PIT values satisfy the
iid uniform assumption.

We assume that model validation is carried out by a regulator who only has access to
the time series of realised PIT values (Pt) and has no knowledge of the forecasting models
(F̂t) that were used.

2.2. Spectral Tests

The spectral tests of Gordy and McNeil (2020) are based on transformations of the
realised PIT values through the level exceedance indicator function Yt(u) = I{Pt≥u} accord-
ing to

Wt =
∫
[0,1]

I{Pt≥u}dν(u), t = 1, . . . , n (1)

where ν is a probability measure on [0, 1], which is referred to as the kernel measure.
The risk modelling group or model validation group can choose this measure to weight

a set of quantile levels according to their preferences for forecast model performance. For
example, if the preference is for model performance around the 99th percentile, the kernel
measure would typically be chosen to place weight in a sub-interval of [0, 1] containing the
value 0.99. In the most extreme case, by choosing the Dirac measure at the value α = 0.99,
the spectral transformation of the realised PIT value in (1) would simply satisfy

Wt = Yt(α) = I{F̂t(Lt)≥α} = I{Lt≥F̂−1
t (α)}.

In other words, it would yield the indicator variable for a VaR exceedance at level
α. The paper of Gordy and McNeil (2020) contains examples of discrete and continuous
probability measures ν. In the continuous case, we have Wt =

∫ 1
0 g(u)I{Pt≥u}du, where g is

the probability density corresponding to the measure ν; in this case, we usually assume
that ν is supported on a strict sub-interval [α1, α2] of [0, 1], which is referred to as the
kernel window.
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Monospectral tests are based on the time series (Wt)t∈N. Gordy and McNeil (2020)
also propose bispectral and, more generally, m-spectral tests in which a set of distinct
kernel measures ν1, . . . , νm is considered. In this case, the data consist of vectors (Wt),
where Wt = (Wt,1, . . . , Wt,m)′ and each component Wt,j is calculated using the probability
measure νj and a spectral transformation of the form given in (1).

We can consider hypotheses about the series (Wt) that generalise the notions of un-
conditional coverage, independence, and conditional coverage promoted by Christoffersen
(1998): a test of the unconditional coverage hypothesis is a test that the distribution of the
Wt values is the one implied by the uniformity of the realised PIT values; an independence
test is a test of the hypothesis that the Wt values are independent of lagged realised PIT
values P1, . . . , Pt−1 (which implies that the series (Wt) is iid). A test of the conditional
coverage hypothesis is a combined test of both of these hypotheses.

In this paper, our focus is on unconditional tests. The generalisation of unconditional
spectral tests to conditional spectral tests is extensively discussed in Gordy and McNeil
(2020) and it is clear from the analysis in that paper that conditional extensions are more
powerful at detecting the presence of serial dependence in PIT values—for example, serial
dependence resulting from unmodelled volatility effects. In this paper, we concentrate on
tests that address the hypothesis of the uniformity of PIT values and how these may be
generalised to the multi-desk case.

Gordy and McNeil (2020) consider different styles of test based on data W1, . . . , Wn for
the unconditional coverage hypothesis, including likelihood ratio tests and Z-tests. We will
extend the latter to the multi-desk situation due to their tractability, ease of implementation,
and good performance in the single portfolio setting. A Z-test appeals to the asymptotic
normality of the sample average Wn = n−1 ∑n

t=1 Wt and tests whether

Tn = n
(
Wn − µW

)′Σ−1
W

(
Wn − µW

)
∼ χ2

m (2)

where µW and ΣW are the mean vector and covariance matrix of Wt when the underlying
realised PIT value Pt is standard uniform. In the case of a monospectral test, we consider
the simpler test of whether the following holds:

T̃n =

√
n(Wn − µW)

σW
∼ N(0, 1). (3)

In the case where the probability measures νj have absolutely continuous distribution
functions Gj with densities gj, we obtain simple formulas for the moments of Wt,j =∫ 1

0 gj(u)I{Pt≥u}du taking the form

µWj = E(Wt,j) =
∫ 1

0
gj(u)(1 − u)du (4)

ΣWj,k = E(Wt,jWt,k) =
∫ 1

0

(
gj(u)Gk(u) + gk(u)Gj(u)

)
(1 − u)du (5)

and when m = 1, these reduce to µW = µW1 and σ2
W = σ2

W1 = ΣW1,1. This is the case
that we will extend in this paper. The main practical consideration is that the density
functions gj should permit the moments in (4) and (5) to be easily evaluated. We will
consider parametric densities gj supported on an interval [α1, α2] in the neighbourhood of
a standard VaR confidence level (α = 0.99) such that gj is either constant in the interval or
increasing, to give greater weight to more extreme quantiles; the exact forms used may be
found in Section 4.1. This approach is shown to work well in Gordy and McNeil (2020).

2.3. Monospectral versus Bispectral Tests

Monospectral tests can be useful in carrying out one-sided tests of the null hypothesis
that E(Wt) ≤ µW (where µW is the value obtained when PITs are uniform) against the
alternative that E(Wt) > µW ; in the case of a VaR exception test, this amounts to testing
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that E(Yt(α)) ≤ 1 − α versus E(Yt(α)) > 1 − α or, in other words, the null hypothesis that
the VaR exceedance probability is no larger than the desired value (1 − α).

Bispectral or multispectral tests are two-sided tests and, in our view, should generally
be preferred to the one-sided monospectral tests. In assessing the quality of forecasts, the
systematic overestimation of risk is as suggestive of a deficiency in the forecast model as is
systematic underestimation. Moreover, at the desk level, if the net position in some risky
asset class changes from long to short, then a different tail of the P&L distribution becomes
relevant and an overestimate of risk may become an underestimate.

One means of understanding the difference between a monospectral and a bispectral
test is that the former only tests for the consistency of weighted PIT values with the first
moment of Wt under the null hypothesis, while the latter tests for the consistency of two
different statistical functionals and thus effectively captures the misspecification of two
moments. This can be particularly beneficial when one of the chosen kernels fails to
detect deviations of the distribution of the realised PIT values from a uniform distribution.
Spectral tests are weighted measures of the discrepancy between the empirical distribution
of PIT values and the uniform distribution within the kernel window. It can emerge that
this discrepancy results in the crossing of the distribution functions and that this crossing
is undetected by a single weighting scheme but is revealed by using two such schemes.
Further discussion of this phenomenon is found in Gordy and McNeil (2020).

3. Multi-Desk Spectral Backtests
3.1. Framework for Multi-Desk Backtests

We generalise the notation to consider d desks or sub-portfolios. For i = 1, . . . , d,
let Lt,i represent the loss attributed to sub-portfolio or trading desk i at time t, let F̂t,i
denote the forecast model for Lt,i constructed using information up to time t − 1, and let
Pt,i = F̂t,i(Lt,i | Lt−1,i, . . . , L1,i) be the corresponding realised PIT value.

If the risk management function of desk or sub-portfolio i is modelling its risks well,
we expect that the univariate PIT time series (Pt,i) will behave like an iid uniform series.
We expect cross-correlation between the series at lag zero, since portfolio or desk models
are usually built using the same underlying methodology and the same correlated risk
factor data, but we do not expect cross-correlation at other lags. This leads us to adopt the
hypothesis that the PIT vectors (Pt) given by Pt = (Pt,1, . . . Pt,d)

′ are iid random vectors
with uniform marginal distributions.

We first note that a simple but crude method of extending the single-portfolio spectral
testing methodology to a multi-desk situation is through the Bonferroni correction (see,
for example, Dunn 1959). Suppose that we calculate either monospectral test statistics
T̃n,i based on (3) or multispectral test statistics Tn,i based on (2) for each desk i. Let the
p-values for the d desks be p1, . . . , pd. The null hypothesis that the desks are collectively
delivering acceptable forecasts of P&L would be rejected in a test of size no greater than
β if min{p1, . . . , pd} ≤ β/d. However, it is well known that the Bonferroni correction
leads to a loss of statistical power and so this is not a recommended procedure in the
backtesting context.

We now consider how the spectral methodology can be adapted to construct a joint
test over all desks. In the following sections, we use the notation

Wt,i,j =
∫
[0,1]

I{Pt,i≥u}dνj(u)

to refer to the spectral-transformed realised PIT value for desk i at time t using kernel νj.

3.2. The Monospectral Case

We first consider a single spectral transformation of the PIT values of the form Wt,i,1 =∫
[0,1] I{Pt,i≥u}dν(u) using the spectrum ν, which leads to a multi-desk generalisation of

the test in (3). Under the assumption of uniform PIT values, each of the Wt,i,1 satisfies
E(Wt,i,1) = µW and var(Wt,i,1) = σ2

W , where these moments take the same values as in (3).
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Let Wn = n−1 ∑n
t=1 Zt, where Zt = d−1 ∑d

i=1 Wt,i,1 is the average of the spectrally
transformed, realised PIT values over all desks at time t. We note that this is a generalisation
of the notation used in (3) since, when d = 1, we have Wn = n−1 ∑n

t=1 Wt,1,1, which is the
average weighted realised PIT value over time for a single desk and a single spectrum.
Under the uniform assumption, E(Wn) = E(Zt) = E(Wt,i,1) = µW . However, the variance
of Wn satisfies var(Wn) = n−2σ2

Z, where σ2
Z = var(Zt) and σZ ̸= σW unless d = 1; in

general,the unknown dependencies between desks must be considered in evaluating σZ.
Thus, the monospectral multi-desk test relies on generalising (3) to test whether

T̃n =

√
n(Wn − µW)

σZ
∼ N(0, 1) (6)

where σZ is a parameter that is not fully identified under the null hypothesis and must be
replaced by a suitable estimate.

A natural first approach is to use the unbiased and consistent estimator given by
σ̂2

Z = 1
n−1 ∑n

t=1(Zt − Wn)2, but this does not work well in practice. Occasional large values
of Zt have a tendency to inflate σ̂2

Z and reduce the size of the test statistic in (6), leading to
the undersizing of the test. We have explored some alternative estimators that are better
at controlling the size, and the best-performing estimator is based on a method that will
be referred to as the correlation estimation (CE) method in the results. The CE method is
based on the observation that σ2

Z may be written as

σ2
Z = var(Zt) =

1
d2

d

∑
i=1

d

∑
j=1

cov(Wt,i,1, Wt,j,1) =
σ2

W
d2

d

∑
i=1

d

∑
j=1

ρij

where ρij denotes the correlation between the spectrally transformed realised PIT values
for desks i and j. If R̂W denotes the correlation matrix of the data {(Wt,1, . . . , Wt,d)

′, t =
1, . . . , n}, we can use the consistent estimator

σ̂2
Z =

σ2
W

d2 1′R̂W 1. (7)

The intuition is that by estimating a bounded quantity like correlation empirically
while using the values of σ2

W derived under the null hypothesis, we obtain an estimator
that is relatively robust to outlying observations of (Wt,1, . . . , Wt,d)

′, or, in other words,
observations where multiple desks show extreme PIT values. In contrast, if we estimate
empirical variances and covariances, we observe the tendency for inflated estimates to
dilute the size and power of the test.

In general, we expect positive dependence between desks. The above estimator can
occasionally give realised values that point to negative dependence, even in simulation
experiments where we know that there is a positive correlation between desks. We find
that better results are obtained by setting a floor for the estimator at the value that would
be obtained when the desks are independent, i.e., σ2

Z = σ2
W/d. Thus, we work, in practice,

with the estimator σ̃2
Z = max(σ2

W/d, σ̂2
Z), where σ̂2

Z is given by (7).

3.3. The Bispectral Case

Recall from Section 2.2 that a multispectral test is based on m probability measures
ν1, . . . , νm. In this section, we will consider m = 2 continuous measures with densities g1
and g2 so that, for each desk i and time t, we have a pair of spectrally transformed PIT values
given by (Wt,i,1, Wt,i,2). Let Zt be given by Zt = (Zt,1, Zt,2)

′, where Zt,j =
1
d ∑d

i=1 Wt,i,j is the
desk average for measure j and j = 1, 2.

Consider the statistic Wn = n−1 ∑n
t=1 Zt, which generalises the statistic used in (2) to

the case of more than one desk. The mean of Wn under the null hypothesis is given by

µW = E(Wn) = E(Zt) = (µW1, µW2)
′
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where the µWj are exactly as calculated in (4). The covariance matrix of Wn is given by
var(Wn) = n−1ΣZ, where

ΣZ =

(
var(Zt,1) cov(Zt,1, Zt,2)

cov(Zt,1, Zt,1) var(Zt,2)

)
. (8)

The application of the multivariate Central Limit Theorem Van der Vaart (2000) leads
to a test of the form

Tn = n
(
Wn − µW

)′Σ−1
Z

(
Wn − µW

)
∼ χ2

2 . (9)

Note that in the case of a single desk (d = 1), we have ΣZ = ΣW and we recover the
test statistic Tn given in (2) in Section 2.2.

As in the case of the monospectral test, we have to consider how to estimate ΣZ under
the null hypothesis when we have no information about dependencies across desks. We
use a method that is the natural extension of CE. Specifically, we decompose the variances
and covariances in (8) into a variance part, which is known under the null hypothesis, and
a part depending on the unknown correlation across desks.

Let Vt,j = (Wt,1,j, . . . Wt,d,j)
′ denote the vector of W-values across all d desks at time t

under weighting function gj, for j = 1, 2. Since Zt,j = d−11′Vt,j, we have

var(Zt,j) =
1
d2 1′ var(Vt,j)1 =

σ2
Wj

d2 1′RVj 1, j = 1, 2,

cov(Zt,1, Zt,2) =
1
d2 1′ cov(Vt,1, Vt,2)1 =

√
σ2

W1σ2
W2

d2 1′RV1V21

(10)

where σ2
Wj = ΣWj,j with ΣWj,j as defined in (5) and where RVj and RV1V2 denote correlation

matrices. More specifically, RVj is the d × d correlation matrix for the W-values under

measure νj across all d desks; this is estimated by R̂Vj , the empirical correlation matrix of
the vectors {Vt,j, t = 1, . . . , n}. The matrix RV1V2 is the d × d correlation matrix whose
element (j, k) is the correlation between the W-value for desk j under measure 1 and desk k
under measure 2; this is estimated by R̂V1V2 , the matrix whose element (j, k) is the sample
correlation of the pairs

{
(Wt,j,1, Wt,k,2), t = 1, . . . , n

}
.

4. Simulation Study
4.1. Design of the Study

We vary the following variables in the simulation study.

• Sample size n. This corresponds to the number of days used in the bank’s backtesting
exercise. The length of the backtesting period is typically small (one or two years of
daily data corresponding to days on which markets are open) and so we consider
n = 250 and n = 500.

• Number of desks d. This can be quite large in a bank with extensive trading operations
and we consider the values d = 50 and d = 100.

• Copula C of PIT values across desks. We assume different dependence structures
across desks by sampling PIT values with different copulas. In particular, we use the
Gauss copula and the copula of a multivariate t distribution with 4 degrees of freedom.
The latter case allows us to see how the properties of the spectral tests are affected by
tail dependencies in the PIT data.

• Level of dependence ρ across desks. For simplicity, we assume that all desks are
equi-dependent by setting the correlation matrix R of the Gauss and t copulas to be
an equicorrelation matrix with common parameter ρ, which takes the values ρ = 0 or
ρ = 0.5; more details are given below.
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• Fraction of misspecified desks. In examining size and power, we vary the fraction of
desks that use misspecified P&L distributions in their risk models.

• Specification of spectral test. We use a number of different monospectral and bispectral
tests as detailed below.

We generate n independent realisations of the vector Pt = (Pt,1, . . . , Pt,d) representing
the PIT values at time t for desks i = 1, . . . , d. The vectors Pt are drawn from the distribution

Pt ∼ C(G1(u1), . . . , Gd(ud)), (11)

where C denotes the copula (Gauss or Student) and G1, . . . , Gg are continuous univariate
distribution functions, which are designed to capture the effects of correctly and incorrectly
specified desk-level P&L models. The correlation matrix R, which is used to parameterise
the Gauss copula and the Student t4 copula, is an equicorrelation matrix with parameter
ρ = 0 or ρ = 0.5. Note that, in the former case, the Gauss copula yields a model where
the simulated PIT values are independent across desks, while the t4 copula yields a model
with dependencies. This is because, even with a correlation matrix R equal to the identity,
the Student t4 copula still has tail dependence, which will tend to lead to very large or
very small PIT values occurring together across a number of desks; see, for example,
McNeil et al. (2015)2.

For the marginal distributions Gi, we use a construction first developed in Kratz et al.
(2018) and also used in Gordy and McNeil (2020). We set Gi(u) = Φ(F−1

i (u)), where Φ
is the standard normal distribution function and where Fi is either the standard normal
distribution or the distribution function of a univariate Student t4 distribution scaled to
have variance one. If we wish to mimic a desk that is using a correctly specified desk model,
we choose the normal and thus obtain Gi(u) = u, the distribution function of standard
uniform. If we wish to mimic a desk that is using an incorrectly specified model, we choose
the scaled t4 and obtain a distribution function Gi, which is supported on the unit interval
[0, 1] but is not uniform; on the contrary, it is the type of PIT value distribution that would
be obtained if the desk were using a model (represented by Φ) that was lighter-tailed than
the true P&L distribution (represented by Fi) and thus underestimated the potential for
large losses (and large gains). It is important to note that the use of these two distributions
is simply a device to generate PIT data that either satisfy or violate the null hypothesis; we
do not claim that these distributions are in any sense the true distributions. Recall that the
null hypothesis is that the PIT vectors (Pt) are iid random vectors with uniform marginal
distributions but an unknown dependence structure.

For the spectral tests, we selected kernels corresponding to the following three contin-
uous weighting functions g defined on [α1, α2]:

(1) The uniform weighting function g(u) = 1;
(2) The linear weighting g(u) = u;
(3) The exponential weighting function g(u) = exp(k(u − α1))− 1 with k = 1.

The values α1 and α2 determine the kernel window. We choose α1 = 0.9805 and
α2 = 0.9995, which gives a symmetric interval around 0.99. Note that the functions are
non-decreasing, placing more weight on more extreme outcomes (in the right tail).

For the multivariate monospectral Z-tests, the kernel functions listed above lead
to three different tests, which we denote, respectively, by SP.U, SP.L, and SP.E. For the
multivariate bispectral Z-tests, we will look at two different Z-tests, which combine the
continuous kernel functions listed above. The test denoted SP.UL combines the uniform and
linear weighting functions. The test denoted SP.UE combines the uniform and exponential
weighting functions.

The simulation experiments described in the following sections were all performed
using the R package simsalapar, which is a very flexible tool for conducting large-scale
studies with a number of different dimensions (see Hofert and Mächler 2016). The tables
that we provide show observed rejection rates for the null hypothesis in 1000 replications
of the simulation experiment.
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We use a colouring convention to help with the interpretation of these rejection rates
and this is applied differently according to whether the results address the size or power of
a test. Simulation results relating to size are colour-coded as follows: good results (observed
size smaller or equal 6%) are coloured green; poor results (observed size in range [9–12%])
are coloured pink; very poor results (size above 12) are coloured red; all other values are
uncoloured. Simulation results relating to power are colour-coded as follows: good results
(observed power above 70%) are coloured green; poor results (observed power in range
[30–10%]) are coloured pink; very poor results (power below 10%) are coloured red; all
other values are uncoloured.

4.2. Evaluating the CE Method of Correcting for Inter-Desk Dependence

We first investigate the crucial CE method of correcting for the unknown dependence
structure across desks. We consider two extreme situations—one in which all desks are
correctly specified and one in which all desks are incorrectly specified. The former situation
allows us to evaluate the size of the test, i.e., the probability of a significant test result when
the null hypothesis holds. The latter situation is one that should certainly be picked up by
any backtest with reasonable power.

Results for the monospectral tests are found in Table 1. These relate to one-sided
tests of the null hypothesis, where we are interested in being able to detect the systematic
underestimation of tail risk in the right tail of the loss distribution. The nominal level β
of the tests is 0.05. The table shows the actual test rejection rates over 1000 replications
for different backtest lengths n, desk numbers d, copulas C, distribution functions Fi, and
correlation values ρ. The field CE shows whether the CE correction method has been used
or not.

Table 1. Size and power of monospectral Z-tests when all desk models are correctly specified and
when all desk models are misspecified.

d 50 100

ρ 0 0.5 0 0.5

Test CE n Fi|C Gauss t4 Gauss t4 Gauss t4 Gauss t4
SP.U No 250 N 5.0 23.6 26.2 29.2 5.1 29.6 30.5 32.9

t4 100.0 93.6 89.8 79.0 100.0 96.4 92.4 82.4
500 N 5.1 24.7 27.5 32.9 5.4 29.4 32.5 36.7

t4 100.0 99.4 97.7 91.1 100.0 99.7 98.6 93.4
Yes 250 N 4.6 4.4 4.2 4.5 4.9 4.9 4.4 4.6

t4 100.0 80.0 65.7 41.7 100.0 80.0 67.2 42.9
500 N 5.0 4.1 5.0 4.5 5.4 4.0 4.5 4.6

t4 100.0 95.9 87.3 65.8 100.0 97.3 88.9 66.3
SP.L No 250 N 4.6 22.7 25.5 28.9 5.1 28.5 29.3 32.1

t4 100.0 98.7 96.4 90.2 100.0 99.2 97.8 92.2
500 N 5.1 25.5 26.6 34.2 5.5 30.4 32.4 37.7

t4 100.0 100.0 99.7 97.4 100.0 100.0 99.9 98.4
Yes 250 N 4.3 4.6 4.2 5.4 4.8 5.1 4.3 5.2

t4 100.0 94.3 88.9 62.8 100.0 96.4 90.1 64.5
500 N 5.0 3.3 5.1 5.0 5.5 3.5 4.6 5.2

t4 100.0 99.9 98.1 86.0 100.0 99.8 98.7 86.3
SP.E No 250 N 5.0 23.6 26.2 29.2 5.1 29.6 30.5 32.9

t4 100.0 93.6 90.0 79.0 100.0 96.5 92.5 82.5
500 N 5.1 24.7 27.5 32.9 5.4 29.4 32.5 36.8

t4 100.0 99.4 97.7 91.3 100.0 99.7 98.6 93.5
Yes 250 N 4.6 4.4 4.2 4.4 4.9 4.9 4.4 4.6

t4 100.0 80.2 66.1 42.0 100.0 80.3 67.8 43.0
500 N 5.0 4.1 5.0 4.5 5.4 4.0 4.5 4.6

t4 100.0 96.1 87.4 66.1 100.0 97.5 89.1 66.4
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The rows in which Fi is recorded as “N” address the question of size and we expect
values close to the nominal level of the test 0.05. However, when the CE correction method
is not implemented, it is clear that the spectral tests are oversized in all cases except where
the desks are independent, which is the column corresponding to a Gauss copula and
ρ = 0; in the case of a t4 copula with ρ = 0, the desks are still dependent and the tests
are oversized. In the absence of correction for correlation, there are a number of results
coloured red, indicating a complete inability to control the size. In contrast, when the CE
correction is implemented, the results are coloured green in all cases.

The rows in which Fi is recorded as “t4” address the question of power, since all desks
are misspecified. For each of the spectral tests, the power increases with both n and d, as
we would expect. However, the power decreases with strengthening dependence across
desks; the power for the case C = t4 and ρ = 0 is greater than for C = Gauss and ρ = 0.5,
which in turn is greater than for C = t4 and ρ = 0.5. Increasing levels of dependence can be
thought of as effectively reducing the number of independent desk results. Turning to the
different spectral tests, the performance shows similar patterns but the SP.L kernel (linear
weighting function) seems to give the highest power in this case.

In view of this first set of results, we will apply the CE correction method to the
spectral tests in all further experiments.

4.3. Size and Power of Bispectral Tests

We now consider the two bispectral tests under the two scenarios of Table 1—all desks
correctly specified and all desks misspecified. For the bispectral test, we also add results
for n = 1000 backtests, corresponding to 4 years of data. Results are shown in Table 2. Note
that the bispectral tests are two-sided tests.

Table 2. Size and power of bispectral Z-tests when all desk models are correctly specified and when
all desk models are misspecified.

d 50 100

ρ 0 0.5 0 0.5

Test n Fi|C Gauss t4 Gauss t4 Gauss t4 Gauss t4
SP.UL 250 N 5.8 9.4 11.6 18.6 4.1 12.3 12.2 21.0

t4 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
500 N 2.7 5.4 5.0 10.2 3.1 7.2 6.6 10.0

t4 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
1000 N 3.0 3.1 3.1 4.8 2.3 4.5 4.6 5.5

t4 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
SP.UE 250 N 6.6 11.2 12.7 20.2 4.9 14.0 14.5 22.4

t4 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
500 N 3.0 6.2 5.4 10.6 3.6 7.7 6.8 10.7

t4 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
1000 N 3.1 3.0 3.3 5.2 2.5 4.7 4.8 6.0

t4 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

While the power of these tests is perfect, the size properties are not as good as for
the monospectral tests. This is particularly apparent in the case of a backtest of length
n = 250; the situation improves for n = 500 and the size results are very good for n = 1000;
if anything, there is evidence of undersizing. We interpret these results as showing that
more data are required in order for the estimators of (10) to give an accurate correction for
the unknown desk dependence structure in the bispectral case.
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4.4. Evaluating the Effect of Desk Misspecification Rate

We now consider the more realistic situation where only a certain fraction of desks
are incorrectly specified. We choose values of this fraction in the set of 25% and 50%. All
the misspecified desks use the model in which Fi is t4. Results for monospectral tests are
shown in Table 3.

Table 3. Power of monospectral Z-tests when a certain proportion of desks is misspecified.

d 50 100

ρ 0 0.5 0 0.5

Test Fraction n|C Gauss t4 Gauss t4 Gauss t4 Gauss t4
SP.U 25 250 43.0 15.6 12.8 10.1 69.9 16.8 14.1 10.7

500 66.7 22.2 18.3 13.4 90.4 24.0 19.6 13.1
50 250 89.0 36.5 29.6 18.5 99.3 39.6 29.3 19.9

500 99.3 56.2 43.1 27.8 100.0 58.9 43.5 27.7
SP.L 25 250 67.2 23.1 19.1 13.0 89.7 25.9 20.3 14.5

500 88.8 34.7 28.1 18.7 99.3 37.8 30.8 19.7
50 250 99.2 56.7 46.5 27.4 100.0 58.7 47.4 27.2

500 100.0 80.0 68.7 43.3 100.0 82.1 70.2 44.5
SP.E 25 250 43.1 15.6 12.9 10.3 70.1 16.9 14.1 10.7

500 66.8 22.3 18.3 13.4 90.4 24.2 19.6 13.1
50 250 89.1 36.6 29.6 18.5 99.3 39.8 29.5 20.0

500 99.3 56.6 43.4 27.9 100.0 59.1 43.7 28.0

When 25% of models are misspecified models, the power is rather low, except in the
case where the desks are independent (i.e., have a Gauss copula and correlation ρ = 0).
We attribute this to the intuition that independent data increase the effective sample size,
whereas correlated data decrease it. The power increases with both n and d. As the
misspecification rate increases, the power increases, as we would expect. The spectral test
with a linear weighting function (SP.L) gives the most power, while the other two kernels
are comparable.

The results for the bispectral tests SP.UL and SP.UE are reported in Table 4. In this case,
we add results for n = 1000, since we have observed that bispectral tests typically require
more data for the correlation correction (CE) method to give tests that are well sized. We
also add results for a misspecification fraction of 10%.

The results are clearly better than for the monospectral tests and show the advantages
of bispectral tests—by using two kernels, we can effectively test for the correct specification
of more moments of the distribution of PIT values in the kernel window (see discussion in
Section 2.3). The general observations are the same as for the monospectral tests; the power
increases with both n and d and with weakening dependence across desks. While it would
clearly be best to base backtests on 1000 observations, to obtain tests that are both well
sized and powerful, reasonable results are obtained for n = 500 even when only 25% of the
desks are using misspecified risk models. When only 10% of the desks use misspecified
models, the power is clearly weaker, but the test does still have some ability to detect that a
number of desks are delivering poor P&L estimates.

Ther is little to choose from between the SP.UL and SP.UE tests. While the latter seems
to be slightly more powerful, it also tends to have slightly worse size properties, as seen in
Table 2; we would tend to favour the former for samples of size n = 500.
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Table 4. Power of bispectral Z-tests SP.UL and SP.UE when a certain proportion of desks is misspecified.

d 50 100

ρ 0 0.5 0 0.5

Test Fraction n|C Gauss t4 Gauss t4 Gauss t4 Gauss t4
SP.UL 10 250 23.1 16.3 21.2 17.5 38.5 19.2 23.3 18.4

500 32.7 14.6 18.1 11.4 57.4 18.7 23.8 10.9
1000 56.5 24.3 28.6 9.2 87.2 27.7 40.0 9.8

25 250 76.9 48.6 59.0 28.3 97.4 69.5 83.4 31.7
500 95.0 66.5 80.9 31.3 100.0 86.2 96.1 37.6
1000 100.0 92.4 97.4 49.3 100.0 98.6 99.9 55.6

50 250 99.9 97.2 98.9 78.9 100.0 99.9 100.0 83.8
500 100.0 99.9 100.0 92.7 100.0 100.0 100.0 94.9
1000 100.0 100.0 100.0 99.5 100.0 100.0 100.0 99.9

SP.UE 10 250 25.3 17.5 22.5 18.5 42.4 19.9 24.7 19.2
500 34.5 14.5 18.7 11.6 60.0 18.7 24.6 10.9
1000 57.5 24.4 28.7 8.5 87.7 27.8 40.1 9.3

25 250 79.9 51.1 61.6 28.8 98.0 70.7 85.2 31.7
500 95.5 67.2 81.8 30.3 100.0 86.7 96.2 36.8
1000 100.0 92.5 97.5 48.7 100.0 98.5 99.9 54.8

50 250 99.9 97.7 99.0 79.2 100.0 99.9 100.0 84.2
500 100.0 99.9 100.0 92.8 100.0 100.0 100.0 94.6
1000 100.0 100.0 100.0 99.5 100.0 100.0 100.0 99.9

5. Conclusions

In this paper, we proposed multivariate spectral Z-tests, which can be used to simul-
taneously backtest trading desk models when the dependence structure of P&L across
trading desks is unknown. Multivariate backtests are potentially more powerful than uni-
variate backtests at the level of the trading book, since they exploit a greater amount of data;
typical banks can have 50–100 trading desks. Moreover, a simultaneous backtest avoids the
problem of aggregating and drawing inferences from a set of single-desk backtests in the
presence of unknown dependencies between test results.

The tests that we have developed are a multivariate extension of the spectral tests
proposed in Gordy and McNeil (2020). They take the form of a Z-test against a normal or
chi-squared reference distribution and make use of realised PIT values as input variables.
PIT values provide more data about the quality of desk models than indicator variables for
VaR violations and their benefits are already being exploited in the USA. It is likely that
other regulatory authorities will use this type of information more systematically in the
future as well.

The multivariate spectral tests are designed in such a way that the risk modelling group
can select a kernel or weighting scheme to emphasise the region of the estimated P&L distri-
bution where model performance is most critical, typically a region in the tail representing
large losses. The tests can also provide an indirect validation of the expected shortfall
measure, which now has a prominent role in the revised regulation.

We suggested a method of controlling for the unknown dependencies between desks,
based on estimating correlations. The resulting tests were generally well sized, although
bispectral tests typically required samples of n = 500 PIT vectors (2 years of daily data),
while monospectral tests only required n = 250 (one year of daily data). However, in
realistic situations where only a minority of the used desk models underestimated the risks
in their P&L distributions, bispectral tests gave much better power and should generally
be preferred to their monospectral counterparts.

The performance of the proposed multivariate tests suggests that they are a valuable
addition to a bank’s validation framework. Since they take the form of Z-tests, they are
easy to implement and have quick run times. In the event of a significant test result, a bank
would be able to implement a post-hoc testing scheme on individual desks to see where
the main problems lie.
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Finally, the new multivariate backtests could also have an interesting application to
backtesting in the banking sector as a whole, based on data for the trading book provided
to the regulator by individual banks. Significant test results would be an indication of
the potential for spillover effects across banks caused by trading activities and would
contribute to the understanding of systemic risk.

Clearly, it would be of interest to apply our tests to actual reported data from banks.
However, multi-desk data are not currently available to researchers due to the sensitivities
surrounding bank risk reporting both in the EU and the USA. An anonymised study of
real data at the trading-book level for US banks is provided by Gordy and McNeil (2020)
and shows the advantages of the (univariate) spectral backtesting framework over simple
VaR backtests; we would certainly expect that these advantages will carry over to the
multivariate setting. We hope that, by setting out a methodology for multi-desk backtesting
in this paper, we can help to promote the use of desk-level PIT values for model validation
and encourage banks and regulators to allow some datasets of realised PIT values to enter
the public domain and stimulate further research into the refinement of the methodology.
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Notes
1 The regulatory framework, known as the Fundamental Review of the Trading Book (FRTB), requires that the backtest compares

whether the number of observed VaR exceptions is consistent with a 99% confidence level with the comment that other α levels
should be added to the backtesting exercise; see BCBS (2019) [M32.5] and [M32.13].

2 At the suggestion of a referee, we also tried repeating all analyses using a Gumbel copula to simulate the dependence structure
across desks, since this is a typical copula for extreme values and also leads to PIT values with upper tail dependence. The results
were comparable to the Gauss and t4 copulas, in terms of size and power properties, and we have not included them in the tables.
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