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Abstract: This paper proposes a simple bounded stochastic motion to model equity price dynamics
under shocks. The stochastic process has a quasi-bounded boundary which can be breached if the
probability leakage condition is met. The quasi-boundedness of the process at the boundary can
thus provide an indicator of the possible risk of equities under price shocks or in distress. Empirical
calibration of the model parameters of the proposed process for equities can be performed easily due
to the availability of an analytically tractable probability density function which generates fat-tailed
distributions consistent with empirical observations. The volatility and mean-reversion of the S&P500
dynamics calibrated by the process are positively and negatively co-integrated, respectively, with
the VIX index representing the level of market distress. The process captures the high likelihood of
Hertz’s default about two months earlier, using only information until that point, and before the
firm filed for Chapter 11 bankruptcy in May 2020 as a result of the COVID-19 pandemic. Empirical
calibration of the process for GameStop’s stock price shows that the short squeeze in the stock
occurred when the condition for breaching the upper boundary was met on 14 January 2021, i.e.,
about two weeks before major short-sellers closed out their positions with significant losses. The
trading volume of the stock was positively co-integrated with the probability leakage ratio.

Keywords: financial risk; market distress; predatory trading; short squeeze; constrained stochastic
motion; quasi-bounded process; COVID-19

1. Introduction

Black (1986) argues that an efficient market is one in which price is in the range of
a factor of 2, i.e., the price is more than half of the value and less than twice the value as
a result of uninform supply and demand flows. He further argues that the factor of 2 is
arbitrary, but reasonable, in light of sources of uncertainty about value and the strength
of the forces tending to cause prices to return to value. Therefore, prices are within an
uncertainty band in which their dynamics are not random, but exhibit trends (see de Bondt
and Thaler 1985; DeLong et al. 1990; Daniel et al. 1998; Hong and Stein 1999; Asness
et al. 2013; Lempérière et al. 2014; Bouchaud et al. 2019). When prices move towards
the boundaries of the band, mean-reversion forces drive prices back to more mean levels.
Studies including Fama and French (1988), Day and Huang (1990), Lux and Marchesi (2000),
Madan (2017), and Bouchaud et al. (2018) find empirical evidence that in the dynamics of
various asset classes, such as stock indexes, commodities, and currencies, mean-reversion
represents a self-correcting mechanism. Nartea et al. (2021) investigate the stationarity
of the daily stock prices in 12 Asia-Pacific markets during 1991–2020, and find that the
stock prices became more mean-reverting and had a faster speed of adjustment towards
the mean level after the global financial crisis for all sample markets. For the purposes
of pricing derivatives and simulations of future prices, each stochastic process of a given
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asset class has to be properly modelled to resemble its empirical statistical properties. In
view of studies of the existence of uncertainty bands, price trends, and mean-reverting
forces, a bounded stochastic process is needed to model the constrained stochastic motion
of financial asset prices.

In this paper, we propose a relatively simple stochastic model for equity prices which
are subject to either positive or negative shocks. The prices are constrained to lie between
two positive bounds representing an uncertainty band. Generally, these two bounds are
time-varying. Driven by forecasting with time series decomposition of equity prices, we
detrend the time series of the equity prices, and the model simply concentrates on their
fluctuations. The lower boundary in the proposed stochastic process is quasi-bounded,
implying that the lower boundary can be breached if the probability leakage condition is
met. Such a property is studied by Pesz (2002), Silva et al. (2006), and Cardeal et al. (2007).
Similarly, completely bounded exchange rate dynamics is studied by Ingersoll (1997) and
Larsen and Sørensen (2007).

Given that the well-known Cox–Ingersoll–Ross (CIR) (Cox et al. 1985) process allows
the underlying variable to be quasi-bounded at the zero bound and is a mean-reverting
process, we select CIR to represent the quasi-bounded process. The CIR model is popular
among practitioners and is used for pricing various asset classes, such as equities, fixed
income, commodities, foreign exchanges, and their derivatives, as in Carr et al. (2020),
and modelling the variance of asset prices, as in Heston (1993). Lo et al. (2015) and Hui
et al. (2016) find that the quasi-bounded CIR process is able to describe the exchange rate
dynamics in a target zone of the HKD against the USD, and the CHF against the EUR,
during September 2011 to January 2015, respectively. Hui et al. (2022) apply the quasi-
bounded target-zone model to model yield curve control for Japanese government bonds.

The calibration of model parameters for equity prices can be performed easily, given
that an analytically tractable probability density function can be derived from the CIR
process. In terms of the calibrated model parameters, assessing the likelihood of future
movements of equity prices becomes feasible, in particular, the likelihood of whether
or not the stochastic process is still bounded. The quasi-boundedness of the process at
the lower boundary can therefore provide an indicator of a possible downside risk of
the corresponding equities in distress. Understanding the behaviour of distress equities
has proved something of a challenge. The empirical literature documenting the distress
anomaly is quite extensive, for example, Elkamhi et al. (2012), Hackbarth et al. (2015),
Gao et al. (2017), and Boualam et al. (2020). Several credit risk-based theories have been
developed in response to this evidence, including Conrad et al. (2014), Eisdorfer et al.
(2019), McQuade (2018), and Opp (2021). The proposed quasi-bounded-process approach
to studying distress equity price dynamics is different from the credit risk-based approach.

We examine whether the dynamics of the S&P500 Index (S&P) subject to market
distress risk can be characterised by the quasi-bounded process. In addition, given that
Hertz filed for bankruptcy (Chapter 11) due to the impact of the COVID-19 pandemic on
the car-rental industry, we investigate the relationship between the intensity of the pan-
demic’s spread, which triggered the firm’s financial distress, and its equity price dynamics
derived from the model. The Chapter 11 bankruptcy allowed Hertz to stay in business and
restructure its obligations. Hertz was under a reorganisation plan in the best interest of the
creditors. The corresponding model parameters are related to the level of market distress
in terms of the VIX index and the number of COVID-19 cases, respectively, showing the
validity of the model. The VIX index is a measure of constant, 30-day expected volatility
derived from real-time, mid-quote prices of S&P500 Index call and put options. It is one
of the most recognised measures of volatility and also captures the information of market
stress conditions embedded in option prices.

Retail trading activity in the US stock market has surged since late 2019, when some
brokerages cut commissions to almost zero. Its impact on the market is demonstrated by
the price action of GameStop (GME) as a result of co-ordinated buying through forums
in January 2021, which put the low-profile GME on the front pages of financial news
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organisations. Interest in GME emerged from individual investors on social media sites
after they discovered the extreme short interest in the stock (139% of free float at the
peak). These investors acted as a group to build buying pressure on a short squeeze,
leading GME stocks to rise 57% to USD 31.4 on 13 January 2021, followed by another 27%
jump the next day. On 27 January, the share price surged to USD 347), with a median
target price among analysts of only USD 12.50. On the same day, some of the most
prolific hedge funds lost the majority of their GME short positions at a substantial loss
(see https://www.wsj.com/articles/melvin-capital-lost-53-in-january-hurt-by-gamestop-
and-other-bets-11612103117 (accessed on 31 January 2021) and the timeline at https://
www.reuters.com/article/us-gamestop-hot-timeline-idUSKBN29W237 (accessed on 28
January 2021)).

Traders have a limited capacity, meaning that they cannot sustain losses beyond a
certain point, as illustrated by Brunnermeier and Pedersen (2005), particularly for funds
which have redemption obligations for investors. In addition, their trading limits, measured
through value-at-risk, act as constraints on keeping their positions. When stock prices
shorted (longed) by traders surge (fall) beyond certain thresholds, the positions must be
closed out due to those constraints. Leverage constraints imposed by short-term creditors
can also force a financial institution to liquidate long-term investments at fire-sale prices.
Brunnermeier and Oehmke (2014) argue that such financial institutions may be vulnerable
to predatory short-selling. Brunnermeier et al. (2009) show that the illiquidity in the market
suggests more scope for predators to make a profit as those traders need more time to
close out their positions with larger movements in the prices. Stein (2009) demonstrates
that another destabilising impact is crowding. Boehmer et al. (2008) and Diether et al.
(2009) point out that a high short-sale volume of a stock will attract positive-feedback on
short-sale trading.

The mean-reversion in the CIR process represents the market actions between long-
buyers and short-sellers, which form an error-correction process in the price dynamics.
The process allows the equity price to be quasi-bounded at an upper bound, which is the
threshold imposed by constraints such as stop-loss limits forcing traders to close out short
positions squeezed by co-ordinated buying. Their scramble to buy adds to the upward
pressure on the stock’s price. A surge in the equity price breaching the bound triggered by
the short squeeze is conditional on the probability leakage ratio of the CIR process.

This paper is organised as follows. We present the model of the quasi-bounded process
in the following Section. The calibrations of the equity price dynamics under market distress
and short squeezes, respectively, are presented in Section 3. The relationships between the
equity dynamics and market conditions are studied empirically and discussed in Section 4.
The Section 5 concludes the paper.

2. Equity Price Dynamics
2.1. Modelling Constrained Stochastic Motion

A financial observable (e.g., stock) S is constrained to move within a band [S L, SU ]
for 0 ≤ SL < SU . Both SL and SU are time-varying. The moving average S provides a trend
component of the time series of S, as shown in Ritschel et al. (2021) and Vinod et al. (2022).
The time series of S − S is the detrended series assuming the additive decomposition of a
time series. Based on qualifying the lower boundary of the financial observable in distress,
historical data of the financial observable can be used to set a trading band from which
the financial observable is not expected to breach. The historical trend of the financial
observable is measured based on the S of its current and past values. For a financial
observable in distress, the moving average can be scaled by a non-negative parameter,
0 < ηL < 1, such that SL ≡ ηLS forms a lower boundary for the movement of the financial
observable. The parameter ηL, which determines the fraction of S , suggests how much
market participants expect the maximum downside of holding the financial observable. A
smaller ηL indicates that the market expects wider ranges of fluctuations over a given time

https://www.wsj.com/articles/melvin-capital-lost-53-in-january-hurt-by-gamestop-and-other-bets-11612103117
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horizon. Such specification of a lower boundary captures the behaviour of the financial
observable over a period of time, instead of its current value.

The lower boundary SL is defined as the number (∆) of standard deviations (Σ) from
its mean S: SL = S − ∆Σ. If a financial observable is assumed to be normally distributed
and ∆ is set equal to 1.5 and 2, respectively, suggesting that falling to the lower boundary
means it is in distress, the corresponding cumulative normal probabilities of the financial
observable falling below the boundaries are 0.0668 and 0.0227. This approach was used in
a study of currency crashes by Jurek (2014), in which the crash level was set at 0.7 and 1.4
standard deviations, respectively, away from the spot exchange rates. This measure is also
similar to value-at-risk (VaR), which is defined as the maximum expected loss of assets or
portfolios at a pre-defined confidence level (say 95%) over a given time horizon. In other
words, a 5% probability of such extreme loss suggests that the asset price is under stress.
As long as the level of the boundary is adequately low, the choice of its level does not affect
the process of the financial observable dynamics.

The upper boundary can be defined similarly as SU ≡ ηUS for a parameter ηU > 1.
The logarithm normalised fractional deviation x of S from S is given by

x = − ln

[
ηUS − S

(ηU − ηL)S

]
, (1)

where x ∈ [0, ∞], and x = 0, when S = SL. Both ηU and ηL are adjustable parameters for
the upper and lower boundaries of a band, respectively. It is not necessary for the two
time-varying boundaries to be symmetric about the moving average S. Accordingly, it is
clear that the financial observable is confined to a drifting band with time-varying width.
Similarly, regarding an upside shock, we can put the origin x′ = 0 at an upper boundary
by defining

x′ = − ln

[
S − ηLS

(ηU − ηL)S

]
. (2)

The stochastic process of a financial asset is commonly modelled by the CIR process
(see, for example, Heston 1993). The CIR process allows the underlying variable to be
quasi-bounded at the zero bound and is a mean-reverting process. Following this approach,
we propose that the normalised financial observable x in Equation (1) (x′ in Equation (2))
follows the CIR process:

dx = κ(θ − x)dt + σx
√

xdZ, (3)

where dZ is a Wiener process with E[dZ] = 0 and E[dZ2] = dt. Here, σx
√

x in the second
stochastic term depends on the level of x, and K determines the speed of the mean-reverting
drift towards the long-term mean θ. According to Feller’s classification of boundary
points, the one at the origin is a boundary of no probability leakage under the condition

(σ 2
x/4κθ

)
< 1 (see Karlin and Taylor 1981). In other words, it is a quasi-bounded process,

and x could breach the boundary if the no-leakage condition is not met. The infinity is a
non-attractive natural (or inaccessible) boundary.

The normalised financial observable x, which is a fractional deviation of S from S,
follows the CIR process by using the normalisation of Equation (1) or (2). The implication
is that the normalised financial observable dynamics contain information on the random
fluctuation of S. A mean-reverting force in the financial observable dynamics will pull
the random variable x away from the lower (upper) boundary towards the mean level.
Probability leakage through the quasi-bounded boundary occurs only in rare situations
when fluctuations accompanied by a shock in the financial observable surge drastically
or the mean-reverting force diminishes sharply. This condition is consistent with the
observations in Bates (2012), in which volatility goes up or an error-correction process
drops during economic recessions.
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2.2. Probability Density Function

The probability density function (PDF) of x under the CIR process is given by:

G(x, t; x′, t′) = 2
σ2

x C1(t−t′)

( x
x′
)ω/2 exp

[
−ω+2

2 C2(t − t′)
]
×

exp
{
− 2x′+2x exp[−C2(t−t′)]

σ2
x C1(t−t′)

}
×

Iω

{
4x1/2x′1/2 exp[−C2(t−t′)/2]

σ2
x C1(t−t′)

} , (4)

where ω = 2κθ/σ2
x − 1, C1(τ) = [exp(κτ)− 1]/κ, and C2(τ) = −κτ, and Iω is the modified

Bessel function of the first kind of order ω. The associated asymptotic PDF will eventually
approach the steady-state distribution, which is:

K
(

x, t → ∞, x′, t′
)
=

2xω

Γ(ω + 1)

(
2κ

σ2
x

)ω+1
exp

(
−2κ

σ2
x

x
)

, (5)

where Γ is the gamma function. Given the PDF in Equation (4), the parameters of the CIR
process are calibrated by using market data in Section 3.

Based on the calibration of the model parameters using the S&P in Section 3, and set-
ting the lower boundary at ηLSAt = SL = 1900 and upper boundary at ηUSAt = SU = 3320,
the steady-state distributions in S with three values of the long-term mean θ of 0.3, 1.0,
and 1.5 are shown in Figure 1. The smaller θ is closer to the lower boundary with S = 2268,
2797, and 3003, respectively. We use the model parameters for σx = 0.05 (Panel A), and
0.15 (Panel B), and K = 0.05. The distributions peak at θ = 1.0 and 1.5 on the right, indicat-
ing a left-fat-tails effect with the probability of outlier negative returns. However, using
θ = 0.3, the distributions peak on the left with a fat tail on the right. The different skewness
of the distributions is consistent with both left- and right-skewed distributions obtained
from empirical observations of equity returns, depending on their sample periods. We
performed a comparison between Panels A and B, where σx increases from 0.05 to 0.15, and
the distributions have fatter tails and become hump-shaped. The distributions generated
from the quasi-bounded process show that the probability leakage condition is consistent
with the empirical left-skewed distributions for equities in distress.
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Figure 1. S&P500 Index distributions with different values of model parameters σx, K, and θ under
normalisation on 1 November 2018. Panel (B) illustrates the distributions with σx = 0.15, which is
higher than σx = 0.05 used in Panel (A).
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3. Model Calibration
3.1. Calibrations of S&P500 Index in Distress

We examine whether the dynamics of the S&P in distress can be characterised by the
quasi-bounded process. The model parameters of the process specified in Equation (3) are
calibrated based on the PDF of Equation (4) and the logarithm-normalised x in Equation (1).
The calibration employs maximum likelihood estimation (MLE) of the time series of the
daily spot index of the S&P data from 1 January 1990 to 20 June 2020. Figure 2 (Panel A)
shows the S&P in S and the associated moving lower and upper boundaries with the
parameters of ηL = 0.7 and ηU = 1.2 with the 50-day moving average, and the normalised
index in x. The estimation is based on a 1-year rolling window. The market data used for
the estimations are from Bloomberg.
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Figure 2. S&P500 Index (Panel A) and Hertz stock price (Panel B) in S-scale and x-scale, and upper
and lower boundaries in S with ηL = 0.7 and ηU = 1.2 for S&P500 Index and ηL = 0.25 and ηU = 1.75
for Hertz stock price with 50-day moving average.

Figure 3 reports the estimates of drift K (Panel A) at a 5% significance level with its
z-statistic above 1.96 when K is above 0.02. K was in the range from 0.02 to 0.12 for most of
the time and dropped sharply under shocks or crashes in the market. As the S&P dropped
towards its lower boundary when the market crashed, the mean-reverting force weakened
with the dropped K. The estimation of K became insignificant (not significantly different
from zero) in very short periods of time after the crashes. Subsequently, the estimation
rebounded to the 0.04 level and was significant. Panel B shows a significant steady mean θ
with values ranging between 0.7 and 1.2. The estimation of θ became insignificant in very
short periods of time after the crashes, similar to the changes in K. The mean-reversion
represented by K and θ was found to be present in the estimations.
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Figure 3. Estimated K (Panel A), θ (Panel B), σx (Panel C), corresponding z-statistic, leakage ratio
(σ2

x /4κθx) (Panel D) of S&P500 Index using 1-year rolling window, and test on residuals (Panel E).

The volatility σx in Panel C is estimated to be significant between 0.02 and 0.14. The
results suggest that the volatility part of the quasi-bounded dynamics is robust. The
volatility increased sharply during 2008–2009 when the global financial crisis emerged, and
during the COVID-19 outbreak in March 2020.

Panel D displays the leakage condition of
(
σ2

x /4κθ
)

to identify periods when this
measure is greater than 1 to portray the crash risk of the S&P at the lower boundary. The
measure was generally below 0.01, suggesting that the crash risk was immaterial when
the S&P was well bounded above the lower boundary. In recent history, the measure rose
sharply and breached 1.0 on 23 July 2002 (the dotcom bubble crash), 9 October 2008 (the
subprime mortgage crisis), 8 August 2009 (the global financial crisis), and 9 March 2020
(the COVID-19 pandemic), with the existence of the leakage condition. The diminishing
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mean-reverting force in the S&P dynamics and the leakage condition reflect the crash risk
being built up during those periods of financial distress.

We use the Breusch–Godfrey serial correlation Lagrange-multiplier test to study auto-
correlation in the errors of the model estimations. The test uses the residuals from the model,
and the corresponding test statistic is derived from these. The null hypothesis is that there
is no serial correlation of any order up to p. Panel E shows that despite some rejections of
null hypothesis (i.e., low p-values), the majority of the tests support the hypothesis that the
residuals are not serially correlated up to 5 days, indicating that the estimations are adequate.

3.2. Calibrations of Hertz Equity Price in Distress

To investigate how financial distress affects equity price dynamics, we calibrate the
dynamics of the Hertz equity (HTZ) price according to the quasi-bounded process. Hertz
filed voluntary petitions for re-organisation under Chapter 11 on 22 May 2020 as the
COVID-19 pandemic crushed the car-rental industry. The sample period covers the daily
price of HTZ from 18 August 2014 to 31 August 2020. Panel B of Figure 2 shows the price
of HTZ in S and the associated moving lower and upper boundaries with the parameters
of ηL = 0.4 and ηU = 1.6 with the 50-day moving average, and the normalised price in x.
The lower and upper boundaries correspond to about 2.4 standard deviations, respectively.
The estimations are based on the 2-year rolling window.

Figure 4 reports the estimated drift term κ (Panel A) at the 5% significance level when κ is
above 0.02. κ was between 0.02 and 0.1 during most of the time. It dropped sharply and was
not significantly different from zero on 16 March 2020. As the HTZ price dropped towards
its lower boundary during March 2020, the mean-reverting force in its dynamics weakened
substantially. Panel B shows a significant steady estimated mean θ ranging between 0.5 and
0.8, which became insignificant on 16 March 2020. The volatility σx displayed in Panel C is
estimated to be highly significant, with a value between 0.06 and 0.13.
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Figure 4. Estimated K (Panel A), θ (Panel B), σx (Panel C), corresponding z-statistic, and leakage ratio
(σ2

x /4κθx) (Panel D) of Hertz stock price using 2-year rolling window.
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Panel D shows the measure of the probability leakage condition, which was below 0.2
before March 2020, suggesting that the default risk was not significant as the HTZ price
was bounded above the lower boundary. The measure rose sharply and breached 1.0 on 16
March 2020 with the existence of the leakage condition when the HTZ price fell sharply.
While the HTZ price was bounded above the lower boundary for much of the time, as
indicated by its dynamics, the condition for breaching the boundary was met on 16 March
2020 using only information until that point, about two months before the company filed
for bankruptcy. The existence of the leakage condition suggests that the default risk of the
firm occurs and its default probability accumulates.

3.3. Calibration of GameStop Stock Price Dynamics under Short Squeezes

The calibration was conducted by applying the MLE and the logarithm normalised in
Equation (2) to the daily GME price data from 1 January 2017 to 21 January 2021. Figure 5
(Panel A) shows the GME price in S and the moving upper boundary with ηU = 2.5
with the 50-day moving average, and the equity price in x. The upper boundary is about
2.5 standard deviations, covering the probability of 99.38%.
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Figure 5. GameStop stock price in S-scale and x-scale and upper boundary [ ηU = 2.5] in S with
50-day moving average (Panel A) and trading volume (Panel B).

Using the 2-year rolling window, Figure 6 reports the estimates of the drift term K

(Panel A), which are statistically significant at the 5% significance level. When the GME
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price surged sharply in January 2021, K fell and was not significantly different from zero
on 14 January 2021. Panel B shows the estimated mean θ, which is significant, with the
corresponding z-statistic above the 1.96 level until the price spiked in January 2021. The
results show that the mean-reverting force in terms of K and θ was present in the GME
price dynamics during the estimation period and diminished under the short squeeze in
January 2021. The volatility σx of the quasi-bounded process, which is displayed in Panel
C, is estimated to be highly significant and to have an increasing trend with a jump in
January 2021.
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Figure 6. Estimated K (Panel A), θ (Panel B), σx (Panel C), corresponding z-statistic, and leak-
age ratio (σ2

x /4κθx) (Panel D) of GameStop stock price with 50-day moving average using 2-year
rolling window.

As the probability leakage condition of (σ 2
x/4κθ

)
portrays the likelihood of the GME

price breaching the upper boundary under the short squeeze, Panel D displays this measure
to identify when the leakage condition is greater than 1. The measure was, in general,
below 0.05, suggesting that the short squeeze was not relevant to the GME price bounded
below the upper boundary. The measure rose sharply and breached 1.0 on 14 January 2021
with a leakage condition greater than 1 when the GME price escalated. The diminishing
mean-reverting force in the GME price dynamics and the existence of the leakage condition
indicate that the short squeeze built up through co-ordinated buying.

4. Discussion
4.1. The Dynamic Relationship of S&P500 Index Dynamics with Market Stress Condition

To test the validity of incorporating crash/distress risk into the model, a co-integration
analysis is used in this paper to test the relationship between the dynamics of the S&P and
the VIX. The VIX measures the level of risk aversion anticipated by market participants to
put capital into the market. This is noted as the model parameters based on the MLE are
estimated using the S&P data only, without any information from the option market.
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We use the following dynamical error-correction representation to investigate any
long-run equilibrium relationship between the model parameters and VIX:

∆yt = a10 + αy(yt−1 − β1Xt−1) + ∑k b1k∆yt−k + ∑k c1k∆Xt−k + εyt, (6)

where yt is either K, Sθ , or σx at time t; αy is negative; and Xt−1 is the logarithm of the
VIX at time t − 1. yt represents the logarithm of model parameters (κ, σx), and the mean
level Sθ will respond to stochastic shocks represented by εyt and the long-run equilibrium
deviation in the previous period (yt−1 − β1Xt−1). The mean level Sθ in the original price
measure of S is used instead of θ, because risk sentiment in the market is based on the level
of the price in S, not in x normalised by the time-varying upper and lower boundaries.
The co-integration relationship specification of error-correction requires that the estimated
speed of adjustment (i.e., αy) should be negative and nonzero. A larger αy in absolute terms
indicates higher sensitivity of yt to the long-run equilibrium deviation.

As there was a structural break during the global financial crisis in 2009, the estimation
is conducted at a daily frequency for the pre-crisis period from 1 January 2001 to 31
December 2009, and the post-crisis period from 1 January 2011 to 30 June 2020. The
summary statistics, correlation coefficient, and respective Augmented Dickey–Fuller (ADF)
test results for the variables, both in the levels and the first differences, for the pre- and
post-crisis periods, respectively, are reported in Table 1. The ADF test results show that
ln(κ), ln( Sθ), ln(σx), and the logarithm value of the VIX [ln(VIX)] have a unit root in
level. However, these variables are co-integrated with the same order I(1) given the lack of
presence of a unit root at the 1% level for their first differences.

We adopt the single-equation test in Engle and Granger (1987) to test the co-integration
relationship between [ln(κ), ln( Sθ), ln(σx)] and ln(VIX). It tests the stationarity of the
residuals of the linear combinations between i. ln(κ) and ln(VIX); ii. ln( Sθ) and ln(VIX);
and iii. ln(σ) and ln(VIX). The co-integration tests between ln(VIX) and [ln(κ), ln( Sθ),
ln(σx)] are reported in Table 2 for the pre- and post-crisis periods, respectively. On the
whole, the results show that there is at least one co-integrating vector of ln(VIX) and [ln(κ),
ln( Sθ), ln(σx)], respectively, given the statistical significance at the 1% or 5% level.

Table 3 shows that the co-integrating vectors expressed by β between ln(VIX) and
[ln(κ), ln( Sθ), ln(σx)] are estimated to be [−0.2, −0.14, 0.83] and [−0.52, −0.14 and 0.56]
in the pre-crisis and post-crisis periods, respectively, at the 1% significance level. The
estimated negative coefficients indicate that a higher VIX would decrease κ and Sθ . The
negative relationship suggests that when the VIX increases, the crash risk of the S&P
rises, with a weakened mean-reverting force in the S&P dynamics. On the other hand, the
estimated positive coefficient for σx shows that a higher VIX would increase σx as expected.

Table 4 reports the estimates of the speed of adjustment (αy) for [ln(κ), ln( Sθ) and
ln(σx)], which are negative, with [−0.04, −0.005, −0.04] and [−0.01, −0.001, −0.0045], in
the pre-crisis and post-crisis periods, respectively, suggesting that the model parameters
will adjust to recover the long-run equilibrium. The error-correction specification is thus
valid, with the presence of a self-restoring force, such that the gaps between the model
parameters and VIX will be closed.
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Table 1. Descriptive statistics of ln(κ), ln(Sθ), and ln(σx) for S&P500 Index and ln(VIX).

1 January 2001–31 December 2009

ln(κ) ln(Sθ) ln(σ) ln(vix)

Level Change Level Change Level Change Level Change

Mean −3.02 0.000 6.94 0.000 −2.87 0.000 3.00 −0.002
Median −3.01 0.000 6.96 0.000 −2.81 0.000 3.00 −0.006
Maximum −2.10 2.134 7.29 0.239 −1.97 0.088 4.39 0.496
Minimum −5.86 −2.167 6.59 −0.251 −3.45 −0.038 2.29 −0.300
Std. Dev. 0.27 0.081 0.16 0.010 0.43 0.006 0.41 0.059
Skewness −1.01 −0.490 −0.23 −9.265 0.39 2.627 0.50 0.548
Kurtosis 12.24 469.397 2.09 604.122 2.17 39.756 2.92 7.483
ADF test statistics 0.09 −24.35 *** −1.21 −19.46 *** −0.13 −4.583 *** −1.56 −50.95 ***
Phillips–Perron test statistics 0.10 −59.40 *** −1.90 −57.26 *** −0.48 −55.546 *** −2.94 −53.32 ***
Correlation with ln(vix) −0.303 - −0.413 - 0.802 - - -
Observations 2236 2140 2262 2179 2263 2181 2263 2181

1 January 2011–30 June 2020

ln(κ) ln(Sθ) ln(σ) ln(vix)

Level Change Level Change Level Change Level Change

Mean −2.94 0.000 7.48 0.000 −3.09 0.000 2.78 −0.001
Median −2.87 0.001 7.52 0.001 −3.12 0.000 2.71 −0.007
Maximum −2.26 0.372 8.27 0.297 −2.26 0.130 4.42 0.768
Minimum −13.82 −0.321 6.96 −0.301 −3.77 −0.080 2.21 −0.314
Std. Dev. 0.43 0.048 0.29 0.014 0.28 0.008 0.33 0.080
Skewness −8.09 −0.234 −0.20 2.802 0.29 4.180 1.35 1.231
Kurtosis 190.56 11.297 1.94 435.728 3.61 64.434 5.52 9.968
ADF test statistics −0.86 −49.86 *** −1.49 −49.08 *** −0.91 −13.17 *** −1.03 −50.90 ***
Phillips–Perron test statistics −0.86 −49.77 *** −2.02 −75.27 *** −0.61 −44.89 *** −0.97 −54.12 ***
Correlation with ln(vix) −0.357 - −0.162 - 0.622 - - -
Observations 2312 2211 2386 2296 2389 2301 2389 2302

Notes: *** indicates significance at a level of 1%. Both tests check the null hypothesis of unit root existence in the time series.
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Table 2. Tests for co-integration of ln(κ), ln(Sθ), and ln(σx) for S&P500 Index and ln(VIX).

1 January 2001–31 December 2009
Engle–Granger Single-Equation Test ln(κ) ln(Sθ) ln(σ)
Dependent Variable:

ADF test statistic −5.01 *** −1.95 ** −3.66 ***
Phillips–Perron test statistic −7.09 *** −2.59 *** −3.62 ***

1 January 2011–30 June 2020
Engle–Granger Single-Equation Test ln(κ) ln(Sθ) ln(σ)
Dependent Variable:

ADF test statistic −3.55 *** −6.46 *** −4.47 ***
Phillips–Perron test statistic −3.19 *** −4.54 *** −3.59 ***

Notes: *** and ** indicate significance at levels of 1% and 5%, respectively. The co-integration test uses the
Augmented Dickey–Fuller and Phillips–Perron tests to check the null hypothesis that the residuals of the regression
of ln(VIX) and the parameters from the MLE calibration with the 3-year rolling window are non-stationary,
assuming zero mean in the test equation. The critical value of the test was obtained from MacKinnon (1996).

Table 3. Estimates of long-run coefficient (β) ln(κ), ln(Sθ), and ln(σx) for S&P500 Index and ln(VIX).

1 January 2001–31 December 2009

ln(κ) ln(Sθ) ln(σ)

Dependent Variable:

ln(vix) −0.20 *** −0.14 *** 0.83 ***
Constant −2.41 *** 7.38 *** −5.36 ***

1 January 2011–30 June 2020

ln(κ) ln(Sθ) ln(σ)

Dependent Variable:

ln(vix) −0.52 *** −0.14 *** 0.56 ***
Constant −1.51 *** 7.89 *** −4.65 ***

Notes: *** indicates significance at a level of 1%.

Table 4. Estimation results of the short-run dynamics for ln(κ), ln(Sθ), and ln(σx) for S&P500 Index
and ln(VIX).

1 January 2001–31 December 2009

ln(κ) ln(Sθ) ln(σ)

Dependent Variable:

ln(vix)
Speed of adjustment −0.04 *** −0.005 * −0.04 ***

Lag length 2 2 2

1 January 2011–30 June 2020

ln(κ) ln(Sθ) ln(σ)

Dependent Variable:

ln(vix)
Speed of adjustment −0.0100 *** −0.001 * −0.0045 ***

Lag length 5 26 3

Notes: *** and * indicate significance at levels of 1% and 10%, respectively.

4.2. The Relationship between Hertz Equity Price Dynamics and COVID-19

Given that Hertz filed for Chapter 11 due to the impact of the COVID-19 pandemic on
the car-rental industry, we investigate the relationship between the intensity of the pan-
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demic’s spread, which triggered the firm’s financial distress, and its equity price dynamics
derived from the model. We estimate the simple linear regression as follows:

ln(yt) = a + bln(COVID19), (7)

where yt is the model parameters {κ, θ, σx}, COVID19 is the number of new confirmed
COVID-19 cases in the US, and a and b are the coefficients to be estimated.

As the first confirmed COVID-19 case in the US was on 22 January 2020 and the
quasi-bounded process for HTZ was no longer bounded after 16 March 2020, the estimation
is conducted for the period between these two dates. Figures 7–9 show the scatter plots of
the model parameters and the number of daily new COVID-19 cases in the US in logarithm.
The data of COVID-19 cases were compiled by the Johns Hopkins University Center for
Systems Science and Engineering (JHU CCSE) from various sources and can be found at
https://data.humdata.org/dataset/novel-coronavirus-2019-ncov-cases (accessed on 15
September 2020). The coefficients [a , b] are estimated to be [−2.37, −0.16] for κ, [−0.32,
−0.01] for θ, and [−2.55, 0.019] for σx, respectively. All the estimates of coefficients are
statistically significant at the 1% level. The R2 of 0.777, 0.463, and 0.737 for κ, θ, and σx,
respectively, are reasonably high.
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stock price.

The negative coefficients bκ and bθ show a negative relationship between the mean-
reversion (represented by κ and θ) and the number of COVID-19 cases in the US. Conversely,
the relationship in terms of bσx between the volatility σx and the number of confirmed cases
is positive. An increase in the number of confirmed cases weakened the mean-reverting
force, but enhanced the volatility in the HTZ price dynamics, suggesting an increased
default risk for the firm due to the COVID-19 pandemic in the US. These results are
consistent with those of the model calibration results and the measure of the probability
leakage condition at the lower boundary for the HTZ price in Section 3.2.

https://data.humdata.org/dataset/novel-coronavirus-2019-ncov-cases
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4.3. The Relationship between the GameStop Stock Price Dynamics and Trading Volume

A co-integration analysis is used to test the relationship between the mean-reverting
force in the GME price dynamics and the daily trading volume using Equation (7), where
yt is K or θ at time t, and Xt−1 is the logarithm of the trading volume at time t−1. The
estimation is conducted at a daily frequency from 1 January 2019 to 21 January 2021. Table 5
reports the summary statistics, correlation coefficient, and respective ADF test results for
the variables both in levels and first differences, suggesting that these three variables are
co-integrated in the same order I(1) at a 1% significance level.

Table 5. Descriptive statistics of ln(volume), κ, and θ of GameStop stock price.

κ θ ln(volume)
Level Change Level Change Level Change

Mean 0.04 0.000 0.91 −0.002 15.37 0.006
Median 0.04 0.000 0.94 0.002 15.26 −0.031
Maximum 0.08 0.017 1.47 0.428 18.79 3.140
Minimum 0.00 −0.024 0.01 −0.426 14.06 −1.676
Std. Dev. 0.02 0.002 0.25 0.064 0.73 0.561
Skewness 0.87 −1.118 −0.65 −0.271 1.25 1.043
Kurtosis 2.81 44.585 3.42 13.705 5.41 7.352
ADF test statistics −0.64 −27.62 *** −1.94 −22.938 *** 0.32 −16.79 ***
Phillips–Perron test statistics −0.63 −27.86 *** −2.01 −22.944 *** −9.76 −67.73 ***
Correlation with ln(vix) −0.34 - −0.44 - - -
Observations 518 517 518 517 518 517

Notes: *** indicates significance at a level of 1%. Both tests check the null hypothesis of unit root existence in the
time series.

Table 6 reports the co-integration tests between ln(volume) and (κ, θ), showing the
presence of at least one co-integrating vector between ln(volume) and (κ , θ), respectively,
at 5% or 1% significance levels. The co-integrating vectors between ln(volume) and (κ,
θ) expressed by β, as shown in Table 7, are estimated to be −0.003 and −0.15 at the
1% significance level, respectively. The estimated negative coefficients indicate that a
higher trading volume reduces κ and θ, suggesting that the restoring force in the GME
price dynamics weakens with a higher trading volume. Table 8 illustrates that the speeds
of adjustment (αy) for κ and θ are negative, showing that the gap between the model
parameters and the trading volume will be closed subsequently.

Table 6. Tests for co-integration of ln(volume), κ, and θ of GameStop stock price.

Engle–Granger Single-Equation Test κ θ
Dependent Variable:

ADF test statistic −2.51 ** −3.69 ***
Phillips–Perron test statistic −3.84 ** −4.00 ***

Notes: *** and ** indicate significance at levels of 1% and 5%, respectively. The cointegration test uses the
Augmented Dickey–Fuller and Phillips–Perron tests to check the null hypothesis that the residuals of the regression
of ln(volume) and the parameters from the MLE calibration with a 2-year rolling window are non-stationary. The
critical value of the test was obtained from MacKinnon (1996).

Table 7. Estimates of long-run coefficient (β) for ln(volume), κ, and θ of GameStop stock price.

κ θ
Dependent Variable:

ln(volume) −0.003 *** −0.15 ***
Constant 0.094 *** 3.23 ***

Note: 1. *** indicates significance at a level of 1%.
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Table 8. Estimation results of the short-run dynamics for ln(volume), κ, and θ of GameStop stock price.

κ θ
Dependent Variable:

ln(volume)
Speed of adjustment −0.011 ** −0.03 **
Lag length 1 1

Note: ** indicates significance at a level of 5%.

5. Conclusions

A simple stochastic approach has been presented for modelling equity prices under
shocks which are constrained to lie within a band. The model is able to capture most
stylised facts of equity prices. While the proposed stochastic process has a quasi-bounded
boundary which can be breached if the probability leakage condition is met, the other
boundary of the band is an inaccessible boundary. The quasi-boundedness at the boundary
can be considered a measure of possible downside or upside risk of the corresponding
equity prices.

The empirical results show that the S&P500 dynamics can be calibrated according to
the quasi-bounded process, in which the volatility and mean-reversion are positively and
negatively co-integrated, respectively, with the VIX index, representing the market distress
risk implied in the option market. The process also captures the default risk incorporated in
stock prices. Hertz filed for Chapter 11 bankruptcy in May 2020 as a result of the COVID-19
pandemic. The volatility and mean-reversion of the calibrated Hertz stock price dynamics
are positively and negatively related, respectively, to the number of COVID-19 cases. The
process indicates a high likelihood of default in terms of the probability leakage condition
at the lower boundary in March 2020 using only information until that point.

The proposed stochastic approach is also able to model equity price dynamics under
a short squeeze. A quasi-bounded moving upper bound is the threshold imposed by
constraints, such as stop-loss limits forcing traders to close out their short-selling positions
squeezed by co-ordinated long-buying. Calibration of the process for the GameStop stock
price shows that the quasi-bounded property can adequately describe the price dynamics.
The model captures the short squeeze of the stock, as indicated by its price dynamics, when
the probability leakage condition for breaching the upper bound was met on 14 January
2021 using only information until that point, i.e., about two weeks before major short-
sellers closed out their positions with a significant loss. The trading volume of the stock is
negatively co-integrated with the mean reversion of the dynamics, suggesting overshooting
prices with increased trading volume during co-ordinated short squeezes.

Given the availability of an analytically tractable probability density function, em-
pirical calibration of the model parameters of the proposed process for different financial
observables in general can also be easily performed. Hence, making predictions of future
movements of these observables becomes feasible. The leakage condition at the quasi-
bounded boundary can thus provide us with a forward-looking indicator of potential
crash risk or short squeeze of the corresponding financial observables, including equites
for risk management purposes. While only a limited number of firms’ equity prices are
calibrated in this sample, we leave the investigation of a larger sample of companies in
distress or experiencing short squeeze for future research. In addition, one of the limitations
of this study is that fundamental factors such as a firm’s balance-sheet information is not
incorporated into the model. Future theoretical research on equity price dynamics could
incorporate such factors.
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