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Abstract: In this paper, we consider the problem of pricing variance, volatility, covariance and
correlation swaps for financial markets with semi-Markov volatilities. The paper’s motivation
derives from the fact that in many financial markets, the inter-arrival times between book events
are not independent or exponentially distributed but instead have an arbitrary distribution, which
means they can be accurately modelled using a semi-Markov process. Through the results of the
paper, we hope to answer the following question: Is it possible to calculate averaged swap prices for
financial markets with semi-Markov volatilities? This question has not been considered in the existing
literature, which makes the paper’s results novel and significant, especially when one considers
the increasing popularity of derivative securities such as swaps, futures and options written on the
volatility index VIX. Within this paper, we model financial markets featuring semi-Markov volatilities
and price-averaged variance, volatility, covariance and correlation swaps for these markets. Formulas
used for the numerical evaluation of averaged variance, volatility, covariance and correlation swaps
with semi-Markov volatilities are presented as well. The formulas that are detailed within the paper
are innovative because they provide a new, simplified method to price averaged swaps, which has
not been presented in the existing literature. A numerical example involving the pricing of averaged
variance, volatility, covariance and correlation swaps in a market with a two-state semi-Markov
process is presented, providing a detailed overview of how the model developed in the paper can
be used with real-life data. The novelty of the paper lies in the closed-form formulas provided for
the pricing of variance, volatility, covariance and correlation swaps with semi-Markov volatilities, as
they can be directly applied by derivative practitioners and others in the financial industry to price
variance, volatility, covariance and correlation swaps.

Keywords: volatility swaps; variance swaps; covariance swaps; correlation swaps; semi-Markov
volatility; averaged swap pricing

1. Introduction

The most basic indicator of a stock’s riskiness or uncertainty is its volatility. Formally,
volatility σR refers to the annualized standard deviation of the stock’s returns during a
specified period, with the subscript R denoting the observed or “realized” volatility.

Volatility swaps are forward contracts on future realized stock volatility, while variance
swaps are similar contracts on variance, the square of the future volatility. These financial
instruments offer investors a convenient means to gain exposure to the future level of
volatility.

The most straightforward approach to trade volatility is to utilize volatility swaps,
which are also known as realized-volatility forward contracts. This is true, as volatility
swaps offer pure exposure to volatility and expose the investor only to volatility.

A covariance swap is a covariance forward contact of two underlying rates S1 and
S2, while a correlation swap is a correlation forward contract with the underlying rates S1

and S2.
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The literature concerning volatility derivatives is rapidly expanding. Below, we present
a concise overview of the most recent developments in this field. Benth et al. (2007) utilized
the Non-Gaussian Ornstein–Uhlenbeck stochastic volatility model to investigate volatility
and variance swaps. Broadie and Jain (2008a) conducted a comparative analysis of results
from different models to explore the impact of jumps and discrete sampling on variance
and volatility swaps, while Broadie and Jain (2008b) examined the pricing and hedging
strategies for volatility derivatives within the Heston square-root stochastic volatility
model. Carr et al. (2005) employed pure jump processes with independent increment
return models to price derivatives written on realized variance. Further advancement
in this area can be found in Carr and Lee (2007). For a detailed survey on volatility
derivatives, we refer to Carr and Lee (2009). Da Fonseca et al. (2011) provided a solution to
a portfolio-optimization problem in a market with risky assets and volatility derivatives,
and as a result, it was able to produce an analysis of the impact of variance and covariance
swaps in a market. An investigation into the price of correlation swaps was conducted
by Bossu(2005, 2007) for components of an equity index using the statistical method. The
price of correlation risk for equity options is discussed in Driessen et al. (2009). Elliott
et al. (2007) delves into the pricing of volatility swaps under Heston’s model with regime
switching, while Elliott et al. (2007) explores the pricing of options within a generalized
Markov-modulated jump-diffusion model. In Elliott and Swishchuk (2007), formulas for
option and swap pricing in a Markov-modulated market are developed, and the minimal
martingale measure is explored. The paper Howison et al. (2004) investigates the valuation
of different volatility derivatives, covering volatility and variance swaps, as well as options.
Sepp (2008) explored the pricing of options based on realized variance within the context
of the Heston model, which incorporates jumps in returns and volatility. In Badescu et al.
(2002), an extensive analysis of the analytical closed-form pricing formulas for pseudo-
variance, pseudo-volatility, pseudo-covariance and pseudo-correlation swaps is conducted.
Neuberger (1994) investigated a nonparametric method for swap pricing, which refrained
from assuming a specific stochastic process and instead assumed that the price of the
underlying evolves continuously over time. Dupire (1993) examined a similar approach to
swap pricing while developing the notion of forward variance. A complete and detailed
replicating strategy for continuously monitored variance swaps was outlined by Carr and
Madan (1999). The groundbreaking concept of localizing variance swap payoffs in space
was developed in Dupire (1996) and Derman et al. (1997), independently. In the paper
Windcliff et al. (2006), an analysis is conducted regarding the behaviour and hedging
strategies concerning volatility derivatives that are observed discretely. The stochastic
evolution of a forward interest rate curve was examined within Heath et al. (1992). The
modelling and pricing of variance, volatility, covariance and correlation swaps for financial
markets with Markov-modulated volatilities were studied in Salvi and Swishchuk (2014).
The modelling and pricing of variance and volatility swaps for financial markets with
stochastic volatilities in the Heston model were studied in Swishchuk (2004). The modelling
and pricing of covariance and correlation swaps for financial markets with semi-Markov
volatilities were first studied in Salvi and Swishchuk (2012) and published in Pogorui et al.
(2021) (see vol. 2, chp. 5).

Within this paper, we model financial markets featuring semi-Markov volatilities and
price-averaged variance, volatility, covariance and correlation swaps for these markets.
In many financial markets, the inter-arrival times between book events (e.g., limit orders,
market orders and order cancellations) in the limit order books, considering HFT (high-
frequency and algorithmic trading), are not independent or exponentially distributed as
they would be in the Markov case, but instead, they have an arbitrary distribution (e.g.,
Weibull, Gamma, etc.). For this reason, we model markets with a semi-Markov process
but not a Markov process. In addition, the assumption of the semi-Markov process for
modelling swap contracts is appropriate because, within this paper, we consider swap
contracts on variance, volatility, covariance and correlation, and the evolution of these
statistical measures does not follow the Markov property. Yet the change in variance,
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volatility, covariance and correlation does follow a semi-Markov process, as is explained in
Section 4, using a Weibull distribution.

In the subsequent sections, we present formulas for the numerical evaluation of vari-
ance, volatility, covariance and correlation swaps with semi-Markov volatility. The novelty
of the paper lies in the closed-form formulas provided for the pricing of averaged variance,
volatility, covariance and correlation swaps, as these formulas have not been previously
studied in existing literature. In addition, the closed-form formulas for pricing averaged
swaps provide a new, simplified and innovative method for derivative practitioners to price
swaps, as the formulas can be easily applied by those in the financial industry. Additionally,
a numerical example showcasing the pricing of covariance and correlation swaps within a
market involving two risky assets is provided.

The paper is organized as follows. Basic definitions for variance, volatility, covariance
and correlation swaps are presented in Section 2.1. Section 2.2 covers the definition of a semi-
Markov process and explores several of its properties. Section 3.1 investigates variance,
volatility, covariance and correlation swaps within financial markets characterized by
semi-Markov volatilities. Covariance and correlation swaps for financial markets with
semi-Markov volatilities are presented in Section 3.2. Averaged pricing for variance,
volatility, covariance and correlation swaps with semi-Markov volatilities are considered in
Section 3.3. A numerical example with a two-state semi-Markov process is presented in
Section 4. Appendix A considers the first-order approximation for the realized correlation.
Section 5 concludes the paper.

2. Basic Definitions and Literature Review
2.1. Variance, Volatility, Covariance, Correlation Swaps: Basic Definitions

Within the following section, we will introduce the definitions and formulas for
variance, volatility, covariance and correlation swaps. The formulas and definitions closely
follow the information and framework presented in Pogorui et al. (2021) and Salvi and
Swishchuk (2012, 2014).

2.1.1. Variance and Volatility Swaps

A stock volatility swap is a forward contract on the annualized volatility. Its payoff at
expiration is equal to

N(σR(S)− Kvol),

where σR(S) is the realized stock volatility (quoted in annual terms) over the life of contract,

σR(S) :=

√
1
T

∫ T

0
σ2

s ds,

σt is a stochastic stock volatility, Kvol is the annualized volatility delivery price, and N is
the notional amount of the swap in dollars per annualized volatility point. The holder of a
volatility swap at expiration receives N dollars for every point by which the stock’s realized
volatility σR has exceeded the volatility delivery price Kvol . The holder is swapping a fixed
volatility Kvol for the actual (floating) future volatility σR. We note that usually, N = αI,
where α is a converting parameter such as USD 1 per volatility-square, and I is a long-short
index (+1 for long and −1 for short).

Even though volatility is commonly talked about amongst options market participants,
variance or volatility squared has more fundamental significance (see Demeterfi et al. 1999).

A variance swap is a forward contract on annualized variance, the square of the
realized volatility. Its payoff at expiration is equal to

N(σ2
R(S)− Kvar),
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where σ2
R(S) is the realized stock variance (quoted in annual terms) over the life of the

contract,

σ2
R(S) :=

1
T

∫ T

0
σ2

s ds,

Kvar is the delivery price for variance, and N is the notional amount of the swap in dollars
per annualized volatility point squared. The holder of the variance swap at expiration
receives N dollars for every point by which the stock’s realized variance σ2

R(S) has exceeded
the variance delivery price Kvar.

Consequently, pricing the variance swap simplifies to computing the square of the
realized volatility.

Assessing the value of a variance forward contract or swap follows the same principles
as valuing any other derivative security. The forward contract’s value, denoted as P, on the
future realized variance with strike price Kvar is equal to the expected present value of the
future payoff in a risk-neutral world:

P = E{e−rT(σ2
R(S)− Kvar)},

where r is the risk-free discount rate corresponding to the expiration date T and E denotes
the expectation.

Therefore, in order to calculate the value of variance swaps, we only need to know the
mean of the underlying variance, E{σ2

R(S)}.
However, when we calculate volatility swaps, we need more than just E{σ2

R(S)}.
Within Brockhaus and Long (2000), we can find the Brockhaus–Long approximation (which
uses the second-order Taylor expansion for the function

√
x). The Brockhaus–Long approx-

imation can be expressed as follows (see also Javaheri et al. 2002):

E{
√

σ2
R(S)} ≈

√
E{V} − Var{V}

8E{V}3/2 ,

where V := σ2
R(S) and Var{V}

8E{V}3/2 is the convexity adjustment.
Consequently, in order to calculate the value of volatility swaps, we need to know

E{V} and Var{V}.
The realized continuously sampled variance is defined in the following way:

V := Var(S) :=
1
T

∫ T

0
σ2

t dt.

The realized continuously sampled volatility is defined as follows:

Vol(S) :=
√

Var(S) =
√

V.

2.1.2. Covariance and Correlation Swaps

Options that depend on exchange rate movements, particularly those settling in a
currency different from the underlying currency, are susceptible to fluctuations in the
correlation between the asset and the exchange rate. However, this risk can be mitigated by
employing a covariance swap.

A covariance swap is a covariance forward contact of the underlying rates S1 and S2,
and its payoff at expiration is equal to

N(CovR(S1, S2)− Kcov),

where Kcov is a strike price, N is the notional amount, and CovR(S1, S2) is a covariance
between two assets S1 and S2.
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A correlation swap is a correlation forward contract with two underlying rates S1 and
S2, and its payoff at expiration is equal to:

N(CorrR(S1, S2)− Kcorr),

where Corr(S1, S2) is a realized correlation of two underlying assets S1 and S2, Kcorr is a
strike price, and N is the notional amount.

From a theoretical standpoint, pricing a covariance swap is akin to pricing variance
swaps, given that

CovR(S1, S2) = 1/4{σ2
R(S

1S2)− σ2
R(S

1/S2)}

where S1 and S2 are the two given underlying assets, σ2
R(S) is the realized variance of the

underlying asset S, and CovR(S1, S2) is the realized covariance of the two underlying assets
S1 and S2. See Swishchuk (2004) for more details.

Therefore, in order to price a covariance swap we need to know the realized variance
for S1S2 and for S1/S2.

Realized correlation CorrR(S1, S2) is defined as follows:

CorrR(S1, S2) =
CovR(S1, S2)√
σ2

R(S
1)
√

σ2
R(S

2)
,

where CovR(S1, S2), σ2
R(S

1), and σ2
R(S

2) are defined above.
Given two assets S1

t and S2
t with t ∈ [0, T], sampled on days t0 = 0 < t1 < t2 <

... < tn = T, between today and maturity T, the logarithmic return of each asset is

Rj
i := log(

Sj
ti

Sj
ti−1

), i = 1, 2, ..., n, j = 1, 2.

Covariance and correlation can be approximated using

Covn(S1, S2) =
n

(n− 1)T

n

∑
i=1

R1
i R2

i

and

Corrn(S1, S2) =
Covn(S1, S2)√

Varn(S1)
√

Varn(S2)
,

respectively.

2.2. Semi-Markov Process and Some Properties

The following section describes the semi-Markov process and outlines its properties,
closely following the definitions and equations found in Pogorui et al. (2021) and Salvi and
Swishchuk (2012, 2014).

Let (Ω, F , (Ft)t∈R+
,P) be a filtered probability space, with a right-continuous filtra-

tion (Ft)t∈R+
and probability P.

Let (X, X ) be a measurable space and

QSM(x, B, t) := P(x, B)Gx(t) for x ∈ X, B ∈ X , t ∈ R+, (1)

be a semi-Markov kernel. Let (xn, τn; n ∈ N) be an (X ×R+, X ⊗B+)-valued Markov
renewal process with QSM as the associated kernel, that is,

P(xn+1 ∈ B, τn+1 − τn ≤ t |Fn) = QSM(xn, B, t). (2)

Let us then define the process

νt := sup{n ∈ N : τn ≤ t} (3)
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which gives the number of jumps of the Markov renewal process in the time interval (0, t]
and

θn := τn − τn−1 (4)

which gives the sojourn time of the Markov renewal process in the n-th visited state.
The semi-Markov process, associated with the Markov renewal process (xn, τn)n∈N, is
defined by

xt := xν(t) for t ∈ R+. (5)

It is possible to define some auxiliaries processes associated with the semi-Markov
process. We are interested in the backward recurrence time (or lifetime) process defined by

γ(t) := t− τν(t) for t ∈ R+. (6)

The next result characterizes the backward recurrence time process (cf. Swishchuk 2013).

Proposition 1. The backward recurrence time (γ(t))t is a Markov process with generator

Qγ f (t) = f ′(t) + λ(t)[ f (0)− f (t)], (7)

where λ(t) = −Gx
′
(t)

Gx(t)
, Gx(t) = 1− Gx(t) and Domain(Qγ) = C1(R+).

As is widely acknowledged, semi-Markov processes maintain the lost-memories prop-
erty solely at transition times, which means that (xt)t is not a Markov process. Nevertheless,
when we examine the joint process (xt, γ(t))t∈R+

, we simultaneously record the duration
of time spent by the semi-Markov process in the present state, at any given moment. As a
result, (xt, γ(t))t∈R+

is a Markov process with the generator (see Swishchuk 1997)

Q f (x, t) =
d f
dt

(x, t) +
gx(t)
Gx(t)

∫
X

P(x, dy)[ f (y, 0)− f (x, t)]. (8)

3. Methods for Pricing Averaged Variance, Volatility, Covariance and Correlations Swaps
3.1. Variance and Volatility Swaps for Financial Markets with Semi-Markov Stochastic Volatilities

Within the section that follows, we will use the formulas and definitions provided in
Pogorui et al. (2021) and Salvi and Swishchuk (2012, 2014) to present definitions and equa-
tions for variance and volatility swaps in markets with semi-Markov stochastic volatilities.

In the context of a market model involving just two assets, the risk-free bond and the
stock, let us suppose that the stock price (St)t∈R+

adheres to the subsequent stochastic
differential equation

dSt = St(rdt + σ(xt, γ(t))dwt) (9)

where w is a standard Wiener process independent of (x, γ). Our focus lies in examining
the characteristics and properties of the volatility, denoted as σ(x, γ). The properties of
volatility modulated using a Markov process were examined in Salvi and Swishchuk (2012),
and here we will generalize their work to the semi-Markov case.

It is widely acknowledged that the market model with semi-Markov stochastic volatil-
ity lacks completeness (see Swishchuk 2013). Therefore, to determine the prices of future
contracts, we will employ the minimal martingale measure; for details consult Swishchuk
(2013). Now, our attention turns to assessing the price of variance, volatility, covariance
and correlation swaps with semi-Markov volatilities. As long as the process (x(t), γ(t)) is
a Markov process with generator Q, as defined in Equation (8), then the calculation can be
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reduced to the Markov case described in Salvi and Swishchuk (2012) and in Pogorui et al.
(2021). Here, we present all formulas in the semi-Markov case.

3.1.1. Pricing of Variance Swaps

We shall begin with the simplest swap, the variance swap. Variance swaps are forward
contracts on a future realized level of variance. The payoff of a variance swap with an
expiration date T is given by

N(σ2
R(x)− Kvar) (10)

where σ2
R(x) is the realized stock variance over the life of the contract

σ2
R(x) :=

1
T

∫ T

0
σ2(xs, γ(s))ds, (11)

Kvar is the strike price for the variance swap and N is the notional number of dollars per
annualized variance point. We will assume that N = 1 just for the sake of simplicity. The
price of the variance swap is the expected present value of the payoff in the risk-neutral
world

Pvar(x) = E{e−rT(σ2
R(x)− Kvar)}. (12)

The subsequent theorem concerns the assessment of a variance swap within the semi-
Markov volatility model. For details and proof, refer to Swishchuk (2013).

Theorem 1 (Swishchuk 2013). The present value of a variance swap with semi-Markov stochastic
volatility is

Pvar(x) = e−rT
{

1
T

∫ T

0
(etQσ2(x, 0)− Kvar)dt

}
(13)

where Q is the generator of (xt, γ(t))t; that is,

Q f (x, t) =
d f
dt

(x, t) +
gx(t)
Gx(t)

∫
X

P(x, dy)[ f (y, 0)− f (x, t)]. (14)

3.1.2. Pricing of Volatility Swaps

Volatility swaps are forward contracts on a future realized level of volatility. The
payoff of a volatility swap with maturity T is given by

N(σR(x)− Kvol) (15)

where σR(x) is the realized stock volatility over the life of the contract

σR(x) :=

√
1
T

∫ T

0
σ2(xs, γ(s))ds, (16)

Kvol is the strike price for the volatility swap, N is the notional number of dollars per
annualized volatility point, and as before, we will assume that N = 1. The price of the
volatility swap is the expected present value of the payoff in a risk-neutral world

Pvol(x) = E{e−rT(σR(x)− Kvol)}. (17)

To compute the price of volatility swaps, we require the expected value of the square root
of variance. However, in general, this expected value cannot be analytically determined.
Therefore, to derive a formula for the price of volatility swaps, an approximation becomes
necessary. By employing a similar approach as in the Markov case (see Brockhaus and
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Long 2000; Javaheri et al. 2002), we use the second-order Taylor expansion, yielding the
following expression:

E{
√

σ2
R(x)} ≈

√
E{σ2

R(x)} −
Var{σ2

R(x)}
8E{σ2

R(x)}3/2
. (18)

Consequently, in order to assess the price of volatility swaps, it is necessary to determine
both the expectation and the variance of σ2

R(x). The following theorem provides an explicit
representation of the price of a volatility swap, approximated to the second order, within
this semi-Markov volatility model. For further details, refer to Salvi and Swishchuk (2012)
and Pogorui et al. (2021), vol. 2, chp 5.

Theorem 2. The value of a volatility swap with semi-Markov stochastic volatility is

Pvol(x) ≈ e−rT

{√
1
T
∫ T

0 etQσ2(x, 0)dt− Var{σ2
R(x)}

8
(

1
T
∫ T

0 etQσ2(x,0)dt
)3/2 − Kvol

}

where the variance is given by

Var{σ2
R(x)} = 2

T2

∫ T

0

∫ t

0

{
esQ
[
σ2(x, 0)e(t−s)Qσ2(x, 0)

]
−
[
etQσ2(x, 0)

][
esQσ2(x, 0)

]}
dsdt,

and Q is the generator of (xt, γ(t))t, that is,

Q f (x, t) =
d f
dt

(x, t) +
gx(t)
Gx(t)

∫
X

P(x, dy)[ f (y, 0)− f (x, t)]. (19)

3.1.3. Approximations of Variance and Volatility Swaps with Semi-Markov Volatility

When applying the theories and equations presented in Sections 3.1.1 and 3.1.2 to deter-
mine the price of a variance or a volatility swap, we encounter numerical challenges related
to etQ. Evaluating the family of exponential operators (etQ)t involved in Theorems 1 and 2
above, concerning the semi-Markov stochastic volatility model, is often challenging from a
numerical perspective. To address this issue, we initially explore the following identity

etQ f (·) =
∞

∑
n=0

(tQ)n

n!
f (·), (20)

for any function f ∈ Domain(Q). This identity enables us to obtain the operator (etQ)t at
any desired order of approximation. For instance, when n = 1, we obtain the following
expression:

etQ f (·) ≈ (I + tQ) f (·) (21)

where I is an identity operator. At this order of approximation, we permit the semi-Markov
process to undergo a maximum of one transition during the lifetime of the contract. This
assumption can be reasonable if we consider the semi-Markov process as a macroeco-
nomic factor. Nevertheless, we can assess the error in this approximation by considering
subsequent orders. Employing the first-order approximation, the variance swap price is
given by

Pvar(x) ≈e−rT
{

1
T

∫ T

0
(I + tQ)σ2(x, 0)dt− Kvar

}
=e−rT

{
σ2(x, 0) +

T
2

Qσ2(x, 0)− Kvar

}
.

(22)
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And the first order of approximation for the volatility swap price becomes

Pvol(x) ≈ e−rT


√

σ2(x, 0) +
T
2

Qσ2(x, 0)− T[Qσ4(x, 0)− 2σ2(x, 0)Qσ2(x, 0)]

24
(

σ2(x, 0) + T
2 Qσ2(x, 0)

)3/2 − Kvol

.

See Salvi and Swishchuk (2012) and Pogorui et al. (2021), vol. 2, chp. 5, for more
details.

3.2. Covariance and Correlation Swaps for Financial Markets with Semi-Markov
Stochastic Volatilities

In the subsequent section, we will again use the formulas and definitions provided in
Pogorui et al. (2021) and Salvi and Swishchuk (2012, 2014) in order to present definitions
and equations for covariance and correlation swaps in markets with semi-Markov stochastic
volatilities.

Now, let us explore a market model that consists of two risky assets and one risk-free
bond. We will assume that the risky assets follow the following stochastic differential
equations: 

dS(1)
t = S(1)

t (µ
(1)
t dt + σ(1)(xt, γ(t))dw(1)

t )

dS(2)
t = S(2)

t (µ
(2)
t dt + σ(2)(xt, γ(t))dw(2)

t )

(23)

where µ(1), µ(2) are deterministic functions of time and (w(1)
t )t, (w

(2)
t )t are standard Wiener

processes with quadratic covariance given by

d[w(1)
t , w(2)

t ] = ρtdt, (24)

where ρt is a deterministic function and (w(1)
t )t, (w

(2)
t )t are independent of (x, γ).

In the context of this model, it is valuable to investigate the covariance and correlation
swaps concerning the two risky assets.

3.2.1. Pricing of Covariance Swaps

A covariance swap is a covariance forward contract on the underlying assets S(1) and
S(2), which has a payoff at maturity equal to

N(CovR(S(1), S(2))− Kcov) (25)

where Kcov is a strike reference value, N is the notional amount and CovR(S(1), S(2)) is the
realized covariance of the two assets S(1) and S(2) given by

CovR(S(1), S(2)) =
1
T
[ln S(1)

T , ln S(2)
T ] =

1
T

∫ T

0
ρtσ

(1)(xt, γ(t))σ(2)(xt, γ(t))dt. (26)

The price of the covariance swap is the expected present value of the payoff in a risk-neutral
world:

Pcov(x) = E{e−rT(CovR(S(1), S(2))− Kcov)}, (27)

where we set N = 1. The subsequent theorem provides a clear and explicit representation
of the covariance swap price.
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Theorem 3. The value of a covariance swap with semi-Markov stochastic volatility is

Pcov(x) = e−rT
{

1
T

∫ T

0
ρtetQ[σ(1)(x, 0)σ(2)(x, 0)]dt− Kcov

}
, (28)

where Q is the generator of (xt, γ(t))t, that is,

Q f (x, t) =
d f
dt

(x, t) +
gx(t)
Gx(t)

∫
X

P(x, dy)[ f (y, 0)− f (x, t)]. (29)

3.2.2. Pricing of Correlation Swaps

A correlation swap is a forward contract on the correlation between the underlying
assets S1 and S2, which has a payoff at maturity equal to

N(CorrR(S1, S2)− Kcorr) (30)

where Kcorr is a strike reference value, N is the notional amount and CorrR(S1, S2) is the
realized correlation defined by

CorrR(S1, S2) =
CovR(S1, S2)√

σ
(1)2

R (x)
√

σ
(2)2

R (x)
, (31)

where the realized variance is given by

σ
(i)2

R (x) =
1
T

∫ T

0
(σ(i)(xt, γ(t)))2dt i = 1, 2. (32)

The price of the correlation swap is the expected present value of the payoff in a risk-neutral
world, that is

Pcorr(x) = E{e−rT(CorrR(S1, S2)− Kcorr)} (33)

where we set N = 1 for simplicity. Regrettably, the expected value of CorrR(S1, S2) is not
analytically known. Therefore, in order to obtain a precise formula for the correlation swap
price, it becomes necessary to use an approximation. After the approximation, we have the
following result (see Salvi and Swishchuk (2012) and Pogorui et al. (2021), vol. 2, chp. 5, for
more details):

Theorem 4. The value of a correlation swap with semi-Markov stochastic volatility is

Pcorr(x) ≈ e−rT


∫ T

0 ρtetQ[σ(1)(x, 0)σ(2)(x, 0)]dt√∫ T
0 etQ(σ(1)(x, 0))2dt

√∫ T
0 etQ(σ(2)(x, 0))2dt

− Kcorr

, (34)

where Q is the generator of (xt, γ(t))t, that is,

Q f (x, t) =
d f
dt

(x, t) +
gx(t)
Gx(t)

∫
X

P(x, dy)[ f (y, 0)− f (x, t)]. (35)

3.2.3. Approximations of Covariance and Correlation Swaps with Semi-Markov
Stochastic Volatility

To attain more practical expressions for the pricing of covariance and correlation swaps
that can be readily applied in numerical examples, we will introduce an approximation for
the family of the operator (etQ)t. We will employ a similar approach to the one used for the
variance and volatility case, approximating the operators at the first order in Q as

etQ f (·) ≈ (I + tQ) f (·). (36)
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Using this approximation, the covariance swap price becomes

Pcov(x) ≈e−rT
{

1
T

∫ T

0
ρt(I + tQ)[σ(1)(x, 0)σ(2)(x, 0)]dt− Kcov

}
=e−rT

{
σ(1)(x, 0)σ(2)(x, 0)

∫ T

0
ρtdt + Q[σ(1)(x, 0)σ(2)(x, 0)]

∫ T

0
tρtdt− Kcov

} (37)

The same approximation then allows us to express the correlation swap price as

Pcorr(x) ≈e−rT


∫ T

0 ρt(I + tQ)[σ(1)(x, 0)σ(2)(x, 0)]dt√∫ T
0 (I + tQ)(σ(1)(x, 0))2dt

√∫ T
0 (I + tQ)(σ(2)(x, 0))2dt

− Kcorr


=e−rT

 σ(1)(x, 0)σ(2)(x, 0)
∫ T

0 ρtdt + Q[σ(1)(x, 0)σ(2)(x, 0)]
∫ T

0 tρtdt√
(σ(1)(x, 0))2 + T

2 Q(σ(1)(x, 0))2
√
(σ(2)(x, 0))2 + T

2 Q(σ(2)(x, 0))2
− Kcorr

.

(38)

See Salvi and Swishchuk (2012) and Pogorui et al. (2021), vol. 2, chp. 5, for more
details.

3.3. Averaged Prices of the Variance, Volatility, Covariance and Correlation Swaps with
Semi-Markov Volatilities

As was mentioned in Salvi and Swishchuk (2014), the rate of convergence in the
approximation of the price depends on the rate of convergence of the transition probabil-
ities matrix of the embedded Markov chain to the stationary distribution (see Salvi and
Swishchuk 2012). Moreover, the formulas for the approximations of variance, volatility, co-
variance and correlation swaps look very ugly, and it is hard to calculate even the first-order
correction (see Appendix A below).

That is why we will take the following approach to obtain reasonable formulas for
covariance and correlation swaps. We consider the following SDE (GBM in series scheme)
for the stock price:

dSε
t = rSε

t dt + σ(x(t/ε))Sε
t dWt, (39)

where ε > 0. That is, to improve the approximation, we take Sε
t in a series scheme, where

the semi-Markov process x(t/ε) is considered in the long run; i.e., instead of time t, we
have t/ε. Using the averaging principle for an SDE in a series scheme (see Swishchuk 1992,
1997), i.e., Sε

t →ε→0 Ŝt weakly, we will obtain the following limiting SDE (averaged GBM):

dŜt = rŜtdt + σ̂Ŝtdwt, (40)

where

σ̂2 :=
1
m

∫
X

σ2(y)m(y)π(dy), m :=
∫

X
m(y)π(dy), m(y) :=

∫ +∞

0
tGx(dt), (41)

and π(dy) is the stationary distribution of the embedded Markov chain xn. Of course, here,
X is a general state space for the semi-Markov process x(t).

In the case of finite or infinite but countable X, the integrals above become sums or
series, respectively. We present the above formulas for the case of a finite state semi-Markov
process, i.e., X = {0, 1, 2, ..., N} :

σ̂2 :=
1
m

N

∑
i=0

σ2(i)m(i)π(i), m :=
N

∑
i=0

m(i)π(i), m(i) :=
∫ +∞

0
tGi(dt), (42)

Thus, the averaged volatility σ̂ can be calculated using σ(y), π(dy) and m(y) (or σ(i),
m(i), and π(i) in the finite case). For m(y), we only need to specify some non-exponential
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distribution Gx(dt). In the numerical example below, we show how to do this using the
Weibull distribution and a two-state semi-Markov process.

4. Numerical Example: A Semi-Markov Process with Two States
4.1. Defining the Values for Volatilities σ(i), i = 0, 1

Now, how we can define two values for the volatility σ(i), i = 0, 1? We proceed with
the method described in Salvi and Swishchuk (2014), sct. 6. Namely, for each day t, we
have access to a high data point σh

t and a low data point σl
t (say, we use the S&P 500

index for the risky asset prices and the CBOE Volatility Index (VIX) for the volatility). We
then interpolate between them, defining σt =

1
2 (σ

h
t + σl

t ), a reference value for day t. By
computing the mean of these values, we can subsequently define

σ̄ =
1
n

n

∑
t=1

σt . (43)

If σt > σ̄, then the state on day t is denoted as {1}; otherwise, it is {0}. We estimate the
transition matrix. The value σ(1) represents the mean of σt calculated solely on days in
the {1} state, and similarly, σ(0) is the mean of σt computed exclusively on days in the
{0} state.

4.2. Defining the Values for the Volatilities σ(j)(i); j = 1, 2; i = 0, 1

How we can define two values for the volatilities σ(j)(i); j = 1, 2; i = 0, 1? Here, we
proceed with the method described in Salvi and Swishchuk (2014). We employ the S&P 500
index and the NASDAQ-100 index as the two risky assets, denoted as S(1)(t) and S(2)(t),
respectively. In order to estimate the Markov chain transition matrix and the parameters
(σ(1)(1), σ(1)(0), σ(2)(1), σ(2)(0)), we utilize the CBOE Volatility Index (VIX) and the CBOE
NASDAQ-100 Volatility Index (VXN).

The volatilities of the two assets are influenced by the same Markov chain. Therefore,
we can view the two volatility indices as two separate instances of the same process,
operating independently.

For each index and a given day t, high data points (vixh
t , vxnh

t ) and low data points
(vixl

t, vxnl
t) are available. We then define a VIX and VXN reference value for day t, by

interpolating between the high data points and low data points on each given day

vixt =
1
2
(vixh

t + vixl
t) , (44)

and
vxnt =

1
2
(vxnh

t + vxnl
t) . (45)

We evaluate the mean value (vix, vxn) over the time period we are interested in. If on day
t vixt > vix, then VIX is in the state {1}; otherwise, it is in {0}. Similarly, if vxnt > vxn,
then on day t, VXN is in state {1}; otherwise, it is in state {0}. This process generates two
independent sequences of {1} and {0} states of our Markov process: one for VIX and the
other for VXN. Utilizing these sequences, we can estimate the transition probability for the
Markov chain. Regarding the parameters, σ(1)(1) can be estimated by taking the mean of
all VIX values, vixt, such that t is a {1} day, while σ(1)(0) can be estimated by taking the
mean of all vixt values on which t is a {0} day. Similarly, (σ(2)(1), σ(2)(0)) can be estimated
by taking the mean of the {1} and {0} days of VXN, respectively.

4.3. Formulas for the Prices of Averaged Variance, Volatility, Covariance and Correlation Swaps

Below, we present formulas for the prices of averaged variance, volatility, covariance
and correlation swaps that follow from the averaged results presented above.
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We consider here a two-state case, with X = {0, 1}. In this case, the expressions for
averaged volatility σ̂, m and m(y) become

σ̂ =
√

1
m [σ2(0)m(0)π(0) + σ2(1)m(1)π(1)], m = m(0)π(0) + m(1)π(1),

mi =
∫ +∞

0 tGi(dt), i = 0, 1.

The price of the averaged variance swap is

Pvar = e−rT [ ˆ(σ2)− Kvar], (46)

where ˆ(σ2) = 1
m (σ2(0)m(0)π(0) + σ2(1)m(1)π(1)), r > 0 is the interest rate, T is the

maturity date, and Kvar is the strike price.
The price of averaged volatility swap is

Pvol = e−rT [
√

ˆ(σ2)−
1
m (σ4(0)m(0)π(0)+σ4(1)m(1)π(1)−(σ2(0)m(0)π(0)+σ2(1)m(1)π(1)))2

8(σ̂2)3/2
− Kvol ], (47)

The second term in the brackets is usually called the convexity adjustment, and Kvol is the
strike price.

The price of the covariance swap is

Pcov = e−rT [
1
m
(ρ(σ(1)(0)σ(2)(0)m(0)π(0) + σ(1)(1)σ(2)(1)m(1)π(1)))− Kcov], (48)

where σj(i), j = 1, 2, i = 0, 1, are volatilities for the risky assets S(j)
t , j = 1, 2, Kcov is the strike

price, and ρ is the constant correlation between the two Wiener processes in Equation (23).
The price of the correlation swap is

Pcorr = e−rT [ ρ(σ(1)(0)σ(2)(0)m(0)π(0)+σ(1)(1)σ(2)(1)m(1)π(1))√
((σ(1)(0))2m(0)π(0)+(σ(1)(1))2m(1)π(1))

√
((σ(2)(0))2m(0)π(0)+(σ(2)(1))2m(1)π(1))

− Kcorr],
(49)

where Kcorr is the strike price.

4.4. Numerical Toy Example

We will now use the expressions defined above in further calculations below. Suppose
that xn is a Markov chain with two states i = {0, 1}, and a transition matrix

P =

(
0.7 0.3
0.4 0.6

)
.

Then, the stationary probabilities are ~π =

(
π(0)
π(1)

)
=

(
0.571
0.429

)
, which follow

from the solution of the following equation: ~πP = ~π.
Therefore, we examine the scenario of a two-state semi-Markov chain xn with arbitrary

distribution Gi(x), i = 0, 1, for τn. We shall adopt the the Weibull distribution (as detailed
in Krishnamoorthy (2006)) denoted as Gi(x) for τn, which possesses a probability density
function represented as fi(x) := dGi(x)/dx :

fi(x) =
{

λ(i)K(i)(λ(i)x)K(i)−1 exp[−(λ(i)x)K(i)], x ≥ 0,
0, x < 0,

(50)

where i = 0, 1. Recall that K(i) represents the shape parameter, while λ(i) denotes the scale
parameter. It is worth noting that if we set K(i) = 1, i = 0, 1, then we obtain the exponential
distribution for Gi(t) and the Markov case for the process x(t).

Suppose that λ(0) = 8 and λ(1) = 10. We recall that the mean value for a random
variable with Weibull density distribution is (1/λ(i))Γ(1 + 1/K(i)), where Γ(·) stands for
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the Gamma distribution. Of course, we could take other non-exponential distributions,
such as Gamma or Beta.

We consider two cases here: (i) K(i) = 2 (K(i) > 1), i = 0, 1, and (ii) K(i) =
1/2 (K(i) < 1), i = 0, 1. The case K(i) = 1, i = 0, 1 refers to the exponential distribution
Gi(x) = 1− e−λ(i)x..

Let us take (i) K(i) = 2 (K(i) > 1), i = 0, 1.
Thus, we can now calculate the following parameters, m(0) and m(1) :

m(0) = 1/λ(0))Γ(1 + 1/K(0)) = (1/8)Γ(3/2) ≈ 0.111
m(1) = 1/λ(1))Γ(1 + 1/K(1)) = (1/10)Γ(3/2) ≈ 0.089.

(51)

Then (see Equation (42)),

m = π(0)m(0) + π(1)m(1) = 0.571× 0.111 + 0.429× 0.089
= 0.063381 + 0.038181
= 0.101562 ≈ 0.102.

(52)

Let us now take σ(1) = 50%, σ(0) = 40%. Then, the averaged variance σ̂2 is:

σ̂2 = 1
m [σ2(0)m(0)π(0) + σ2(1)m(1)π(1)]

= 1/(0.102)[0.160× 0.111× 0.571 + 0.250× 0.089× 0.429]
= 0.193002.

It then follows that the averaged variance swap value can be calculated easily using
the following formula (we take Kvar = 0.19, T = 1, and r = 0.5) (see Equation (46)):

Pvar = e−rT [(σ̂)2 − Kvar] = e−0.5(0.193002− 0.19) = 0.001821 ≈ 0.002.

Below, we examine the relationship between the averaged variance and the averaged
variance swap price in Figure 1a, as well as the relationship between σ(0), σ(1) and the
averaged variance swap price in Figure 1b.

(a) (b)

Figure 1. (a) Price of variance swap in response to changing averaged variance σ̂. (b) Price of variance
swap in response to changing σ(0) and σ(1).

Similarly, the averaged volatility, covariance and correlation swaps can be calculated
using Equations (47)–(49) above, respectively.

Thus, using formula (47) and σ(1) = 50%, σ(0) = 40%, Kvol = 0.43, T = 1, r = 0.5, we
have that the averaged volatility swap value is

Pvol = e−0.5(
√

0.193002− 0.002410
8(0.193002)3/2 − 0.43) = 0.003498 ≈ 0.003.
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We can then examine the relationship between the averaged variance and the averaged
volatility swap price in Figure 2a below, as well as the relationship between σ(0), σ(1) and
the averaged volatility swap price in Figure 2b.

(a) (b)

Figure 2. (a) Price of volatility swap in response to changing averaged variance σ̂. (b) Price of
volatility swap in response to changing σ(0) and σ(1).

Using the following data, σ(1)(1) = 50%, σ(1)(0) = 40%, σ(2)(1) = 50%, σ(2)(0) =
41%, Kvol = 0.075, T = 1, r = 0.5, ρ = 0.4, and Equation (48), we can obtain the averaged
covariance swap value:

Pcov = e−0.5(0.078195− 0.075) = 0.001938 ≈ 0.002.

Below, in Figure 3, we examine the relationship between σ(1)(0), σ(1)(1) and the averaged
covariance swap value.

Figure 3. Price of covariance swap in response to changing σ(1)(0) and σ(1)(1).

Again, using the same data, Kcorr = 0.39, and Equation (49), we can obtain the
averaged correlation swap value:

Pcorr = e−0.5(0.399970− 0.39) = 0.006047 ≈ 0.006.

Below, in Figure 4a, we present a graph that explores the relationship between the averaged
variance of the first and second assets and the averaged correlation swap value. In addition,
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in Figure 4b, a graph is shown that presents the relationship between σ(1)(0), σ(1)(1) and
the averaged correlation swap value.

(a) (b)

Figure 4. (a) Price of correlation swap in response to changing averaged variances of assets 1 and 2.
(b) Price of correlation swap in response to changing σ(1)(0) and σ(1)(1).

Remark 1. If we take K(i) = 1/2 (K(i) < 1), i = 0, 1, then we can again calculate the
following parameters, m(0) and m(1):

m(0) = 1/λ(0))Γ(1 + 1/K(0)) = (1/8)Γ(3) ≈ 0.250
m(1) = 1/λ(1))Γ(1 + 1/K(1)) = (1/10)Γ(3) ≈ 0.200.

(53)

And

m = π(0)m(0) + π(1)m(1) = 0.571× 0.25 + 0.429× 0.2
= 0.14275 + 0.0858 = 0.22855 ≈ 0.229

(54)

As we can see from Remark 1 above as well as Figure 5 below, for smaller values of
K(i), the values of m(1), m(0), and m are larger and vice versa.

Figure 5. Relationship between K(0) and K(1) with m.

5. Conclusions

In this paper, we modelled financial markets with semi-Markov volatilities and de-
termined the pricing of averaged variance, volatility, covariance, and correlation swaps
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within these market conditions. We also presented formulas for the numerical evaluation of
averaged variance, volatility, covariance and correlation swaps with semi-Markov volatili-
ties. A numerical example involving the pricing of averaged variance, volatility, covariance
and correlation swaps in a market with a two-state semi-Markov process was presented
as well. The paper’s novelty lies in the pricing of averaged variance, volatility, covariance
and correlation swaps with semi-Markov volatilities in closed form, as, together with the
numerical example, they represent a new contribution to the field of financial derivatives,
namely volatility derivatives.

The results of the technical parts of the paper are relevant and important to the
financial sector because of the growing popularity and importance of variance, volatility,
covariance and correlation swaps. Asset volatility is crucial for the pricing of derivatives,
and since the 1990s, a group of derivative securities such as variance swaps have become
ever more popular. Since the introduction of the volatility index VIX by the Chicago Board
Options Exchange in 1993, swaps, futures, and options written on VIX have become more
prominent. As a result, in recent decades, as the trading of swaps written on variance,
volatility, covariance and correlation has become more popular, models used to price
these swaps have become increasingly relevant and important. In our paper, we used the
simplified approach to pricing variance, volatility, covariance and correlation swaps by
utilizing averaged statistical measures in a market with semi-Markov volatilities, as was
detailed in the numerical example in Section 4, which provides a straightforward approach
to pricing swaps that can be used by individuals in the financial industry.

Derivative practitioners can directly apply the results presented in this paper in their
work by closely following the information presented in Section 4. Within Sections 4.1
and 4.2, the definitions for the volatilities to be used are provided, while Section 4.3 outlines
the formulas for the pricing of averaged variance, volatility, covariance and correlation
swaps. Finally, Section 4.4 details the procedures for the calculation of the swap prices
using a numerical toy example. Therefore, a derivative practitioner can directly apply the
detailed procedures outlined within Section 4 of the paper to price swaps in their work.

However, due to the lack of literature devoted to averaged swap pricing with semi-
Markov volatility, along with the growing popularity of variance, volatility, covariance and
correlation swaps, there is an extensive amount of possible future work that can be carried
out stemming from the results presented in this paper. In future work, we plan to further
research swap pricing by examining volatility swap pricing and the Dupire formula for
local semi-Markov volatility. In addition, from the results presented in the paper, one can
investigate the residual risk associated with swap pricing.

Overall, the presented results are significant, new and original, and they contribute to
advancing our understanding of financial markets associated with semi-Markov volatility
and derivative pricing.
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Appendix A. Realized Correlation: First Order Correction

In this Appendix, we would like to show what kind of formulas can be obtained
without the averaging considered above, closely following the work found in Salvi and
Swishchuk (2012). As we will see below, these formulas look very complicated and cannot
be calculated exactly or directly. That is why we proposed the approximation method by
averaging the swaps under consideration. We take as an example the realized correlation
between two assets.

We aim to derive an approximation for the realized correlation between two risky
assets

CorrR(S1, S2) =
CovR(S1, S2)√

σ
(1)2

R (x)
√

σ
(2)2

R (x)
. (A1)

In Salvi and Swishchuk (2014) the following approximated expression was obtained

CorrR(S1, S2) ≈
X√

Y0
√

Z0

1 +
(

Y−Y0
2Y0

+ Z−Z0
2Z0

) ≈ X√
Y0
√

Z0

[
1−

(
Y−Y0

2Y0
+

Z− Z0

2Z0

)]
, (A2)

where

X =CovR(S1, S2)

Y =σ
(1)2

R (x)

Z =σ
(2)2

R (x),

(A3)

and with the index 0, we have denoted the expected values. We have already calculated the
expectation of the zeroth-order approximation, and now we intend to assess the first-order
approximation. Substituting X, Y and Z into Equation (A2), we obtain
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CorrR(S1, S2) ≈ 1√
E{σ(1)2

R (x)}
√
E{σ(2)2

2R (x)}

1
T

∫ T

0
ρtσ

(1)(xt, γ(t))σ(2)(xt, γ(t))dt

− 1

2T2(E{σ(1)2

R (x)})3/2(E{σ(2)2

R (x)})3/2

∫ T

0
ρtσ

(1)(xt, γ(t))σ(2)(xt, γ(t))dt

×
{
E{σ(2)2

R (x)}
∫ T

0
[(σ(1)(xs, γ(s)))2 −E{(σ(1)(xs, γ(s)))2}]ds

+E{σ(1)2

R (x)}
∫ T

0
[(σ(2)(xu, γ(u)))2 −E{(σ(2)(xu, γ(u)))2}]du

}
,

(A4)

where

E
{

σ2
(i)R(x)

}
= E

{
1
T

∫ T

0
(σ(i)(xt, γ(t)))2dt

}
=

1
T

∫ T

0
etQ(σ(i)(x, 0))2dt, (A5)

for i = 1, 2. We need to calculate the expectation of the right-hand side of Equation (A4).
We have already computed the expectation of the first term, which is the zeroth-order
approximation for the realized correlation. Therefore, our attention will now shift to the
other terms. To begin, let us rewrite them in the following manner:∫ T

0

∫ T

0
ρtσ

(1)(xt, γ(t))σ(2)(xt, γ(t))
(
E{σ(2)2

R (x)}[(σ(1)(xs, γ(s)))2 −E{(σ(1)(xs, γ(s)))2}]

+E{σ(1)2

R (x)}[(σ(2)(xs, γ(s)))2 −E{(σ(2)(xs, γ(s)))2}]
)

dsdt,
(A6)

We have four different contributions in the integrals. The expectation of the terms∫ T

0

∫ T

0
ρtσ

(1)(xt, γ(t))σ(2)(xt, γ(t))E{σ(i)2
(xs, γ(s))}E{σ(−i)2

(xs, γ(s))}dsdt (A7)

for i = 1, 2, can be calculated using Theorem 3 in Section 3.2.1. Now, to determine the
expectation of the approximated realized correlation, we only need to compute

E
{∫ T

0

∫ T

0
ρtσ

(1)(xt, γ(t))σ(2)(xt, γ(t))σ(i)2
(xs, γ(s))dsdt

}
i = 1, 2 (A8)

To this end, let us first divide the range of integration in two intervals as follows

E
{∫ T

0

∫ t

0
ρtσ

(1)(xt, γ(t))σ(2)(xt, γ(t))σ(i)2
(xs, γ(s))dsdt

+
∫ T

0

∫ T

t
ρtσ

(1)(xt, γ(t))σ(2)(xt, γ(t))σ(i)2
(xs, γ(s))dsdt

} (A9)

for i = 1, 2. We notice that the first integral set is such that t > s, while the second has t < s,
so we can use the property of conditional expectation to obtain

E
{∫ T

0

∫ t

0
ρtE{σ(1)(xt, γ(t))σ(2)(xt, γ(t))|Fs}σ(i)2

(xs, γ(s))dsdt

+
∫ T

0

∫ T

t
ρtσ

(1)(xt, γ(t))σ(2)(xt, γ(t))E{σ(i)2
(xs, γ(s))|Ft}dsdt

}
.

(A10)

We notice that (xt, γ(t))t is a Markov process, so using the Markov property, we can express
the conditional expectations as

E{σ(1)(xt, γ(t))σ(2)(xt, γ(t))|Fs} = e(t−s)Qσ(1)(xs, γ(s))σ(2)(xs, γ(s)) =: h(xs, γ(s))
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for t > s, and

E{σ(i)2
(xs, γ(s))|Ft} = e(s−t)Qσ(i)2

(xt, γ(t)) =: g(i)(xt, γ(t))

for s > t. Therefore, the first term of Equation (A10) can be expressed as

E
{∫ T

0

∫ t

0
ρth(xs, γ(s))σ(i)2

(xs, γ(s))dsdt
}

=
∫ T

0

∫ t

0
ρtesQ[h(x, 0)σ(i)2

(x, 0)]dsdt, (A11)

while the second term can be expressed as

E
{∫ T

0

∫ T

t
ρtσ

(1)(xt, γ(t))σ(2)(xt, γ(t))g(i)(xt, γ(t))dsdt
}

=
∫ T

0

∫ T

t
ρtetQ[σ(1)(x, 0)σ(2)(x, 0)g(i)(x, 0)]dsdt.

(A12)

Now, we can evaluate the functions h and g at x, obtaining

h(x, 0) = e(t−s)Q[σ(1)(x, 0)σ(2)(x, 0)] (A13)

and

g(i)(x, 0) = e(s−t)Q[σ(i)2
(x, 0)]. (A14)

We can summarize the preceding result in the following statement, which provides the
correlation swap price up to the first order of approximation (for further details, refer to
Salvi and Swishchuk (2014)).

Theorem A1. The value of the correlation swap for a semi-Markov volatility is

Pcorr(x) = e−rT
(
E{CorrR(S1, S2)} − Kcorr

)
(A15)

where the realized correlation can be approximated by

E{CorrR(S1, S2)} ≈
2
∫ T

0 ρtetQσ(1)(x, 0)σ(2)(x, 0)dt√∫ T
0 etQ(σ(1)(x, 0))2dt

√∫ T
0 etQ(σ(2)(x, 0))2dt

−
∫ T

0 ρt(
∫ t

0 esQ{etQ[σ(1)(x, 0)σ(2)(x, 0)]σ(1)2
(x, 0)}ds +

∫ T
t etQ{σ(1)(x, 0)σ(2)(x, 0)euQ[σ(1)2

(x, 0)]}du)dt

2
(∫ T

0 etQ(σ(1)(x, 0))2dt
)3/2(∫ T

0 etQ(σ(2)(x, 0))2dt
)1/2

−
∫ T

0 ρt(
∫ t

0 esQ{etQ[σ(1)(x, 0)σ(2)(x, 0)]σ(2)2
(x, 0)}ds +

∫ T
t etQ{σ(1)(x, 0)σ(2)(x, 0)euQ[σ(2)2

(x, 0)]}du)dt

2
(∫ T

0 etQ(σ(1)(x, 0))2dt
)1/2(∫ T

0 etQ(σ(2)(x, 0))2dt
)3/2 ,

(A16)

where Q is the generator of the Markov process (xt, γ(t))t given by

Q f (x, t) =
d f
dt

(x, t) +
gx(t)
Gx(t)

∫
X

P(x, dy)[ f (y, 0)− f (x, t)]. (A17)

As we can see, even with this “approximation”, the Equation (A16) for the realized
correlation looks very complicated and hard to calculate, regarding the expression for the
generator Q in Equation (A17).
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