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Abstract: Long-memory models are frequently used in finance and other fields to capture long-range
dependence in time series data. However, correctly identifying whether a process has long memory
is crucial. This paper highlights a significant limitation in using the sample autocorrelation function
(ACF) to identify long-memory processes. While the ACF establishes the theoretical definition
of a long-memory process, it is not possible to determine long memory by summing the sample
ACFs. Hassani’s − 1/2 theorem demonstrates that the sum of the sample ACF is always − 1/2 for
any stationary time series with any length, rendering any diagnostic or analysis procedures that
include this sum open to criticism. The paper presents several cases where discrepancies between
the empirical and theoretical use of a long-memory process are evident, based on real and simulated
time series. It is critical to be aware of this limitation when developing models and forecasting.
Accurately identifying long-memory processes is essential in producing reliable predictions and
avoiding incorrect model specification.

Keywords: long-memory process; sum of sample autocorrelation function; Hassani’s − 1/2 theorem;
spectral density; time series; autocorrelation

1. Introduction

Long-memory time series are characterized by having an autocorrelation function
(ACF) that decays to zero at a slow polynomial rate as the lag increases. This means that the
correlations between observations at different time steps persist over a long period of time,
leading to persistent patterns in the data. This property of long-memory time series is useful
in various fields, as it allows researchers to model the persistence of certain patterns in the
data and make better predictions based on past observations (see, for example, Doukhan et
al. 2003; Beran et al. 2013; Zivot and Wang 2013). The concept of long-memory time series
was first introduced by (Wei 2006) and (Tsay 2010) (for recent research, refer to Beran
1994 and Das and Bhattacharya 2021). The fractionally differenced process is a type of
long-memory time series that is characterized by the fractional difference operator (1− B)α,
where B is the backshift operator and α is the fractional differencing parameter; the process
is defined by

(1− B)αyt = at, −0.5 < α < 0.5 (1)

where at is a white noise series. In this equation, yt represents the observed time series and
at is a white noise series, which is a series of uncorrelated random variables with a mean
of zero and a constant variance. The fractional difference operator (1− B)α removes any
short-term correlations in the time series and enhances the persistence of the long-term
correlations, leading to a long-memory time series. The fractional differencing parameter α
lies between −0.5 and 0.5 and determines the degree of differencing to be applied to the
time series. The properties of model (1) have been widely studied in the literature (e.g.,
Hosking 1981). We summarize some of these properties below.
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1. When α < 0.5, the long-memory process yt is said to be weakly stationary. This means
that the mean, variance, and autocovariance of the process are constant over time.
Additionally, the process has an infinite moving average (MA) representation. In
other words, the process can be represented as an infinite sum of past error terms,
where the coefficients decay exponentially as the time lag between the error terms
increases. The weakly stationary property of yt is desirable as it simplifies the analysis
and modeling of the process.

2. When α > −0.5, the long-memory process yt is invertible. This means that it can be
transformed into a stationary process by applying a certain filter. In other words, the
invertibility property ensures that the long-memory process can be represented as a
finite sum of past error terms, where the coefficients decay exponentially as the time
lag between the error terms increases. The invertibility property is useful in practical
applications as it allows the analyst to transform the long-memory process into a
stationary process, which is easier to analyze and model.

3. When−0.5 < α < 0.5, the autocorrelation function (ACF) of the long-memory process
yt follows a certain pattern. The ACF decays at a polynomial rate of h2α−1 as the
lag h increases, leading to persistent patterns in the data and making the process a
long-memory time series. This implies that the memory of the process decays very
slowly, and the process can exhibit persistent trends and cycles that extend over long
time horizons. The long-memory property of yt is important as it captures the long-
range dependence in the data, which is often observed in financial, economic, and
environmental time series. However, accurately detecting long-memory processes can
be challenging, as the sample autocorrelation function may not be a reliable measure
of long-range dependence.

If the sample autocorrelation function (ACF) of a time series decays slowly, it can indicate
that the series has long memory. In this case, the ACF will not quickly approach zero
as the lag increases, but will instead show persistent patterns in the data. However, it is
important to keep in mind that other factors, such as the size of the sample or the presence
of outliers, may also affect the behavior of the ACF and should be considered when making
this determination. Ultimately, statistical tests and model-based approaches are often used
to formally test for the presence of long memory in a time series. There are several methods
that can be used to estimate the fractional differencing parameter α in the fractionally
differenced model defined by Equation (1).

1. Maximum likelihood method: This method involves maximizing the likelihood func-
tion of the fractionally differenced model given the observed data, and then using the
resulting estimates of the parameters to estimate α.

2. Regression method with logged periodogram at lower frequencies: This method
involves regressing the log of the periodogram (a measure of the spectral density of
the time series) at lower frequencies on the log of the frequency, and then using the
slope of the regression line to estimate α.

These methods can provide a good starting point in estimating d in practice, although
the choice of method will depend on the specifics of the problem at hand. For example, the
maximum likelihood method may be preferred when the data are well behaved, while the
regression method may be preferred when the data are noisy or contain outliers. Ultimately,
the choice of method will also depend on the specific software or package being used to
analyze the data.

The sum of the sample autocorrelation function (SACF) has often been used as a
diagnostic for long memory, as long-memory processes are characterized by the non-
summability of their theoretical autocovariance function. However, this may not always
be the case in practice, as the sample ACF may behave differently from the theoretical
autocovariance. This is why it is important to consider the implications of using the sample
sum of the ACF as a diagnostic for long memory (Hurst 1951).

This study highlights the limitations of relying solely on the sample autocorrelations
to diagnose the presence of long memory in a time series. The results demonstrate that
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some time series processes can exhibit misleading features in their sample autocorrelations,
making it difficult to accurately identify the presence of long memory. These findings have
significant implications for the routine use of the sum of the sample autocorrelations in
practice and emphasize the need for more robust methods to detect long memory.
The structure of this paper is as follows. In Section 2, we examine the definition of long-
memory processes and the sum of the sample autocorrelations. This section also includes a
discussion of the characteristics and relevant definitions of long memory. Section 3 focuses
on well-known long-memory processes and provides an overview of key theoretical results,
along with an examination of the implications of using the sample autocorrelation function.
To provide further clarification, an illustrative example is included in Section 3. Section 4
presents a comprehensive comparison of various approaches to long-memory detection.
It examines the strengths and limitations of each approach and provides insights into
their effectiveness in capturing long-range dependence in time series data. In Section 5, a
detailed discussion expands on the findings and implications of the comparative analysis.
It delves into the nuances of each approach, highlighting their theoretical foundations,
practical considerations, and potential areas for improvement. The discussion critically
evaluates the suitability of the examined approaches in real-world scenarios and highlights
open research questions and challenges that need to be addressed.

Finally, Section 6 presents the conclusions of the paper. It summarizes the main
findings and contributions of the research, emphasizing the significance of the comparative
analysis and the implications for long-memory detection in time series data. The section
also outlines potential directions for future research, highlighting areas where further
advancements are needed.

2. ACF and Long-Term Memory Process

Autocovariance and autocorrelation functions are two fundamental concepts in time
series analysis. Autocovariance measures the linear dependence between two observations
of a time series at different time lags. Autocorrelation, on the other hand, measures the
linear relationship between a time series and a delayed copy of itself. In this subsection,
we provide a brief introduction to autocovariance and autocorrelation functions, and we
define their mathematical properties.

In practice, we do not have access to the entire population of a time series, but
rather to a sample of observations from the series. Therefore, we need to estimate the
autocovariance and autocorrelation functions from the available data. In this subsection,
we present an estimator for the autocovariance function based on a sample of observations
from a stationary time series. We also discuss an alternative estimator and its properties.
Finally, we define the autocorrelation function and provide an estimator for it based on the
estimated autocovariance function.

We also explore the concept of long-term memory processes, which can be defined
in various ways. One of the most commonly used definitions is based on the sum of the
autocorrelation function, while others rely on the hyperbolic decay of the autocovariances
or the power-law decay of the spectral density function. These definitions can provide
insights into the behavior of time series data and help to identify long-memory patterns.
Additionally, the Wold decomposition of a process can provide an alternative definition,
emphasizing the role of past shocks or innovations in influencing the process’s behavior
over long periods. It is worth noting that these definitions are not necessarily equivalent
and can be useful in different contexts. In the following sections, we delve into each of
these definitions and their implications for long-term memory processes.

2.1. Sum of the Sample Autocorrelation Function

The autocovariance function of a wide sense stationary process {Yt} at lag h is

R(h) = E[(Yt+h − µY)(Yt − µY)], h ∈ Z (2)
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where E is the expected value operator; µY is the expected value of the variable Y.
In practical problems, we only have a set of data YT = (y1, · · · , yT); the following estimator
can be considered as an estimate of R̃(h):

R̃(h) =

∑
T−|h|
t=1 (yt+|h|−y)(yt−y)

T−|h| , h = 0,±1, · · · ,±(T − 1)

0, |h| ≥ T
(3)

where y = 1
T ∑T

t=1 yt is the sample mean, which is an unbiased estimator of µ. There is an
alternative estimate of R̃(h):

γ̂(h) =

∑
T−|h|
t=1 (yt+|h|−y)(yt−y)

T , h = 0,±1, · · · ,±(T − 1)
0 |h| ≥ T

(4)

The autocovariance λ̂(h) is biased on the use of the divisor T rather than T − |h| and
also has larger bias than R̃(h). The autocorrelation function, AFC, is given by

ρ(h) =
R(h)
R(0)

h ∈ Z (5)

and an estimate of ρ(h) is

ρ̂(h) =
λ̂(h)
λ̂(0)

0,±1, · · · ,±(T − 1) (6)

Theorem 1. The sum of the sample ACF, SACF, with lag h ≥ 1 is always −1
2 for any stationary

time series with arbitrary length T ≥ 2:

SACF =
T−1

∑
h=1

ρ̂h =
−1
2

(7)

Proof. (Hassani 2009)

The SACF has the following properties:

1. It does not depend on the time series length T; SACF = −1
2 for T ≥ 2. This property is

interesting because it implies that the overall level of autocorrelation in a stationary
time series, as measured by the sum of the ACF values, is not affected by the length
of the time series. This means that even if we have a very long or a very short time
series, the overall degree of temporal dependence in the data remains the same. This
property can be useful in comparing the overall level of temporal dependence between
different time series of varying lengths.

2. The value of SACF is equal to −1
2 for any stationary time series. Thus, for example,

SACF for ARMA(p, q) of any order (p, q) is equal to a Gaussian white noise process
and both are equal to −1

2 . The second property of the theorem states that for any
stationary time series, the value of SACF is always equal to −1

2 . This means that the
sum of the sample ACF at each lag is always a constant, regardless of the length of
the time series. For example, the sample ACF of an ARMA(p, q) process of any order
(p, q) is equal to a Gaussian white noise process, and both have a value of −1

2 for SACF.
This result has important implications for autoregressive model building and forecast-
ing. If we use the sample ACF to detect the parameters of an autoregressive model,
we might yield the improper detection of the order, since the ACF values are not
informative of the order.
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3. The values of ρ̂(h) are linearly dependent:

ρ̂(i) =
−1
2
−

T−1

∑
j 6=i=1

ρ̂(i) i = 1, · · · , T − 1 (8)

This equation shows that the value of ρ̂(i) can be expressed as a linear combination of
the other sample ACF values, with a constant term of −1

2 . In other words, the ACF
values are not independent of each other, but, rather, they are related to each other
in a systematic way. This property is a consequence of the fact that the ACF values
depend only on the time lag between observations, and not on the specific values of
the observations themselves. Therefore, once the ACF values for some lags are known,
the values for other lags can be determined using this linear relationship.

4. There is at least one negative ρ̂(h) for any stationary time series, even for AR(p) with
a positive ACF (Hassani 2010).
This property states that for any stationary time series, there is at least one negative
sample autocorrelation function (ACF) value, even for autoregressive (AR) models
with positive ACF values.
An AR model is a popular class of linear models for time series data, where the value
of a variable at time t depends linearly on its own past values, up to a certain number
of lagged observations (specified by the model order p). When the AR model is fitted
to a stationary time series, the resulting ACF values are typically positive for the
first few lags, indicating some degree of autocorrelation in the data. However, this
property states that there must always be at least one negative ACF value, even for
AR models with positive ACF values.
This property can be understood as follows: although an AR model may capture
some of the temporal dependencies in the data, it is unlikely to capture all of them
perfectly. In other words, there are likely to be some patterns in the data that are not
fully explained by the AR model. These unexplained patterns can lead to negative
ACF values, indicating a lack of autocorrelation at certain lags. Therefore, even for
stationary time series that exhibit positive autocorrelation overall, there will always
be some degree of randomness or unpredictability in the data, resulting in at least one
negative ACF value.

The property of SACF being constant and equal to −1
2 for any stationary time series has

important implications for time series analysis and modeling (see, for example, Hassani
and Silva 2015 and Hassani et al. 2021).

2.2. Long-Term Memory Process

The concept of long-memory processes can be defined in different ways. One common
definition is based on the sum of the autocorrelation function, as shown in Equation (9),

∞

∑
h=−∞

|ρ(h)| = ∞ (9)

which states that the sum of the absolute values of the autocorrelation coefficients is infinite.
However, there are alternative definitions that can also capture long-memory behavior,
such as the hyperbolic decay of the autocovariances, as shown in Equation (10):

ρ(h) = h2α−1l1(h) (10)

In this case, the autocovariances decrease at a rate of h2α−1 as h approaches infinity,
where α is the long-memory parameter and l1(0) is a slowly varying function. Another ap-
proach to characterizing long-memory processes is through their spectral density function.
This definition describes a spectral density function that exhibits a power-law decay for
small frequencies, with l2(0) being a slowly varying function. These different definitions
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can be useful in different contexts and can help to identify long-memory behavior in time
series data.

Another definition of strong dependence in the frequency domain is based on the
spectral density function f (λ), which can be expressed as |λ|−2αl2(1/|λ|) for λ near zero,
where α is the long-memory parameter and l2(0) is a slowly varying function. This defini-
tion highlights the relationship between the behavior of the process and the power of the
spectral density function at low frequencies.

Additionally, the Wold decomposition of a process can provide an alternative defini-
tion of long-memory behavior. This definition characterizes the process as having a slow
decay in its Wold representation, which is a linear combination of past innovations with
decreasing weights. This definition emphasizes the role of past shocks or innovations in
influencing the behavior of the process over long periods of time:

yt =
∞

∑
j=0

ψjεt−j = ψ(B)εt (11)

where ψ0 = 1, ∑∞
j=0 ψ2

j < ∞, {εt} is a white noise sequence with variance σ2.

ψj ∼ jα−1l3(j) (12)

for j > 0, where l3(0) is a slowly varying function. These definitions are not necessarily
equivalent; see (Ding et al. 1993; Doukhan et al. 2003).

3. Empirical versus Theoretical Results

Let us first briefly consider some widely used long-term memory models.

3.1. Selected Long-Term Memory Models

• GARMA(p,q), which stands for Generalized Autoregressive Moving Average with
Conditional Heteroscedasticity, is a type of time series model that combines the
features of both the ARMA and GARCH models. This model is suitable for analyzing
time series data with a non-constant mean and variance.
The GARMA(p,q) model includes both autoregressive and moving average compo-
nents as well as a conditional heteroscedasticity term, which captures the time-varying
volatility in the data. This allows for better modeling and forecasting of time series
data that exhibit changes in volatility over time.
GARMA(p,q) has been applied in various fields for the modeling and forecasting of
time series data with changing volatility patterns. For example, it has been used to
model stock market returns, exchange rates, and weather data. The GARMA(p,q)
model is defined as follows

g(µt) = Z′tβ = X′tβ + τt (13)

with

τt =
p

∑
j=1

φj A(yt−j, Xt−j, β) +
q

∑
j=1

θj M(yt−j, Mt−j) (14)

τt: AR and MA component;
A: the function that represents an autoregressive form;
M: the function that represents a moving average form;
φj: autoregressive parameter at j;
θj: moving average parameter at j.

The above GARMA(p,q), as defined by Equation (13), specifies a linear regression
of a function g(µt) on a set of predictor variables Xt and a set of unknown param-
eters β. The error term τt in Equation (13) is decomposed into an autoregressive
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(AR) component and a moving average (MA) component, which are specified in
Equation (14).
The function A(yt−j, Xt−j, β) in Equation (14) represents the autoregressive component
of the model, where yt−j is the value of the time series at lag j, and Xt−j is the
corresponding vector of exogenous variables. The autoregressive parameter at lag j is
denoted by φj, which represents the impact of the lagged value of the time series on
the current value, conditional on the values of the exogenous variables.
The function M(yt−j, Mt−j) in Equation (14) represents the moving average compo-
nent of the model, where Mt−j is the set of lagged moving average errors. The moving
average parameter at lag j is denoted by θj, which represents the impact of the lagged
moving average error on the current value of the time series.

• Integrated GARCH (IGARCH) is a type of time series model that is widely used to
model financial and economic data. It is an extension of the GARCH model that
accounts for the persistence of shocks in financial markets.
In the IGARCH model, the past conditional variances of the series are included as
predictors of the current conditional variance. This allows the model to capture the
long-memory effect, where shocks have a persistent effect on future variance.
IGARCH has been applied in various fields for the modeling and forecasting of time
series data with persistence in volatility. For example, it has been used to model stock
market returns, exchange rates, interest rates, and commodity prices. The IGARCH
model is particularly useful for risk management, portfolio optimization, and option
pricing. The IGARCH(1,1) model is given by

at = σtεt, σ2
t = α0 + β1σ2

t−1 + (1− β1)a2
t−1, 0 < β1 < 1 (15)

• ARCH(∞) is a type of time series model that extends the ARCH model to include an
infinite number of lags in the conditional variance equation. This allows the model to
capture long memory in the volatility of financial and economic time series data.
The ARCH(∞) model is based on the idea that past shocks can have a persistent effect
on the variance of the series over an infinite time horizon. The model can be estimated
using maximum likelihood methods and has been shown to provide a better fit to
financial data than finite-order ARCH models.
The ARCH(∞) model has been applied in various fields for the modeling and fore-
casting of time series data with long memory in volatility. For example, it has been
used to model stock market returns, exchange rates, and interest rates. The model is
particularly useful in finance for risk management, portfolio optimization, and option
pricing. However, the estimation of the model can be computationally intensive, and
the interpretation of the infinite number of parameters can be challenging. The process
{εt} is said to be an ARCH(∞), whenever

E(εt | ψt−1) = 0 and var(εt | ψt−1) = ht (16)

with

ht = α0 +
∞

∑
i=1

αiε
2
t−i (17)

where αi ≥ 0 and ψt represents the information set of all information up to time t, i.e.,
ψt = σ{· · · , εt−2, εt−1, εt}.
Similarly, IARCH(∞) is a type of time series model that extends the integrated GARCH
(IGARCH) model to include an infinite number of lags in the conditional variance
equation. This model captures the long-memory effect in the volatility of time series
data and accounts for the persistence of shocks in financial markets. It should be
noted that the estimation of the model can be computationally intensive, and the
interpretation of the infinite number of parameters can be challenging.

• The Fractionally Integrated GARCH with a Vector of Conditional Variances (FI-
GARCHv) model is a type of time series model that extends the IGARCH model
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to allow multiple volatility series to be modeled simultaneously. This allows the
model to capture the dynamics and interdependence among multiple time series, such
as stock prices, exchange rates, and interest rates.
In the FIGARCHv model, each series has its own IGARCH component and is modeled
jointly with other series through a covariance matrix of the conditional variances. This
allows the model to capture the spillover effects of volatility shocks across different
time series.
The FIGARCHv model has been applied in various fields for the modeling and
forecasting of multiple time series data with long memory in volatility. For example, it
has been used to model stock prices and exchange rates simultaneously, where the
volatility of one series affects the volatility of the other series. The model is particularly
useful in finance for risk management, portfolio optimization, and hedging strategies.
However, the estimation of the model can be computationally intensive, and the
interpretation of the multiple parameters can be challenging. The FIGARCH model is
given by

[1− α(L)− β(L)](1− L)dε2
t = α0 + [1− β(L)]νt, 0 < d < 1 (18)

where

(1− L)d = F(−d, 1, 1, L) =
∞

∑
k=0

Γ(k− d)Γ(k + 1)−1Γ(−d)−1Lk (19)

• LARCH(∞) and LARCH+(∞) are two types of time series models that extend the
ARCH and GARCH models to allow for long memory in the conditional variance
equation.
LARCH(∞) is an extension of the ARCH model that includes an infinite number of
lagged squared residuals in the variance equation. This allows the model to capture
long memory in the volatility of time series data. LARCH+(∞) is an extension of the
GARCH model that includes both an infinite number of lagged squared residuals
and an infinite number of lagged conditional variances in the variance equation. This
allows the model to capture long memory and the persistence of shocks in financial
markets.
Both LARCH(∞) and LARCH+(∞) have been applied in various fields for the model-
ing and forecasting of time series data with long memory in volatility. The models are
particularly useful in finance for risk management, portfolio optimization, and option
pricing. However, the estimation of these models can be computationally intensive,
and the interpretation of the infinite number of parameters can be challenging. The
LARCH model can be described as

rt = σtεt, σ2
t =

(
a +

∞

∑
j=1

bjrt−j

)2

t ∈ Z (20)

where {εt, t ∈ Z} are iid random variables with zero mean and unit variance.
• Stochastic volatility (SV) models are a type of time series model that allow the volatility

of financial or economic time series data to vary over time in a random or stochastic
manner. These models are based on the idea that the volatility itself is a random
process that follows a certain distribution.
In an SV model, the conditional variance of the series is modeled as a function of its
past values, as well as a random process that represents the stochastic component of
the volatility. This allows the model to capture the time-varying nature of the volatility
in the data.
SV models have been widely used in finance and economics for the modeling and
forecasting of time series data with changing volatility. For example, they have been
used to model stock prices, exchange rates, and interest rates, and are particularly
useful for pricing options and other financial derivatives. The models are also used
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for risk management and portfolio optimization, as they allow for the more accurate
estimation of risk measures such as the value at risk (VaR) and expected shortfall
(ES). However, the estimation of SV models can be computationally intensive, and the
interpretation of the random component of the volatility can be challenging. The SV
model is defined as follows:

yt = exp(
ht

2
)εt, εt ∼ NID(0, 1) (21)

ht+1 = α + βht + ηt+1, ηt+1 ∼ NID(0, σ2
η) (22)

h1 ∼ N
(

α

1− β
,

σ2
η

1− β2

)
(23)

where σ2
t = exp(ht) is the volatility of yt. The log volatility ht is specified by the AR(1)

process with Gaussian innovation noise.
• Autoregressive Fractionally Integrated Moving Average (ARFIMA) and Generalized

Autoregressive Conditional Heteroskedasticity (GARCH) are two widely used time
series models in finance and economics.
ARFIMA models are used to model time series data that exhibit long memory or frac-
tional integration, meaning that the autocorrelation of the series declines very slowly.
These models extend the ARIMA models by incorporating fractional differencing,
which allows them to capture the long-memory effect.
GARCH models, on the other hand, are used to model time series data that exhibit
heteroskedasticity or volatility clustering, meaning that the variance of the series
changes over time. These models extend the ARCH models by incorporating autore-
gressive components in the conditional variance equation, allowing them to capture
the persistence of shocks in the data.
Both the ARFIMA and GARCH models have various applications in finance and
economics. ARFIMA models are particularly useful in the modeling and forecasting of
financial and economic time series with long memory, such as stock prices, exchange
rates, and interest rates. GARCH models are widely used in risk management and
portfolio optimization, as they allow for the more accurate estimation of risk measures
such as the value at risk (VaR) and expected shortfall (ES). They are also used in
option pricing and volatility forecasting. However, the estimation of these models
can be computationally intensive, and the interpretation of the parameters can be
challenging.
An ARFIMA process {yt}may be defined by

φ(B)yt = θ(B)(1− B)−αεt (24)

where φ(B) = 1 + φ1B + · · · + φpBp and θ(B) = 1 + θ1B + · · · + θqBq are the au-
toregressive and moving average operators, respectively. (1− B)−α is a fractional
differencing operator defined by the binomial expansion

(1− B)−α =
∞

∑
j=0

ηjBj = η(B) (25)

where

η(j) =
Γ(j + α)

Γ(j + 1)Γ(α)
(26)

for α < 1
2 , α 6= 0,−1,−2, · · · and {εt} is a white noise sequence with finite variance.
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• A CAR(1) model, also known as a Conditional Autoregressive Model of Order 1, is
a time series model that describes the dependence between observations in a series
over time.
In this model, each observation in the series is assumed to be a function of the previous
observation and a random error term. The term “conditional” in CAR(1) refers to the
fact that the current observation is conditional on the previous observation.
The application of CAR(1) models is widely practised in econometrics, finance, and
engineering for the forecasting and analysis of time series data. It is particularly useful
in modeling and forecasting stock prices, exchange rates, and interest rates. It can
also be used in modeling natural phenomena, such as climate patterns or population
growth.
The CAR model explains the observations with p fixed effects and n spatial random ef-
fects:

y | β, s, τ0 ∼ N(Xβ + InS, τ0 In) (27)

s | τj ∼ N(0, Q), j = 1, · · · , F− 1 (28)

where τ0 In and Q = ∑F−1
j=1 τjQj are precision matrices, observations y and random

effects s are n× 1, design matrix X is n× p, and the fixed effect regression parameter
vector β is p× 1.

3.2. Results

Table 1 presents a comparison of theoretical and empirical results for the definition
of long memory based on the sum of the sample autocorrelation function. Table 1 lists
different financial models for long-memory time series data. Each model has a theoretical
expectation for the long-memory process, represented by either ∑∞

h=−∞ |ρ(h)| → ∞ as
T → ∞ or f (λ) → ∞ as λ → 0. The table also lists the empirical results for each model,
represented by ∑

(T−1)
h=−(T−1) ρ̂(h) = 0 or f̂ (0) = 0.

It is evident from the table that while the theoretical results based on the ACF or
spectral density are infinite, the empirical spectral density or sum of the empirical ACF is
finite and zero. This significant discrepancy between the two makes the detection of long
memory misleading. The results presented in this table are, for example, time series that
have been widely used in the literature (Hassani et al. 2012).

Table 2 presents the comparison between the theoretical and empirical results of long-
memory process detection. The theoretical results and the empirical results are presented in
the two columns of the table. The first row shows that, according to the theoretical results,
the sum of the absolute values of the autocorrelation coefficients (i.e., ρ(h)) approaches
infinity as the number of observations (T) increases. However, the empirical results show
that the sum of the absolute values of the estimated autocorrelation coefficients (i.e., ρ̂(h))
has a finite upper limit as T approaches infinity.

The second row presents a similar discrepancy between the theoretical and empirical
results, with the theoretical results indicating that the sum of the autocorrelation coefficients
approaches infinity as T approaches infinity, while the empirical results show that the sum
of the estimated autocorrelation coefficients is equal to zero.

The third row compares the behavior of the theoretical and empirical spectral densities.
The theoretical results show that the spectral density (i.e., f (λ)) approaches infinity as the
frequency (λ) approaches zero, while the empirical results show that the estimated spectral
density (i.e., f̂ (λ)) is equal to zero at zero frequency. Overall, the table shows that there
are discrepancies between the theoretical and empirical results of long-memory process
detection, indicating that the assumptions made in the theoretical analysis may not hold
in practice.
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Table 1. Some examples of long-memory time series—theoretical vs. empirical results.

Case Models Long-Memory Process Empirical Results References

1 GARMA(p, q) ∑∞
h=−∞ ρ(h)→ ∞ as T → ∞ ∑

(T−1)
h=−(T−1) ρ(h) = 0 (Bertelli and Caporin 2002)

2 IGARCH f (λ)→ ∞ as λ→ 0 f̂ (0) = 0 (Rapach et al. 2008)

3 ARCH(∞) f (λ)→ ∞ as λ→ 0 f̂ (0) = 0 (Bertail et al. 2006)

4 IARCH(∞) f (λ)→ ∞ as λ→ 0 f̂ (0) = 0 (Teyssière and Kirman 2002)

5 FIGARCHv f (λ)→ ∞ as λ→ 0 f̂ (0) = 0 (Zivot and Wang 2013)

6 LARCH(∞) f (λ)→ ∞ as λ→ 0 f̂ (0) = 0 (Beran et al. 2013)

7 LARCH+(∞) f (λ)→ ∞ as λ→ 0 f̂ (0) = 0 (Dedecker et al. 2007)

8 SV models (Stochastic Volatility) ∑∞
h=−∞ ρ(h)→ ∞ as T → ∞ ∑

(T−1)
h=−(T−1) ρ(h) = 0 (Zheng et al. 2018)

9 ARFIMA− GARCH f (λ)→ ∞ as λ→ 0 f̂ (0) = 0 (Barbieri 2017)

10 CAR(1) ∑∞
h=−∞ ρ(h)→ ∞ as T → ∞ ∑

(T−1)
h=−(T−1) ρ(h) = 0 (Beran et al. 2013)

Table 2. The theoretical and empirical results of a long-memory process.

Theoretical Results Empirical Results

∑∞
h=−∞ |ρ(h)| → ∞ as T → ∞ 2 ≤ limT→∞ ∑

(T−1)
h=−(T−1) | ρ̂(h) |< ∞

∑∞
h=−∞ ρ(h)→ ∞ as T → ∞ ∑

(T−1)
h=−(T−1) ρ(h) = 0

f (λ)→ ∞ as λ→ 0 f̂ (0) = 0

Table 3 provides a comparison of four popular time series models, namely ARFIMA,
GARMA, IGARCH, and CAR(1), based on four important characteristics of time series data:
long memory, stationarity, volatility clustering, and the autocorrelation function. ARFIMA
and GARMA are both long-memory models, meaning that they can capture the long-range
dependence present in time series data. However, neither of these models guarantees sta-
tionarity, which is a desirable property in many applications. On the other hand, IGARCH
and CAR(1) are both stationary models, but they do not capture long-memory dependence.
IGARCH is designed specifically to model volatility clustering, which is a common phe-
nomenon in financial time series data. In contrast, CAR(1) assumes that autocorrelation
decreases exponentially with the lag and does not account for volatility clustering.

Table 3 also shows that the autocorrelation functions of ARFIMA, GARMA, IGARCH,
and CAR(1) all decrease over time, but with different rates. For ARFIMA and GARMA,
the autocorrelation function decreases to zero, which is indicative of the long-memory de-
pendence captured by these models. In contrast, the autocorrelation functions of IGARCH
and CAR(1) decrease exponentially, reflecting the short-range dependence present in these
models. Understanding the properties of different time series models can help researchers
and practitioners to choose the most appropriate model for their specific application and
improve the accuracy of their forecasts.

Let us now consider the differences between the theoretical and empirical results of
these models. Figure 1 illustrates these differences. Figure 1 presents 1000 realizations
from the ARFIMA, GARMA, IGARCH, and CAR(1) processes. These models shows the
behavior of the empirical sum of the autocorrelation function (see package “Hassani.SACF”
in R). Figure 1 shows the sum of the sample autocorrelation function (ACF) for various
long-memory models, including ARFIMA, GARMA, IGARCH, and CAR(1). These models
are widely used in practice to capture long-range dependence in time series data.
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Table 3. Comparison of ARFIMA, GARMA, IGARCH, and CAR(1).

Model Long Memory Stationarity Volatility Clustering Autocorrelation Function

ARFIMA Yes No No Decreases to zero

GARMA Yes No No Decreases to zero

IGARCH No Yes Yes Decreases exponentially

CAR(1) No Yes No Decreases exponentially

While the patterns of the sum of the sample ACF are different for each model, they
all ultimately converge to −1

2 as the sample size increases. This means that the sum of
the sample ACF cannot be used as an accurate measure of long memory in the way that
the theoretical definition of long memory is based on the ACF. This finding is significant
because it suggests that relying solely on the sample ACF to identify long-memory processes
can be misleading.

Figure 1. SACF for “ARFIMA”, “GARMA”, “IGARCH”, and “CAR(1)” processes.

4. Comparison of Parametric and Non-Parametric/Semi-Parametric Approaches for
Long-Term Memory Time Series Detection

There are several approaches available for the detection of long-term memory in
time series data. Broadly speaking, these approaches can be classified into two categories:
parametric and non-parametric/semi-parametric.

Parametric approaches assume a specific functional form for the underlying process
and estimate its parameters using a maximum likelihood method. These approaches
are typically used when the underlying process can be well approximated by a known
stochastic process, such as ARIMA, ARFIMA, or GARCH. Parametric approaches have the
advantage of being computationally efficient and providing explicit statistical inference,
such as hypothesis testing and confidence intervals. However, they may not be appropriate
when the underlying process does not follow the assumed functional form, or when the
data are contaminated with outliers or measurement errors.

Non-parametric/semi-parametric approaches, on the other hand, do not assume
a specific functional form for the underlying process and estimate its properties using
more flexible methods. These approaches include wavelet-based methods, periodogram-
based methods, detrended fluctuation analysis (DFA), and local Whittle estimation. Non-
parametric/semi-parametric approaches have the advantage of being more robust to de-
viations from the underlying assumptions and can capture more complex dependence
structures. However, they may require more computational resources and provide less ex-
plicit statistical inference than parametric approaches. Table 4 summarizes the strengths and
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weaknesses of parametric and non-parametric/semi-parametric approaches for long-term
memory time series detection.

Table 4. Strengths and weaknesses of parametric and non-parametric/semi-parametric approaches
for long-term memory time series detection.

Methods Parametric Semi-Parametric Non-Parametric

Basic assumption Assumes specific probability dis-
tribution of errors

Allows for flexible modeling of er-
rors

Makes no assumptions about the
probability distribution of errors

Strengths Accurate modeling of errors and
autocorrelation function

Combines flexibility and accuracy Robust to deviations from distribu-
tion assumptions

Weaknesses Sensitive to distributional as-
sumptions

May not fully capture complex de-
pendencies

May be less accurate in small sam-
ple sizes

Examples ARIMA, ARCH/GARCH Fractional ARIMA, Wavelet analy-
sis

Hurst exponent, rescaled range
analysis

It is worth noting that both parametric and non-parametric/semi-parametric ap-
proaches have their own strengths and weaknesses. The choice of approach should depend
on the specific characteristics of the data and the research question at hand. Researchers and
practitioners should carefully evaluate the assumptions and limitations of each approach
and select the most appropriate one for their application.

5. Discussion

The empirical results presented in Table 3 provide a comparison of four popular time
series models: ARFIMA, GARMA, IGARCH, and CAR(1). These models were evaluated
based on four important characteristics of time series data: long memory, stationarity,
volatility clustering, and the autocorrelation function.

ARFIMA and GARMA were found to be long-memory models capable of capturing
long-range dependence in time series data. However, neither of these models guaran-
tees stationarity, which is a desirable property in many applications. On the other hand,
IGARCH and CAR(1) were identified as stationary models, but they do not capture long-
memory dependence. IGARCH is specifically designed to model volatility clustering, a
common phenomenon observed in financial time series data. In contrast, CAR(1) assumes
a decreasing exponential autocorrelation function and does not account for volatility clus-
tering. The theoretical and empirical results of these models were compared, as illustrated
in Figure 1. It was observed that the patterns of the sum of the sample ACF differed for
each model. However, all the models ultimately converged to approximately -1/2 as the
sample size increased. This implies that relying solely on the sum of the sample ACF as a
measure of long memory can be misleading. It deviates from the theoretical definition of
long memory, which is based on the ACF.

This finding has important implications as it highlights the limitation of using the
sample ACF alone to identify long-memory processes. Researchers and practitioners should
exercise caution when interpreting results solely based on the sum of the sample ACF, as it
may not accurately capture the presence of long-range dependence.

The results obtained from the empirical analysis raise questions about the gener-
alizability of these findings to other approaches and methods that rely on the sample
autocorrelation function (ACF) for the detection of long-memory processes. The answer
to this question is affirmative, as demonstrated by Hassani’s − 1/2 theorem. This theorem
suggests that methods relying solely on the sample ACF may fail to accurately detect
long-memory processes, indicating a limitation in their theoretical foundation.

It is important to note that many existing approaches and methods to identify long-
memory processes are based on asymptotic behaviors and various assumptions. However,
the empirical results presented in this study demonstrate that these assumptions may not
hold in real-world scenarios, as evident from the examples provided. This suggests that
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relying solely on such approaches can lead to inaccurate conclusions and may not fully
capture the true nature of long memory in time series data.

To address these limitations, a data-driven approach rather than a model-based ap-
proach could be a potential solution. By adopting a data-driven approach, researchers can
explore the inherent patterns and structures in the data themselves, rather than relying
solely on predefined models or assumptions. This approach acknowledges the complex
and diverse nature of real-world data and allows for a more comprehensive investigation
of long-memory processes.

Further investigation is warranted to explore and develop data-driven methods to
detect long memory in time series data. Such investigations could involve the development
of innovative techniques that leverage machine learning algorithms, advanced statistical
methodologies, or nonparametric approaches. By incorporating the richness and complex-
ity of the data into the analysis, these data-driven methods have the potential to provide
the more accurate and robust identification of long-memory processes.

6. Concluding Remarks

The paper discusses the issue of detecting long-range dependence in time series
data and the discrepancies between the theoretical definition and empirical identification
of long-memory processes. The theoretical definition of long memory is based on the
autocorrelation function (ACF), which measures the correlation between observations at
different time lags.

However, the paper highlights that the commonly used empirical measure of long
memory, the sample autocorrelation sum, is a predetermined constant for any stationary
time series, regardless of sample size. This means that it cannot identify long-memory
processes in the same way as the theoretical definition.

The implications of this are significant, as it suggests that theoretical results based on
the ACF may be misleading if the empirical identification of long memory is incorrect. The
paper presents an analysis of various long-memory models to demonstrate this point.

The main conclusion of the paper is that alternative approaches to identifying long-
memory processes are necessary, given the limitations of the sample autocorrelation sum.
Researchers and practitioners who use long-memory models should consider alternative
methods of detecting long-range dependence.

For further research, the authors plan to investigate alternative measures and ap-
proaches for the detection of long-range dependence in time series data. Specifically, we
aim to explore the use of alternative approaches such as wavelet-based methods and frac-
tional integration techniques, which have shown promise in identifying long-memory
processes. By using these alternative approaches, we hope to develop more reliable and
accurate methods for the detection of long-range dependence in time series data, which
could have important implications for model building and forecasting in various fields.
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