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Abstract: The Prediction Accuracy Index (PAI) monitors stability, defined as whether the predictive
power of a model has deteriorated due to a change in the distribution of the explanatory variables
since its development. This paper shows how the PAI is related to the Mahalanobis distance, an
established statistic for examining high leverage observations in data. This relationship is used to
explore properties of the PAI, including tools for how the PAI can be decomposed into effects due to
(a) individual observations/cases, (b) individual variables, and (c) shifts in the mean of variables.
Not only are these tools useful for practitioners to help determine why models fail stability, but they
also have implications for auditors and regulators. In particular, reasons why models containing
econometric variables may fail stability are explored and suggestions to improve model development
are discussed.
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1. Introduction

Model stability is the extent to which the predictive accuracy of a model deteriorates
since its development by examining changes in the distribution of the explanatory variables.
This is important because models used in credit risk assessment, such as probability of
default (PD) models, are generally developed using one set of data (development data) but
implemented using different data collected subsequently. For example, under the Basel
Accord (Basel Committee on Banking Supervision 2006) for capital and the International Fi-
nancial Reporting Standards (IFRS 9) for provisioning (International Accounting Standards
Board 2014), models are developed to predict future potential losses and are implemented
until they are considered no longer “fit-for-purpose”. Model stability is an important
feature of fit-for-purpose model reviews because stability does not require the observation
of the response variable and therefore is available immediately. Other statistics, such as the
calibration of the PD to actual default rates, require the observation of loan defaults. For
example, a PD model predicting defaults in the next 12 months will use model inputs that
are at least 12 months old. Hence, evaluations of stability are timely and important, not
only for banks, insurance, and other companies performing credit or other risk modelling,
but also for auditors and regulators. The important question of whether a model remains
“fit-for-purpose” when the response variable (e.g., default outcome) is also available is
typically not referred to as stability and is beyond the scope of this paper.

Traditionally, model stability has been evaluated using the Population Stability Index
(PSI), especially in the context of credit models. However, Taplin and Hunt (2019) showed
this had inferior properties for model stability. In particular, by detecting any shift in
the distribution of the explanatory variables, it detects changes that have no impact on
the predictive accuracy of a model. Indeed, Taplin and Hunt (2019) provided examples
of where the PSI indicated low model stability when the accuracy of the model actually
improved in the review data compared to the development data. This situation does
not indicate a lack of stability of the model, making the PSI of questionable value when
assessing whether a model remains fit-for-purpose. Taplin and Hunt (2019) introduced
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the Predictive Accuracy Index (PAI) to assess the degree of deterioration in the model’s
predictive accuracy more effectively than the PSI (see Section 1.1 for its definition).

Kruger et al. (2021) recommended the PAI over the PSI due to its superior properties.
They particularly recommended the multivariate PAI (MPAI) over the univariate version
that considers only one explanatory variable at a time. Becker and Becker (2021) provided
further examples where the PSI and PAI produce different results; however, they only
considered the univariate version.

Considering the high interest in the PAI, experience gained from using the PAI since
its introduction in 2019, and a lack of publications exploring the properties of the PAI, this
paper aims to:

(a) explore the properties of the (multivariate) PAI;
(b) reflect on its use in practice;
(c) make further recommendations on how to investigate the cause of instability when a

high value of the PAI indicates a lack of model stability.

These results are important in practice in two ways. First, they provide a set of
additional statistics and analyses suitable when a model lacks stability. Second, they
suggest how techniques used to develop models may lead to model instability. Thus,
this paper also contributes by providing advice on model development that is relevant to
model developers, auditors, and regulators, providing advice or guidelines. However, this
paper does not consider techniques using the response variable to assess whether a model
remains fit-for-purpose and it does not consider the broader question of how important
variables in a model are to its predictions. While relatively straightforward for techniques
such as regression, the machine learning literature contains important research on this topic
for other modelling techniques (Lundberg and Lee 2017; Giudici and Raffinetti 2021).

1.1. The Prediction Accuracy Index (PAI)

Taplin and Hunt (2019, p. 5) defined the Prediction Accuracy Index (PAI) as “the
average variance of the estimated mean response at review divided by the average variance
of the estimated mean response at development”. This definition is broad and can be
applied to any model. Taplin and Hunt (2019) show that, in the important case of multiple
regression (or any model such as logistic regression for probability of default modelling
that uses a linear predictor)

PAI =
∑N

j=1 rT
j Vrj/N

∑n
i=1 xT

i Vxi/n
(1)

where

rj is the vector of explanatory variables for the jth observation of the
review data (j = 1 to N);

xi is the vector of explanatory variables for the ith observation of the
development data (i = 1 to n);

V= MSE×
(

XTX
)−1

is the variance–covariance matrix of the estimated regression coeffi-
cients;

X is the design matrix with columns defined by the xi (the explanatory
variables at development).

The vectors rj and xi are column vectors that typically have a dimension of (k + 1) as
they contain not only the k explanatory variables but also a 1 for the intercept.

When interpreting values of the PAI, Taplin and Hunt (2019, pp. 5–6) recommended
“values less than 1.1 indicate no significant deterioration; values from 1.1 to 1.5 indicate
a deterioration requiring further investigation; and values exceeding 1.5 indicate the
predictive accuracy of the model has deteriorated significantly”. Note that, in Taplin and
Hunt (2019), the PAI is referred to as the Population Stability Index in the title; however,
we refer to it as the Prediction Accuracy Index as this is how it is referred throughout
Taplin and Hunt (2019) and because it more accurately reflects its purpose to summarise
the predictive accuracy of a model.
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This paper concentrates on the use of the multivariate PAI (referred to as MPAI
in Taplin and Hunt (2019) but referred to here simply as the PAI) in preference to the
univariate PAI (Equation (1) when there is only one explanatory variable). This is because
most models contain many explanatory variables and because an examination of the
impacts of a change in the distribution of one explanatory variable with the PAI (or PSI) in
isolation is inconsistent with the properties of the model (unless the model only contains one
explanatory variable). We also assume that the model contains a constant term (therefore,
the first column of the design matrix X contains a value of 1). In practice, it would be most
unusual for a model not to contain such an intercept. Note that this implies that rj and xi
are vectors with a first entry equal to 1 and that all entries in the first column of the design
matrix X equal 1.

1.2. Notation and Illustrative Data Examples

The notation used by Taplin and Hunt (2019) for the explanatory variables (rj for the
review data and xi for the development data) is problematic since a variable that always
contains the value of 1 is not normally considered an explanatory variable. We therefore
introduce more intuitive notation, replacing rj, xI , and X with ρj, εi, and E, respectively,
when the explanatory variables exclude the 1 for the intercept. For example, εI contains the
values of the k explanatory variables (excluding the 1 for the intercept) while I is a vector
of dimension (k + 1) with an additional value of 1 in front: xT

i =
(
1, εT

i
)
. Here we use ε

and E (e for explanatory variables, in the traditional sense, without a variable with ones)
instead of χ (the Greek letter for x) as the capital letter for χ is indistinguishable from the
capital for x (which might introduce confusion between the new notation and the notation
in Taplin and Hunt (2019).

Throughout this paper, we illustrate techniques using the simple (fictitious) develop-
ment data in Table 1, which contain three explanatory variables: a, b, and c. For example,
there are two observations in this data with a = 1, b = 1, and c = 1 but only one observation
with a = 2, b = 1, and c = 1. This latter observation would be denoted as xi = (1, 2, 1, 1)T

in Taplin and Hunt (2019) and, in our notation, as εi = (2, 1, 1)T . The three explanatory
variables a, b, and c have means of 3.12, 2.08, and 1.44, respectively, in this development
data. The variables a and b are highly correlated (r = 0.91) with moderate, negative correla-
tions between a and c (r = −0.34) and between b and c (r = −0.35). The model uses a linear
combination of these three explanatory variables to predict the response variable (e.g., a
logistic regression model to predict the default). This development data will typically be
the raw observations used to develop the model. For example, for a home loan portfolio a,
b, and c could represent the loan-to-value ratio (security), the income-to-repayments ratio
(serviceability), and the current interest rate (economic conditions).

Table 1. Number of observations in the illustrative development data for combinations of the three
explanatory variables εi = (a, b, c)T .

c b
a

1 2 3 4 5 6

1 1 2 1 0 0 0 0
1 2 0 2 7 4 0 0
1 3 0 0 0 6 5 1

2 1 9 1 0 0 0 0
2 2 0 2 4 1 0 0
2 3 0 0 0 1 3 1

Together with the development data in Table 1, we considered two different sets of
review data. Review data R1 have the same 50 observations as the development data in
Table 1 together with an additional 51st observation with a = 6, b = 1, and c = 1. That
is, ρ51 = (6, 1, 1)T. For the review data R1, the PAI equals 1.31, which Taplin and Hunt
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(2019) interpret as a deterioration requiring further investigation. The review data R2 are
described in Table 2. For this review data, PAI = 1.58, which Taplin and Hunt (2019)
interpret as a significant deterioration in the predictive accuracy of the model.

Table 2. Number of observations in the illustrative review data R2 for combinations of the three
explanatory variables ρj = (a, b, c)T .

c b
a

1 2 3 4 5 6

1 1 1 2 1 0 0 0
1 2 0 1 3 6 4 0
1 3 0 0 0 1 5 4

2 1 1 8 1 0 0 0
2 2 0 0 2 3 2 0
2 3 0 0 0 1 1 3

These review data are typically not only out-of-sample (i.e., not used to develop the
model) but also out-of-time (i.e., relates to a point in time different to the development
data). Typically, the review data are later in time (more recent) than the development data.
Stress testing models are, by design, intended to be used in situations where some degree
of extrapolation is involved, therefore the PAI and the techniques presented in this paper
may be of less value. Rather than designating the models using the benchmarks of 1.1 and
1.5 suggested by Taplin and Hunt (2019), for stress testing situations, these techniques may
be useful to quantify the extent of the extrapolation, or to determine which econometric
variables are responsible for most of the extrapolation.

2. The PAI as a Function of the Squared Mahalanobis Distances

The square of the Mahalanobis distance of a vector of explanatory variables v (rel-
ative to the distribution with mean µ and variance–covariance matrix S) equals Mv =

(v− µ)TS−1(v− µ). First introduced by Mahalanobis (1936), this distance is useful for
detecting multivariate outliers. A multivariate observation v has Mv = 0 when v = µ and
Mv is large for an outlier if it deviates a large distance from µ in a direction in which the
standard deviation of the multivariate distribution is relatively small.

While the Mahalanobis distance might be well known to modellers, some might be
more familiar with the leverage (typically denoted h) used to determine whether outliers
exist in the explanatory variables. Due to the monotonic relationship between the squared
Mahalanobis distance and leverage, either is suitable as a scale to examine observations.

Model developers may examine the Mahalanobis distance (or, equivalently, the lever-
age) of observations in the development data, relative to the distribution (mean and
variance–covariance matrix) of the development data. This provides useful information
concerning the properties of the development data and which (if any) observations have a
high leverage on the estimated parameters. Similarly, model reviewers may examine the
Mahalanobis distance of observations in the review data (relative to the distribution of the
review data).

Table 3 provides the squared Mahalanobis distance Mv based on the development data
in Table 1. For example, the squared Mahalanobis distance is 1.0 for the seven observations
εi = (3, 2, 1)T . This distance is close to 0 because these observations are close to the mean
ε = (3.12, 2.08, 1.44)T of the development data. Mv increases when the value of any of
these variables deviates from the central mean value ε, especially when a is high and b is
low (or vice versa) due to the high positive correlation between variables a and b.
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Table 3. Squared Mahalanobis distance Mv for values of εi = (a, b, c)T using the illustrative develop-
ment data in Table 1.

c b
a

1 2 3 4 5 6

1 1 4.3 5.7 12.5 24.8 42.5 65.7
1 2 12.0 3.8 1.0 3.7 11.8 25.5
1 3 40.3 22.5 10.2 3.3 1.8 5.9

2 1 2.5 4.2 11.4 24.0 42.1 65.7
2 2 11.7 3.8 1.4 4.4 12.9 26.9
2 3 41.6 24.1 12.1 5.5 4.4 8.8

Note that the squared Mahalanobis distance Mv is not strictly defined when the
explanatory variables are defined as in Taplin and Hunt (2019) because the data contain a
variable always equal to 1; moreover, since this “variable” has a variance of 0, the variance–
covariance matrix would not be invertible. Finally, note that, in defining the variance–
covariance matrix S for the explanatory variables, we used the definition of variance and
covariances for a population (not a sample). For example, the variance of an explanatory
variable x (with n values) is defined as 1

n ∑n
i=1(xi − x)2 (not using 1

n−1 ∑n
i=1(xi − x)2). Using

this simple mean of squared deviations simplifies mathematical expressions and makes a
negligible difference to numerical values for a realistically large sample (n) of development
data.

An Expression for the PAI as a Function of the Squared Mahalanobis Distance Mv

The PAI in Equation (1) can be expressed in terms of the squared Mahalanobis distances
as follows (see Appendix A for the derivation):

PAI =
1 + Mr

1 + Md
. (2)

where

Mr equals the average of the squared Mahalanobis distance of the review data ρj,
Md equals the average of the squared Mahalanobis distance of the development data εi,
and all Mahalanobis distances are relative to the mean and variance–covariance matrix of
the development data. That is, the squared Mahalanobis distance of observation v (either
ρj for review data or for εj for development data) is

Mv = (v− ε)TV−1
d (v− ε) (3)

where ε contains the mean of the explanatory variables at development and Vd is the
variance–covariance matrix of the explanatory variables at development. If the formula for
the sample variance–covariance matrix (n − 1 instead of n) was used for Vd, the value of 1
on both the numerator and denominator of Equation (2) would need to be replaced with
the value of n/(n− 1).

For example, using the development data in Table 1, the denominator of Equation (2)
equals 3.00 because the average of the squared Mahalanobis distances in the development
data equals 2.00. This average of 2.00 is the weighted average of the values in Table 3 (using
the values in Table 1 as weights). The numerator of Equation (2) equals the corresponding
average of squared Mahalanobis distances for the review data. For example, the 51st
observation ρ51 = (6, 1, 1)T in review data R1 has a squared Mahalanobis distance of 65.7
(see Table 3). This increases the average squared Mahalanobis distance from 2.00 in the
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development data to 3.23 in the review data. Thus, from Equation (2), the value of the PAI
for the review data R1 is

PAI =
1 + 3.23
1 + 2.00

=
4.23
3.00

= 1.31

In this simple example, the reason for this deterioration is the additional observation
ρ51 = (6, 1, 1)T , which is an outlier relative to the development data.

For review data R2, the average squared Mahalanobis distance is 5.32. Therefore, from
Equation (2), the PAI is

PAI =
1 + 5.32
1 + 2.00

=
5.32
3.00

= 1.58

Equation (2) is a novel use of the Mahalanobis distance because both the review data
(numerator) and development data (denominator) use the distribution of the development
data (therefore the numerator uses the mean and variance–covariance matrix of the devel-
opment data even though the distances are calculated for the review data). This differs
from the more routine use of the Mahalanobis distance (such as those produced in standard
software), where observations are compared to the dataset they come from (observations
in the development data are compared to the distribution of the development data and
observations in the review data are compared to the distribution of the review data).

3. The Contribution of Individual Observations to the PAI

Equation (2) suggests that a large PAI is due to observations with a large squared
Mahalanobis distance (relative to the average squared Mahalanobis distance at develop-
ment) during the review. Therefore, when further investigation is required (PAI > 1.1), it
is prudent to examine the Mahalanobis distance of all the review observations in case the
model’s deterioration is due to one or several observations. This situation was illustrated
using review data R1 in the previous section, where all the excess PAI above 1 was due to
one outlier (by construction). The next highest squared Mahalanobis distance is 8.8 for the
review observation ρj = (6, 3, 2)T .

Rather than examining the squared Mahalanobis distance of an observation, we
recommend, in the context of the PAI, an alternative scale that is defined by the effect on the
PAI if an observation is removed. Thus, we defined Ik, the influence of review observation
ρj on the PAI, as

Ik = PAI0 − PAI(−k)

where PAI0 is the PAI using all N observations of the review data (ρj; j = 1 to N) and
PAI(−k) is the value of the PAI after removing the observation ρj. The following properties
of Ik also assist with its interpretation (see Appendix B for derivations):

(a) Ik can be either positive or negative;
(b) The average of the Ik is 0;
(c) A useful reference point for a small Ik is 0, since, while Ik can be negative, the PAI

does not change if an observation with Ik = 0 is removed;
(d) A useful reference point for a large Ik is PAI0 − 1, since the PAI is reduced to 1 when

an observation with Ik = PAI0 − 1 is removed;
(e) Ik can be written in terms of the squared Mahalanobis distance mk of observation ρj:

Ik = PAI0 − PAI(−k) =
mk −Mr

N
(
1 + Md

)
For example, removing the outlier ρ51 = (6, 1, 1)T from the review data R1 results

in a value of the PAI equal to 1.0 and Ik = 0.31. Thus, this one observation accounts for
100% of the amount the PAI of 1.31 exceeds 1.0. For review data R2, each of the three
observations ρi = (6, 3, 2)T (Table 2; bottom right) have a value of Ik equal to 0.02 (the PAI
decreases from 1.58 to 1.56 if one of these observations is removed, therefore each of these
observations account for only 0.02/0.58 = 3% of the amount the original PAI exceeds 1).
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In contrast, the observations ρi = (3, 2, 2)T have values of Ik = −0.02, which are negative
because, for these observations, the squared Mahalanobis distance of 1.4 (Table 3) is less
than the average of 2.0 for the development data. The distribution of Ik values for all the
observations in the review data R2 suggest that the large PAI value for R2 is not due to one
or a small number of observations.

Furthermore, the large PAI may be due to a subset of observations with a large
Mahalanobis distance rather than just one or a few outliers. Moreover, in this case, it may
be useful to examine the squared Mahalanobis distance for the subsets of the review data.
For example, even if a variable such as the gender of the applicant is not used in the model,
the model may predict some of these subsets better than other subsets. These distances
can be examined using the review data and development data, or by assessing whether
they have changed from development to review. For example, Table 4 shows the average
squared Mahalanobis distance for males and females at development and at review, as
well as the PAI for these subsets. While these averages suggest that the model has slightly
inferior accuracy when predicting females than males, the difference is considerably higher
at review. The resulting large PAI value of 1.31 for females suggests that the model’s
predictive ability has deterorated for female applicants.

Table 4. Average squared Mahalanobis distances and PAI for males and females, illustrating a
model that predicts females slightly less accurately than males at development but considerably less
accurately at review.

Subset Development Data Review Data PAI

Male applicants 4.3 4.4 1.02
Female applicants 4.5 6.2 1.31

The subset variable gender in Table 4 can be any variable (irrespective of whether it is
an input of the model). Furthermore, if the value of 4.5 at development for females had been
5.9, then the model would be considered stable (for females, PAI = 6.2/5.9 = 1.05). In this
situation, the model is considerably less accurate for females than males at development;
however, this model’s predictive ability has not deteriorated from development to review.

4. The Proportion of the PAI Due to a Shift in Distributions

A simple way for the distribution of the explanatory variables to change from devel-
opment data to review data is for the distribution to shift using a constant (changing the
mean). For example, the distribution of loan to value (LVR) in a property portfolio might
increase if property values all fall in a recession. This section therefore investigates how
much of a high PAI value is due to a shift in the mean of one or more explanatory variables.
From Equation (2), the PAI only depends on the review data through the mean squared
Mahalanobis distance Mr. Furthermore, Mr can be decomposed as follows (to prove this
result, write

(
ρj − ε

)
as

(
ρj − ρ

)
+ (ρ− ε) and then multiply out the quadratic form in the

defintion of Mr and simplify):

Mr =
1
N ∑N

j=1 (ρj − ε)TV−1
d

(
ρj − ε

)
=

1
N ∑N

j=1 (ρj − ρ)TV−1
d

(
ρj − ρ

)
+ (ρ− ε)TV−1

d (ρ− ε) (4)

where the right-hand side can be interpreted as the sum of the two components:

(1) 1
N ∑N

j=1 (ρj − ρ)TV−1
d

(
ρj − ρ

)
, the mean squared Mahalanobis distance of the review

data from the mean in the review data;
(2) (ρ− ε)TV−1

d (ρ− ε), the squared Mahalanobis distance between the mean of the
review data and the mean of the development data.

Interpretability is enhanced if the second component is compared to Mr −Md instead
of comparing the second component to the first component (or their sum, Mr) because, from
Equation (2), it is the amount that Mr exceeds Md that produces a large PAI. We therefore
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define the contribution to the PAI due to the difference in the means of the explanatory
variables at review (ρ) compared to at development (ε) as:

S =
(ρ− ε)TV−1

d (ρ− ε)

Mr −Md
(5)

Note that the two components in Equation (4) are both quadratic forms and thus
cannot be negative; therefore, S varies from 0 (when the second component equals 0; ρ = ε)
to 1 (when the difference in the means of the explanatory variables from development and
review explains all of the amount the PAI exceeds 1). Furthermore, S only applies when the
PAI exceeds 1 (i.e., Mr > Md): if PAI ≤ 1, then the model does not perform less accurately
on the review data than on the development data, therefore there is no need to explore how
much of the PAI is due to a shift in the means of the explanatory variables.

An alternative equation for S is obtained using (see Appendix C for a derivation):

S =
PAI0 − PAIt

PAI0 − 1
(6)

where PAI0 is the Prediction Accuracy Index for the original review data ρj and PAIt
is the Prediction Accuracy Index using the transformed review data ρ′j = ρj − (ρ− ε),
therefore the distribution of the review data remains intact other than shifting the mean
to coincide with the mean of the development data. Equation (6) has a minor advantage
over Equation (5) in that any software that can calculate the PAI can be used to calculate S
without the need to calculate any Mahalanobis distances.

For example, for review data R1 with the additional observation ρ51 = (6, 1, 1)T,
PAI = 1.31, and S = 0.02. This extra observation changes the mean of the explanatory
variables from ε = (3.12, 2.08, 1.44)T to ρ = (3.18, 2.06, 1.43)T ; however, transforming the
review data to have the same mean as the development data only reduces the PAI by 0.006.
Hence, the change in the mean of the variables contributes to only S = 0.006/0.31 = 2%
of the 0.31 the PAI exceeds the baseline value of 1. As expected from the discussion in
Section 3, the PAI in this example is not due to a shift in the means of the explanatory
variables but due to the single outlier in the review data.

For the review data R2 where PAI = 1.58, the means of the three explanatory variables
in the review data are ρ = (3.82, 2.02, 1.44)T , therefore the difference relative to develop-
ment is ρ− ε = (0.70,−0.06, 0.00)T . When subtracting this vector from each of the review
observations ρj (for example, ρ1 = (1, 1, 1)T, it is transformed to ρ′1 = (0.3, 1.06, 1)T), and
produces a value of PAI = 1.13 for the transformed review data. Hence, from Equation (6),
the proportion of the excess PAI due exclusively to a change in the means of the explanatory
variables is (1.58–1.13)/(1.58–1) = 0.77. That is, 77% of the amount the PAI of 1.58 exceeds
the value of 1 (when the model performs equally accurately on review and development
data) is due to the shift in the mean of the review data relative to the development data.

The difference in means ρ− ε = (0.70,−0.06, 0.00)T suggests that this is primarily
due to an increase in the mean of the first explanatory variable from 3.12 to 3.82; however,
since the explanatory variables can be measured using different units, it is recommended
that the vector ρ− ε is standardised by dividing by the corresponding standard deviations.
For the development data in Table 1, the standard deviations of the explanatory variables
are 1.51, 0.78, and 0.50; therefore, the standardised difference in means are, respectively,
0.70/1.51 = 0.46, −0.06/0.78 = −0.08, and 0.00/0.50 = 0.

The conclusion that the high value of the PAI for review data R2 is primarily due to a
shift in the mean of the first explanatory variable is also evident by applying Equation (6)
after transforming, so that the mean of only one explanatory variable is changed. For
example, if the review data ρj is transformed to ρ′j = ρj − (0.70, 0, 0), so that the mean
for the first explanatory variable a equals the mean in the development data but the
mean of the two other explanatory variables are not changed, then the PAI becomes
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1.14. Hence, the contribution from a shift in the mean of the first explanatory variable is
S1 = (1.58− 1.14)/(1.58− 1) = 0.75. That is, the shift in the mean of the first explanatory
variable alone explains 75% of the excess PAI. Alternatively, if the mean of the second ex-
planatory variable is shifted by transforming the review data ρj to ρ′j = ρj − (0,−0.06, 0)T ,
then the PAI equals 1.47 and S2 = 0.19. For the third explanatory variable, the means in
development and review are equal, therefore S3 = 0.

5. The Contributions of Explanatory Variables to the PAI

Taplin and Hunt (2019) recommended using the univariate PAI to examine which
variables contribute to the high values of the multivariate PAI; however, this does not
always produce useful insights. For example, with review data R2 (PAI = 1.58), the
univariate PAI for the three variables a, b, and c are, respectively, 1.09, 0.99, and 1.00. In all
cases these are less than 1.1 and thus are interpreted by Taplin and Hunt (2019) as indicating
no significant deterioration. Thus, the univariate PAI fails to diagnose the large PAI value
because of a change in the distribution of the first variable a (as discussed in the previous
section).

One reason for the univariate PAI not being informative is that models typically
include many variables, but the univariate PAI summarises the stability of a model as if the
model only contains one variable. This single variable model is most likely very different
to the model of interest, and hence less relevant to the multivariate PAI. We therefore
recommend calculating the PAI if one variable is removed from the model variables rather
than the PAI that includes one variable because removing one variable is a smaller change
than removing all but one variable. There is no need to re-estimate the model: the PAI is
intended to be calculated using the data without a specific variable.

For the review data R2 (Table 2), the PAI is 1.01 if the first variable is removed and
calculated on the remaining variables b and c. Compared to the original value of PAI = 1.58,
this represents a decrease of (1.58− 1.01)/(1.58− 1) = 98% of the amount the original PAI
exceeded 1. Thus, unlike the univariate PAI of 1.09, comparing the multivariate PAI with
and without the first variable a suggests that the high PAI is due to the variable a. When
the multivariate PAI is calculated without the second variable b, the PAI equals 1.09, and it
equals 1.75 if the third variable c is removed. When the second variable is removed, the PAI
is small because each of the possible combinations for the other two variables appears in
the development data (therefore there is no large extrapolation to predict any of the review
data). When the third variable is removed, the PAI is very high because the high correlation
between a and b in the development data suggests that many observations (e.g., the six
observations with a = 5 and b = 2) are outliers relative to the development data.

We can draw two conclusions from these examples. First, rather than following the
advice in Taplin and Hunt (2019) to use the univariate PAI to investigate which explanatory
variables contribute to a large PAI, we recommend calculating the PAI after removing a
variable (and calculating the PAI based on all the other variables). In some cases, it may be
appropriate to remove more than one variable from the model. Examples include removing
all the dummy variables for a categorical variable (see Section 6.1), removing both the
variable and its square and then calculating the PAI using the remaining variables for a
quadratic relationship, and removing all cross-terms for interaction effects.

Second, we note that the PAI can change considerably depending on which explanatory
variables are included; therefore, it may be worth including variables not in the model when
calculating the PAI. This advice is consistent with Taplin and Hunt (2019, p. 10): “... we
recommend calculating the MPAI using only the variables in the model or using these and
a few other variables considered important.” For example, suppose the development data
(Table 1) produced a model with only b and c as explanatory variables (the first variable a
was not considered to have predictive power). Then, for the variables in this model, the PAI
for review data R1 is 1.01, therefore the model is stable (the predictive accuracy of the model
at review is similar to the predictive accuracy at development). However, if the variable a
was considered during the development of the model, its exclusion from the model could
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equivalent be considered as a model in which this variable is included but with a coefficient
equal to 0 (or insignificantly different to 0). From this perspective, the PAI of 1.31 (including
all three variables) is relevant in the sense that the coefficient of (approximately) 0 for
variable a might not provide accurate predictions for the outlier observation of ρ51 = (6, 1,
1)T in the review data. That is, when the entire model development is considered (rather
than just the variables included in the final model), there is a compelling argument that the
PAI should be calculated using more variables than just those in the final model. Thus, we
suggest that the PAI should also be calculated using all variables considered for inclusion
in a model. This is important because the accuracy of predictions from the final model
depends not only on the coefficients for variables in the model but also on the choice of
which variables are included in the final model. Model stability is arguably relevant for the
entire modelling process (not just the final model).

6. Discussion

Both the use of categorical variables and the use of econometric variables in credit
models deserve further discussion. Categorical variables are commonly used, highlight
some of the conclusions above, and are sometimes constructed from numerical variables.
For example, a numeric variable such as an applicant’s age (in years) might be converted
into a categorical variable with several categories (e.g., young 18–30; middle-aged 31–50;
and old 51+). Econometric variables present challenges to model stability.

6.1. Categorical Variables

First, when considering the impact of a categorical variable on the PAI, it may be more
logical to exclude all the dummy variables for that categorical variable rather than exclude
them one at a time. Second, not only is a shift in the mean of a categorical variable difficult
to define, but a reasonable definition involving the proportion of observations in each
category amounts to describing all the possible changes in the distribution of that variable.
Thus, examining shifts in the mean of a categorical variable is equivalent to examining the
effect of excluding the variable.

Third, many modelling techniques and practices involve converting numeric variables
into categorical variables. Examples of this include transforming variables prior to a logistic
regression and by using the modelling approach itself, such as a classification tree. For
example, the three age groups (young 18–30; middle-aged 31–50; and old 51+) might be
the variable in the final model while the age (in years: 18, 19, 20, ...) is available in the
development data. In these situations, it may be prudent to calculate the PAI using the
original numeric variable instead of the categories. This will highlight whether there has
been a shift in the distribution of the original age distribution that is not evident from the
categories (for example, if the old applicants in the development data were all younger
than 55 years old but in the review data they are all over 55 years old).

In the case where a categorical variable (e.g., industry codes) is formed by combining
categories, it may be prudent to calculate the PAI using the original (larger) number of
categories. This is because changes in the distribution of a categorical variable might be
hidden by the combination of a larger number of categories into a smaller number of
categories (just as combining many numeric variables into the same category can). It is of
interest to investigate the stability of the whole modelling process, not just the stability of
the variables and their form in the final model.

6.2. Econometric Variables

Credit models, such as probability of default (PD) models, may contain not only
explanatory variables defined by the characteristics of a borrower but also characteristics
of economic conditions. For example, under IFRS, nine models use econometric variables
such as interest rates or unemployment rates (or recent changes in these rates) to predict
future default rates. This enables models to capture changes in default rates through the
economic cycle, with the expectation that these will provide more accurate predictions
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using the current (or forecast future) economic condition. This is justified by the expectation
that response variables such as default rates will be influenced by economic conditions.

However, these econometric variables can be problematic for many reasons. In the
context of model stability, econometric variables are likely to take the same values in
the review data despite varying in development data. For example, when examining
if a PD model is still fit-for-purpose today, model reviewers may examine the current
portfolio, but all these observations share the same value as the econometric variables
being observed at the same point in time. This distribution with no or little variation will
look markedly different to the distribution in the development data (which presumably
shows considerable variation, or the econometric variables are unlikely to be significant
predictors). Indeed, it would be surprising if the distribution of an econometric variable
at review would be similar to the distribution at development. While the PAI might be
less problematic than statistics such as the PSI because the PAI measures the extent of
extrapolation rather than any differences in the distributions, the PAI is still likely to be
high unless the value of the econometric variables at review is near the middle of the
distribution at development.

For example, suppose that the three variables in the development data (Table 1) are all
econometric variables and we wish to compare the distribution of these variables at review
to this distribution at development. If the review data are observed at the most recent
time period, then it is likely all these observations have the same value for the econometric
variables. We can therefore ask the question: for which values of these econometric
variables will the PAI be greater than 1.1? Since the average squared Mahalanobis distance
at development is 2.0, from Equation (2), the squared Mahalanobis distance will have to
be less than 2.3 if the PAI is to be less than 1.1. This only occurs for three values of the
explanatory variables: ρ = (3, 2, 1)T, (3, 2, 2)T, and (3, 2, 2)T, where the squared Mahalanobis
distances are 1.0, 1.4, and 1.8, respectively (Table 3). These occur a total of 16 out of 50 times
in the development data; therefore, there is only a 32% chance that the PAI will be green
(<1.1) even if the review data are selected from the distribution of the development data.
All other values for the explanatory variables at review result in a PAI greater than 1.1. For
the PAI to be less than 1.5, the squared Mahalanobis distance must be less than 3.5, which
adds the observations ρ = (5, 3, 1)T and (1, 1, 2)T, which occur six times in the development
data. Hence, only 44% of the observations in the review data result in a PAI less than 1.5.
Thus, even if the value of the explanatory variables at review were randomly selected from
the distribution in the development data, there is a 56% chance the PAI is red (>1.5) and
only a 32% chance it is green (<1.2).

One solution to this characteristic of the PAI (that is, to be large for models that include
econometric variables) is to calculate the PAI without econometric variables (only using the
non-econometric variables). Another is to change the cut-offs of >1.1 (amber) and >1.3 (red),
recommended by Taplin and Hunt (2019) when econometric variables are included. We do
not support these modifications. Instead, we discuss why the large PAI might accurately
reflect the instability of the model and how this may be a characteristic of inappropriate
modelling.

One reason why the PAI can diagnose models with econometric variables as being
unstable is due to an over-confidence in the accuracy of these models. This can be due
to a phenomenon referred to as pseudo-replication, which occurs when observations are
treated as being statistically independent when they are not. For example, default rates
for accounts: if the same customer owns several accounts, then it is likely that they default
together (not independently). This is because, if a customer is in default on one account,
it is likely they are (or will be determined by a bank to be) in default for all their loans.
When modelling with econometric variables, it is equally important to recognise that all
observations measured at the same point in time will not be independent: when measured
at the same point in time, they are likely to have several characteristics in common, such
as unobserved economic conditions. Simple logistic regression models will not capture
this dependence structure in the data and will consequently over-estimate the precision
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of regression coefficients. For example, consider the development data in Table 1 with 50
observations across 14 combinations of the three explanatory variables. If all these variables
are econometric, it is likely that these data result from 14 points in time and it is more
realistic, in terms of the sampling of the econometric variables, to view the sample size as
closer to 14 than to 50. In practical applications, this discrepancy in sample sizes is likely to
be much larger (with thousands or tens of thousands of observations across only dozens
of points in time). Hurlbert (1984) discussed the problem of pseudoreplication in ecology,
while a more recent discussion of the phenomenon in business can be found in Petersen
(2009).

This problem of pseudoreplication can be addressed during model development (for
example, using random effects models or using robust standard errors advocated by Pe-
tersen (2009)), albeit several consequences. First, fewer (if any) econometric variables will
be statistically significant and included in a final model. This is problematic for model
developers who are required to follow IFRS 9 (which implies that these variables must
be included). Second, the higher standard deviation for the estimated parameters of the
econometric variables will change the matrix V in Equation (1) for the PAI, and this will
effectively downweight the impact of the econometric variables on the PAI relative to other
explanatory variables. Essentially, with regard to Equation (2) for the PAI, distances involv-
ing econometric variables will become lower. Thus, correctly modelling the development
data to avoid pseudoreplication will not only produce models that more accurately capture
econometric variables but at least partially correct the interpretation of the PAI through the
use of a more realistic variance–covariance matrix V for the estimated model parameters.
That is, a model that has a high PAI due to econometric variables might identify inadequa-
cies in the modelling of the development data. Rather than excluding these econometric
variables from the calculation of the PAI, it might be prudent to examine whether the model
development was inappropriate due to pseudoreplication.

A quick, simple way to avoid pseudoreplication with econometric variables is to
develop a PD model with a two-stage process. First, build a model with non-econometric
variables (possibly with dummy variables for different points in time to capture econometric
effects). Then, aggregate data to overall default rates at each point in time and model the
overall default rate at each point in time using econometric variables and the average
predicted PD at that time as a covariate. Note that, if the development data consists of
1000 loans at each of 20 points in time, then the first model will use 20,000 observations
while the second will use 20 observations. This approach may be inappropriately simplistic
when building a model but might be a quick approach for model reviewers who do not wish
to develop a model but rather explore whether pseudoreplication exists in the development
data. This is not an unreasonable investigation for a model review, especially if it is
suspected that the model development process ignored the presence of pseudoreplication.

However, the possibility that models containing econometric variables are intrinsically
unstable cannot be ignored. For example, at the time of writing (early 2023), interest rates in
most countries have increased dramatically from economic stimulus conditions following
COVID-19; historical data showing such a change in economic conditions are so rare that
any model developed on historical data is likely to demonstrate low stability.

7. Conclusions

The Prediction Accuracy Index (PAI) is a useful statistic to detect when the stability
of a model has deteriorated; however, the literature provides little guidance on how
to investigate reasons for a lack of model stability when the PAI is high. In particular,
the suggestion by Taplin and Hunt (2019) to use the univariate PAI to examine which
variable(s) contribute to a high multivariate PAI appears simplistic and problematic because
it essentially ignores all the other explanatory variables.

This paper has explored the properties of the multivariate PAI, which has led to
recommended approaches to examine if a large PAI is due to individual observations,
individual explanatory variables, or a shift in the mean of explanatory variables. This
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includes the case when several explanatory variables are closely related (such as multiple
dummy variables created from one categorical variable). This has several implications
for how models should be reviewed, especially when the value of the PAI is high. An
important instance of this is when, following IFRS 9 for provisioning, econometric variables
are explicitly included in model development. This pracitce is very ambitious (especially
compared to the Basel Accord for capital) and may lead to models that fail stability at
review due to inadequate modelling practices. This has important implications not only for
model developers but also for model reviewers, auditors, regulators, and standard setters.
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Appendix A

Equation (2) follows from the definition of the PAI in Equation (1), the definition of
the squared Mahalanobis distance in Equation (3), and the identity for the inverse of a
partitioned matrix: [

A B
C D

]−1

=

[
A−1 + A−1BECA−1 −A−1BE

−ECA−1 E

]

where E =
(

D− CA−1B
)−1.

The above identity can be verified by multiplying the matrix by its inverse and
simplifying to obtain the identity matrix. Equation (2) then follows directly (after tedious
algebra) from Equation (1) after partitioning V (the variance–covariance matrix of the
estimated regression coefficients), separating out the intercept from the other explanatory
variables (therefore A has dimensions 1 by 1).

The algebra is simplified if we use the fact that the PAI is invariant to the parameter-
isation of the model; therefore, we choose the parameterisation where each explanatory
variable (except the intercept) is mean centred (so that the mean of each explanatory vari-
able equals 0). That is, the sum of the entries in each column of X equals 0 except for the
first column (for the intercept), where the sum equals n (the sample size at development).
This changes the intercept from the prediction of an observation when all the explanatory
variables equal 0 to the prediction when each explanatory variable takes the value equal
to the mean of the explanatory variable in the development data. It then follows that the
matrix XTX has the form of a partitioned matrix with entries given by the following:

• Top left entry (A) is n, the sample size at development;
• The off-diagonal entries (B and C) are row and column vectors that contain zeroes;
• Bottom-right entries (D) equal n times the variance–covariance matrix of the explana-

tory variables (ijth element equal to ∑n
k=1(XikXjk).

That is, the matrix XTX/n is block diagonal with the top-left entry (A) equal to 1, the
off-diagonal entries (B and C) are equal to vectors of zeroes, and the bottom right entries (D)
are equal to the k by k matrix containing the variance–covariance matrix of the explanatory
variables at development.

It then follows that, for any vector v (with the first entry equal to 1),

vT
(

XTX
)−1

v = vT
(

XTX/n
)−1

v/n = (1 + Mv)/n (A1)

where Mv is the squared Mahalanobis distance of the vector of the explanatory variables (v
without the first value of 1) relative to the variance–covariance matrix of the explanatory
variables at development.



Risks 2023, 11, 110 14 of 15

Equation (2) follows by applying Equation (A1) to the numerator and denominator of
Equation (1).

Appendix B

Each of the properties of Ik are proved as follows:

(a) Ik can be both positive or negative because the squared Mahalanobis distance of
observations can be either higher or lower than the average in the development data;

(b) The average of the Ik is 0 because the average of the PAI(−k) equals PAI0 (to see this,
note that each of the PAI(−k) is itself a mean of a set of numbers after leaving out one
value, therefore each value in this set is omitted exactly once);

(c) By definition of Ik, when Ik = 0, we have PAI0 = PAI(−k);
(d) By definition of Ik, when Ik = PAI0− 1, we have PAI0− PAI(−k) = PAI0− 1, therefore

PAI(−k) = 1;

(e) The identity Ik = PAI0 − PAI(−k) =
mk−Mr

N(1+Md)
follows from Equation (2) to define the

PAI in terms of the average of the squared Mahalanobis distances of the review data
and the identity for the mean of N observations y in terms of the kth observation yk
and the average of the other (k− 1) observations y(−k):

y =
y + (N − 1)y(−k)

N

Appendix C

The equivalence of Equations (5) and (6) is proved by using Equation (2) to define PAI0
and PAIt in terms of average squared Mahalanobis distances. Then, by using Equation (4)
and cancelling common terms, it follows that

PAI0 − PAIt =
(ρ− ε)TV−1

d (ρ− ε)

1 + Md
(A2)

Furthermore, from Equation (4)

PAI0 − 1 =
1 + Mr

1 + Md
=

Mr −Md

1 + Md
(A3)

and taking the ratio (Equation (A2) divided by Equation (A3)) yields

PAI0 − PAIt

PAI0 − 1
=

(ρ− ε)TV−1
d (ρ− ε)

Mr −Md

proving the equality of the two expressions for S given by Equations (5) and (6).
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