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Abstract: In this paper, we propose a comparison among three portfolio insurance strategies, namely
the constant proportion portfolio insurance, the time-invariant portfolio protection, and the exponen-
tial proportion portfolio insurance, via an in-depth performance analysis. We aim to ascertain whether
strategies characterized by variable parameters can outperform those with constant parameters by
measuring potential returns, investment riskiness, downside protection capability, and ability to
capture market upside. The results, achieved in a model-free framework by exploiting bootstrapping
techniques, advise that no winning strategy exists overall, even when considering different volatility
regimes, rebalancing frequencies, and protection levels.
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1. Introduction

By definition, risk-averse investors prefer to protect their capital. For this reason, the
asset management industry has looked for suitable investment opportunities for decades.
The most prominent examples are given by the portfolio insurance (PI) strategies introduced
by Leland and Rubinstein (1988) within the pension funds framework. The authors moti-
vate their intuition by observing that “after the decline of 1973–1974, many pension funds had
withdrawn from the market only to miss the rally in 1975” and by arguing that “if only insurance
were available, those funds could be attracted back to the market”. Portfolio insurance strategies
are conceived to deliver a minimum level of wealth at maturity and guarantee participation
in potential gains relative to a reference portfolio.

At an institutional investment level, portfolio insurance strategies might be used as an
umbrella against potential large losses. At a private investment level, portfolio insurance
strategies could help investors who would like to safeguard their initial investment. The
literature offers several methodologies to safeguard the risky investment against large
losses, such as the synthetic put strategy, the stop-loss strategy, or the constant proportion
portfolio insurance (CPPI) strategy to name but a few; see, e.g., Leland and Rubinstein (1988).
Benninga and Blume (1985) show theoretically that the optimality of portfolio insurance
strategies depends on the investor’s utility function. Moreover, assuming that the returns
of the risky asset are independently and normally distributed, Brooks and Levy (1993) also
show that risk-averse investors may prefer portfolio insurance strategies to buy-and-hold
strategies. However, as well documented in Cont (2001), financial returns are not normally
distributed. More specifically, their variance clusters in time, and both conditional and
unconditional distributions display tails fatter than the normal distribution. Unfortunately,
when the Gaussian assumption of returns distribution is violated, it is no longer possible
to find analytical results witnessing the goodness of portfolio insurance strategies in a
standard expected utility maximization setup.
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A more recent strand of the literature finds empirical evidence suggesting the effec-
tiveness of portfolio insurance strategies. In particular, Cesari and Cremonini (2003) show
that the benefits of portfolio insurance strategies depend on the market features: using
several performance measures the CPPI strategy dominates all other strategies in bear and
sideways markets.

More recently, Annaert et al. (2009) found that portfolio insurance strategies outper-
form a buy-and-hold strategy regarding downside protection but provide lower excess
returns. Moreover, a comparison based on stochastic dominance criteria reveals that
no dominance relations between portfolio insurance strategies and buy-and-hold can be
identified. Since the potential lower return is sufficiently compensated by lower risk,
Annaert et al. (2009) conclude that portfolio insurance strategies might be valuable alter-
natives for risk-averse investors. Dichtl and Drobetz (2011) analyze portfolio insurance
strategies within the framework of cumulative prospect theory. Their results indicate that
loss aversion contributes to making portfolio insurance strategies a preferred investment
strategy for a prospect theory investor. The attractiveness of portfolio insurance strategies
in terms of cumulative prospect theory is also confirmed in Dierkes et al. (2010).

When deciding to implement portfolio insurance strategies, a crucial point is the
identification of the most suitable procedure to use. Our study aims to enrich the above-
mentioned contributions through a comparison among three different portfolio insurance
strategies, namely the constant proportion portfolio insurance (CPPI) strategy, the time-
invariant portfolio protection (TIPP) strategy, and the exponential proportion portfolio insurance
(EPPI) strategy. The TIPP and EPPI strategies can be considered generalizations of the
standard CPPI. The TIPP strategy is the first variant of CPPI, proposed in Estep and
Kritzman (1988) and incorporates a stochastic time-varying floor, which increases as the
market goes up, allowing to capture any equity market participation. Therefore, the investor
guarantees the present value of the future guarantee (the so-called floor) and can increase
such a value by incorporating intra-period gains. According to Estep and Kritzman (1988),
introducing an ad hoc process may furnish better downside protection against adverse
market movements.

The EPPI strategy was proposed by Lee et al. (2008) and belongs to the broader class
of variable proportions portfolio insurance (VPPI) strategies. Both for CPPI and VPPI strategies,
the exposure to the risky asset is proportional to the difference between the portfolio value
and the floor. While a CPPI strategy relies on a proportionality factor assumed to be
constant throughout the investment time horizon, a VPPI strategy allows for changes in
such a proportionality factor. Hence, the literature has shown an increasing interest in
implementing VPPI strategies where the multiplier either reduces or increases according
to volatile or stable scenarios, respectively; see, e.g., Hamidi et al. (2014) and Zieling
et al. (2014). However, as argued in Dichtl et al. (2017), the primacy of these strategies in
providing better risk-adjusted returns compared to the standard CPPI strategy strongly
depends on the forecasting techniques exploited by the investors. Conversely, the EPPI
strategy keeps the implementation as simple as possible since it is rule-based. In other
words, the dynamics of the multiplier depend on market fluctuations through a dynamic
multiplier adjustment factor (DMAF), fixed a priori.

In the present paper, we provide a detailed comparison between the CPPI strategy and
its generalization via traditional mean-variance performance measures and other indicators,
such as Value-at-Risk, the Expected Shortfall, and Omega measures. Along the lines of
Annaert et al. (2009) and Dichtl et al. (2017), we design a simulation experiment without
imposing a (log)normal return distribution. Our approach differs from the proposal by
Lee et al. (2008), where an extensive comparison between CPPI and EPPI is carried out
by assuming a Black–Scholes framework. We simulate from the empirical distributions
of four different market indices returns, to better capture some stylized facts. To this aim,
we employ a bootstrapping simulation approach. In particular, we repeatedly draw with
replacement a block of 252 returns (one year) from our dataset. One of the main advantages
of applying such a procedure relies on carrying out a performance analysis of portfolio
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insurance strategies for different market scenarios. We follow a three-step procedure in our
performance evaluation. First, we examine whether TIPP and EPPI outperform the CPPI
strategy both in terms of protecting against losses and guaranteeing extra returns. Then,
we show how choosing different protection levels affects their performances. Finally, we
measure the impact of different (discrete) rebalancing assumptions.

Our results exhibit a couple of interesting features, namely that (i) TIPP outperforms
CPPI in terms of downside protection but is not able to attain the same equity market partic-
ipation within upward market scenarios, and (ii) EPPI provides equity market participation
comparable to the CPPI one but worsens the downside protection.

For the sake of completeness, we show a comparison of our work with the previous
literature, as shown in Table 1. From such a comparison, we argue that we provide a
performance analysis of all dynamic rule-based portfolio insurance strategies in a model-
free setting.

The remaining part of the paper is as follows. Section 2 describes the main properties
of the rule-based portfolio insurance strategies. In Section 3, we describe the simulation
method, while Section 4 shows the numerical experiments. Section 5 concludes.

Table 1. The relevant literature: a comparison.

Reference
Dynamic PI Strategies Static PI Methodology

CPPI TIPP EPPI Strategies (Model-Free)

Cesari and Cremonini (2003) X X
Lee et al. (2008) X X

Annaert et al. (2009) X X X
Dichtl and Drobetz (2011) X X X

Hamidi et al. (2014) X
Zieling et al. (2014) X
Ardia et al. (2016) X X X
Dichtl et al. (2017) X X X
Chen et al. (2022) X X

Our work X X X X

2. Portfolio Insurance Strategies: Definitions and Features

The main idea behind portfolio insurance strategies is to offer participation from
positive stock market movements while limiting potential losses to a given level. Accord-
ingly, the resulting return distribution becomes asymmetric and right-skewed. Various
investment strategies that provide loss protection are suggested in the literature; see, e.g.,
Ho et al. (2010) for a detailed review. In the present paper, we focus on the three prominent
examples, namely (i) the constant proportion portfolio insurance (CPPI) strategy, (ii) the
time-invariant portfolio protection (TIPP) strategy, and (iii) the exponential proportion
portfolio insurance (EPPI) strategy. In this section, we provide a detailed description of
these strategies.

2.1. Constant Proportion Portfolio Insurance Strategy

The constant proportion portfolio insurance (CPPI), introduced for the first time in the
literature by Black and Jones (1987, 1988), is based on the allocation among two financial as-
sets: a riskless asset, denoted by B, which provides a cash reserve, and a risky asset, denoted
by S, which is usually a stock index. We assume that the rebalancing dates are discrete along
the management period [0, T], since the discrete-time dynamics are more realistic than
continuous-time trading for portfolio management. Let τ denote a sequence of equidistant
refinements of the management period [0, T], i.e., τ = {t0 = 0 < t1 < · · · < tn−1 < tn = T},
where tk−1 − tk =

T
n for k = 0, . . . , n− 1. In particular, we restrict that trading is only possi-

ble immediately after tk ∈ τ, for k = 0, . . . , n− 1. This implies that the number of shares
held in the risky asset is constant on the intervals (tk, tk+1] for k = 0 . . . n− 1. Denote by
VCPPI

tk
the portfolio value at time tk. The CPPI strategy must satisfy the following condi-
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tions as a portfolio insurance method. First, the portfolio value must be higher than the
guaranteed amount. Second, the investor must benefit from market rises. In order to meet
these purposes, the standard CPPI is based on the following:

• The choice of a floor, Ftk which represents the minimum value of the portfolio which is
acceptable for an investor at any instant of time during the management period [0, T].
Its initial value, Ft0 , capitalized at the non-risky rate, must be equal to a predetermined
percentage of the initial capital deposit;

• The choice of a dynamic investment rule on the risky asset defined as follows: the
total amount Etk (the exposure) invested into the underlying asset Stk is equal to a fixed
proportion m (the multiplier) of the difference between the portfolio value VCPPI

tk
and

the floor Ftk . Such a difference is called the cushion and is denoted by Ctk . Since the
strategy results to be self-financing, the remaining amount, VCPPI

tk
− Ftk , is invested

into the riskless asset Btk , such as a money market account or a government bond,
with log-return rtk for each period [tk−1, tk].

A fundamental point in implementing the CPPI strategy is the choice of the multiplier,
which is a non-negative constant. This key parameter has to be higher than 1 in order to
provide a convex payoff, which allows making profits from substantial market rises. The
value of the floor Ftk gives the dynamically insured amount. The floor is assumed to evolve
at the same rate as the riskless asset B, namely

Ftk − Ftk−1 = Ftk−1 exp
{

rtk

}
, k = 1, . . . , n, (1)

whose initial value is Ft0 = G · exp{−rt0(T − t0)}. The parameter G is the guarantee, defined
as the product of the capital initially invested VCPPI

t0
and the percentage of VCPPI

t0
that the

investor aims to recover at maturity T (the so-called protection level PL ∈ (0, 1]). Both the
protection level PL and the multiplier m are functions of the investor risk tolerance. Indeed,
the higher the multiplier m (resp., the lower the protection level PL), the higher the amount
Etk invested into the risky asset. Therefore, an aggressive investor would choose high
values for m and low values for PL. Nevertheless, the corresponding portfolio is riskier,
and the guarantee may no longer hold.

Assuming that the risky asset evolves according to

Stk = St0

k

∏
l=1

(
1 +

∆Stl

Stl−1

)
, (2)

where ∆Stl denotes the difference Stl − Stl−1 , we deduce that the portfolio value is the
solution of

VCPPI
tk

= VCPPI
tk−1

+ ECPPI
tk−1

∆Stk

Stk−1

+
(

VCPPI
tk−1

− ECPPI
tk−1

)
exp

{
rtk

}
, k = 0, . . . , n, (3)

with
ECPPI

tk−1
= max

{
m ·
(

VCPPI
tk−1

− Ftk−1

)
, 0
}

. (4)

2.2. Time Invariant Portfolio Protection Strategy

As argued in Estep and Kritzman (1988), the performance of the CPPI strategy is price
dependent: any gains at a particular point in time may still be lost if the underlying risky
asset subsequently falls. The authors introduced the time-invariant portfolio protection
(TIPP) strategy with a ratchet mechanism to lock in all interim capital gains. In particular,
the TIPP strategy can be considered a generalization of the standard CPPI strategy described
in Section 2.1. The main difference between the CPPI and TIPP is in the stochastic time-
varying definition of the floor. The TIPP floor is the maximum between the usual CPPI floor
and the percentage PL of the maximum past portfolio values. Now, the floor F̃tk satisfies
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F̃tk = max

{
Ftk , PL · sup

s≤k
VTIPP

ts

}
, k = 1, . . . , n. (5)

Thanks to the mechanism depicted in Equation (5), the floor jumps up with the
portfolio value to reduce risky asset allocation when the market peaks. As for the CPPI
allocation mechanism, the TIPP is a self-financing strategy. Hence, also in this case, the
portfolio value is the solution of

VTIPP
tk

= VTIPP
tk−1

+ ETIPP
tk−1

∆Stk

Stk−1

+
(

VTIPP
tk−1

− ETIPP
tk−1

)
exp

{
rtk

}
, k = 0, . . . , n, (6)

with
ETIPP

tk−1
= max

{
m ·
(

VTIPP
tk−1

− F̃tk−1

)
, 0
}

. (7)

2.3. Exponential Proportion Portfolio Insurance Strategy

A second generalization of the CPPI strategy is proposed in Lee et al. (2008). Such a
novel strategy allows the multiplier m to vary at any time, according to market fluctuations.
In particular, the authors argue that a dynamic multiplier mtk , linked to the fluctuations
of the underlying risky asset S, can improve the convex nature of the CPPI strategy. In
particular, when the stock price increases, the multiplier increases, determining an improve-
ment in the upside capture. By contrast, when the stock price reduces its value, a lower
multiplier induces higher downside protection. Moreover, to keep the implementation as
simple as possible, a particular version of the VPPI strategy is introduced, the so-called ex-
ponential proportion portfolio insurance (EPPI) strategy. As for the CPPI strategy, the EPPI
portfolio must be self-financing, and the insured amount evolves according to Equation (1).
However, the multiplier presents the following dynamics:

mtk = mtk−1 + a · exp
{

a ln
(

Stk

Stk−1

)}
∆Stk

Stk−1

, t = 0, . . . , n− 1, (8)

where η > 1 is an arbitrary constant, and exp
{

a ln
(

Stk
Stk−1

)}
is the so called dynamic mul-

tiplier adjustment factor (DMAF). The parameter a in Equation (8) amplifies the multiplier.
The parameter is set greater than 1 to account for both the enlargement effect or the shrinkage
effect in case of bullish or bearish markets, respectively. As for CPPI and the TIPP strategy,
the evolution of the EPPI portfolio is given by

VEPPI
tk

= VEPPI
tk−1

+ EEPPI
tk−1

∆Stk

Stk−1

+
(

VEPPI
tk−1

− EEPPI
tk−1

)
exp

{
rtk

}
, k = 0, . . . , n, (9)

with

EEPPI
tk−1

= max
{

mtk−1 ·
(

VEPPI
tk−1

− Ftk−1

)
, 0
}

, (10)

mtk−1 = η + a
k−1

∑
l=1

exp
{

a ln
(

Stl

Stl−1

)}
∆Stl

Stl−1

. (11)

2.4. Practical Issues for the Implementation of Portfolio Insurance Strategies

To implement a portfolio insurance strategy, we need to consider a couple of funda-
mental aspects. First of all, Equations (4), (7), and (10) imply that the investment in the
risky asset might be potentially unbounded. For this reason, the common market practice
suggests that the portfolio insurance strategies should usually be implemented such that
the exposure to the risky asset varies between 0% and a maximum leverage factor Lmax fixed
between 100% and 200% of the current portfolio value. This implies that short sales and
leverage are limited. Hence, Equations (4), (7), and (10) are modified as follows:
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Ej
tk
= max

{
min

{
m · Cj

tk
, Lmax ·V j

tk

}
, 0
}

, k = 0, . . . , n , (12)

where Cj
tk

is the cushion at time tk, for all j = {CPPI, TIPP, EPPI}. Moreover, we need
to take into account transaction costs. It is worth noting that, because of the guarantee
constraint, it is not possible to change the risk-free position of the portfolio insurance
method (which is needed without transaction costs). Rather, the transaction costs are to
be financed by reducing the asset exposure arising in the case without transaction costs.
Along the lines of Balder et al. (2009), we assume the transaction cost to be proportional to
the value of shares traded. The investor will rebalance the portfolio at dates tk, an instant
before rebalancing, which we denote by tk−; the prices are all assumed to be known, and
the modification of the portfolio will take place instantaneously and without price impact
so that just after rebalancing, at time tk, the weights are adjusted, and the value of the
portfolio has evolved according to

V j
tk
= V j

tk− − transaction costs, k = 0, . . . , n ,

for all j = {CPPI, TIPP, EPPI}. Denoting by ϕ
S,j
tk−1

:=
Ej

tk−1
Stk−1

(resp., ϕ
B,j
tk−1

:=
V j

tk−1
−Ej

tk−1
Btk−1

) the

number of units of risky (resp., riskless) asset at time tk−1, we can write the value of the
portfolio before rebalancing as follows:

V j
tk− = ϕ

S,j
tk−1

Stk + ϕ
B,j
tk−1

Btk , k = 1, . . . , n,

for all j = {CPPI, TIPP, EPPI}. The proportional transaction cost for risky asset S is given
by
∣∣∣ϕS,j

tk
− ϕ

S,j
tk−1

∣∣∣Stk θ, where θ denotes the proportionality factor. Hence,

V j
tk
= V j

tk− −
∣∣∣ϕS,j

tk
− ϕ

S,j
tk−1

∣∣∣Stk θ, , k = 1, . . . , n , (13)

for all j = {CPPI, TIPP, EPPI}.

3. Simulation Setup
3.1. Data and Design of Empirical Analysis

To examine the performance of the strategies, we conduct a bootstrap simulation
on a dataset containing equity return from the following market indexes: S&P500, Hang
Seng, Nikkei 225, and FTSE 100. In particular, daily returns are retrieved from Bloomberg
for 1 December 1989–24 December 2019, thereby deleting all non-trading days. The U.S.
3-month Treasury Bill yields are also downloaded for the same period. We do not consider
stock data without the corresponding risk-free rate. Summary statistics are reported in
Table 2.

Table 2. Summary statistics for S&P500, Hang Seng, Nikkei 225, and FTSE 100 index returns.
Each time series contains 7511 returns. The daily average returns are reported on an annual basis
using r̄annual = (1 + r̄daily)

252 − 1. Daily standard deviations are transformed into annual standard
deviations using σannual = σdaily ·

√
252, where we assume 252 trading days per year.

Series Average
Return (%)

Standard
Deviation (σ) (%) Skewness Kurtosis

p-Value
Autocorrelation
(Ljung-Box Test)

p-Value
Heteroscedasticity

(Engle’s ARCH Test)

UKX 6.044 17.288 0.120 10.374 0.000 0.000
HSI 11.322 25.268 −0.120 18.748 0.000 0.000

NKY 1.362 23.415 −0.006 9.169 0.001 0.000
SPX 9.449 17.518 −0.142 11.814 0.000 0.000
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Our preliminary statistical analysis shows that, apart from the FTSE 100 index, the
time series exhibit fat tails and negative skewness. The Ljung–Box test detects significant
serial correlation in all the time series under investigation. Moreover, we find significant
heteroscedasticity in each time series.

We resort to bootstrapping to generate simulated return series without making any
assumption regarding the return distribution but including the aforementioned statistical
features, as in Annaert et al. (2009) and Dichtl et al. (2017). To encompass autocorrelation
and heteroscedasticity, we use block bootstrapping, as suggested in Sanfilippo (2003).
Therefore, our simulation procedure can be divided into the following steps:

1. We randomly draw a market index (S&P500, Hang Seng, Nikkei 225 or FTSE 100)
with replacement;

2. We draw with replacement a starting date;
3. Starting from the initial date obtained in Step 2, we analyze the one-year performance

of CPPI, TIPP, and EPPI strategies for the drawn market, i.e., the 252 days following
the starting date are used to evaluate the different portfolio insurance strategies;

4. The procedure (Step 1–Step 3) is repeated 20,000 times.

The previous procedure provides the return distribution for each portfolio insurance
strategy we investigate. Such distributions are the objective of our performance analysis.

3.2. Performance Measures and Statistical Tests

We compare specific moments or other statistics that characterize the returns distribu-
tions of the different portfolio insurance strategies described in Section 2. Moreover, for
each performance indicator, we test the existence of significant differences between a given
portfolio insurance strategy and another one chosen as the benchmark. In particular, we
focus on the average returns in excess w.r.t. the risk-free rate (r̄− r f ), the return volatility
(σ), and the Sharpe ratio SR (see, Sharpe 1966) which is defined as follows:

SR =
r̄− r f

σ
, (14)

where r f is the annual risk-free rate. From the simulation procedure described in Section 3,
we obtain N paths of the daily risky asset returns and daily risk-less asset log-returns. For
all n = 1, . . . , N, the corresponding annual rate of return of PI strategies and the risk-free
annual rate are given by rn =

Vtn
Vt0
− 1 and r f

n = exp
{

∑252
k=1 rtk,n

}
− 1, respectively. Hence,

r̄ = 1
N ∑N

n=1 rn and r f = 1
N ∑N

n=1 r f
n.

We apply (i) the t-test to check for the difference in average excess return among the
implemented strategies, (ii) the Levene (1960) test to test for equality in variance, (iii) the
Jobson and Korkie (1981) test to test for difference in Sharpe ratio.

Furthermore, it is well-known that the Sharpe ratio is useful when the standard
deviation is the reference risk measure. As argued in Annaert et al. (2009), this is not
the case, since a high standard deviation can be to due positive outliers in excess return
distributions, which would attract rather than repel investors. For this reason, we consider
further naive performance measures, namely, the number of negative excess returns and
the average negative excess return, which are respectively given by

Ñ =
1
N

N

∑
n=1

1{
rn−r f

n<0
}, (15)

r̃ =
1
Ñ

N

∑
n=1

(
rn − r f

n

)
1{

rn−r f
n<0

} . (16)

Again, to check for statistical differences between the frequency of negative excess
returns and the negative average excess return among the various portfolio insurance
strategies, we employ a t-test.
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Furthermore, within the portfolio insurance strategies framework, the investors are
also interested in monitoring the potential losses, the latter being included in the left tail of
the return distribution. Hence, we consider the Value-at-Risk (VaR); see, e.g., Ibragimov
and Walden (2007). Formally, the VaR at a confidence level α can be defined as follows:

VaRα(R) = inf{x ∈ R|FR(x) ≥ α} , (17)

where FR(x) is the cumulative return distribution. VaR denotes the maximum loss at a cer-
tain confidence level. We perform an unconditional coverage test (see, e.g.,
Christoffersen (2003)) for testing statistical differences in VaR. Under the null, the VaR of
strategy A equals the VaR of strategy B. We fix a 95% confidence level, so that we expect 5%
of the observations of strategy B, say rB

n , to exceed the VaR of strategy A, say VaRα(RA), un-
der the null. This is formally tested by calculating the fraction of strategy A VaR violations
(i.e., the hit ratio) and performing a t-test as follows:

1
N ∑N

n=1 Hitn − α√
α(1−α)

N

→ N (0, 1) as N → ∞ , (18)

where N is the sample size, α = 5%, and

Hitn =

{
1, if rB

n < VaRα(RA)

0, otherwise
.

To overcome the drawbacks related to the VaR as a non-coherent risk measure, we
consider the expected shortfall (ES), to measure the average loss below the VaR; see, e.g.,
Acerbi and Tasche (2002) for further details. Formally, the ES at a confidence level of α can
be defined as

ESα(R) = E[R|R ≤ VaR(α)] , (19)

where E[R|R ≤ VaR(α)] is the conditional expected value of the returns given that the
returns are less than or equal to the VaR at a confidence level equal to α. For testing
differences in ES, we resort to the method proposed by Annaert et al. (2009), exploiting
the bootstrap technique. Given the sample return distributions of size 20,000, both for the
reference strategy and the one to be compared, we randomly select 10,000 returns pairwise
from these distributions. Thus, two return distributions of size 10,000 are obtained, one
for each strategy. Then, we calculate ES for each distribution. We repeat such a procedure
10,000 times, ensuring the attainment of two distributions for ES, one for each strategy.
Finally, to test for statistical difference, we use a paired sample t-test.

As discussed in Annaert et al. (2009), higher confidence levels will entail more negative
VaR and ES values. Hence, choosing a higher confidence level indicates a higher risk
aversion. However, linking these two concepts is possible when returns are normally
distributed. For this reason, we include in our analysis also the skewness. A more significant
skewness makes protection strategies more appealing; see, e.g., Harvey and Siddique (2000);
Post et al. (2008).

We use a procedure similar to the one exploited for ES for testing differences in
skewness, along the lines of Annaert et al. (2009). First, for each strategy, from the i-th
return ri, i = 1, . . ., 20,000 of the bootstrapped distributions, we create a new synthetic
return r̃i, i = 1, . . ., 20,000, such that r̃i = −(ri + r̄) + r̄. Then, we add the new i-th return to
the initial distribution. Thereby, we obtain symmetric distributions. Next, we randomly
draw 10,000 returns pairwise from the modified samples of the two portfolio insurance
strategies and calculate the empirical skewness difference. Repeating this 10,000 times, we
obtain an approximation of the distribution, which is then used to compute the p-value of
obtaining an even more extreme skewness difference than the empirical one.
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Finally, we consider the Omega measure introduced by Keating and Shadwick (2002),
an indicator that takes into account the whole distribution and is thus a valuable tool to
characterize non-Gaussian distributions. It is worth mentioning that if X is a continuous r.v.
with support (a, b) ∈ R and CDF FX(x), then the Omega measure is

Ω(r∗) =

∫ b
r∗(1− FR(x))dx∫ r∗

a FR(x)dx
, (20)

with r* being a reference threshold fixed a priori. The numerator of Equation (20) indicates
the probability-weighted gains, while the denominator represents the probability-weighted
losses. Thus, a high value of the Omega measure indicates a more profitable investment
and, consequently, a more attractive strategy to investors.

4. Performance Measurement Results

To begin with, we compare the three portfolio insurance strategies based on the
risk metrics and performance indicators introduced in Section 3.2. We recall that we are
discussing dynamic strategies characterized by some parameters. Such parameters are the
rebalancing frequency, the protection level (PL), the multiplier, and the maximum leverage
(Lmax).

To obtain all the performance results, we apply a block-bootstrapping procedure over
a time horizon equal to one year. Moreover, we consider transaction costs in our analysis,
according to Equation (13), setting θ = 0.1% Finally, we set r* = 0 for the Omega measure.

4.1. Constant Proportion Portfolio Insurance vs Its Generalizations

We start by comparing TIPP and EPPI strategies with the CPPI one, referred to as
the benchmark. As a first attempt, we consider the corresponding payoff functions. The
top chart in Figure 1 compares CPPI and TIPP in terms of the excess returns. We observe
that TIPP outperforms CPPI in terms of downside protection, but the former cannot fully
capture potential market raising, as shown by the most convex shape of the latter. Such an
empirical behavior is also confirmed by the outcomes of the performance analysis, shown
in Table 3.

Table 3. Comparison among CPPI, TIPP, and EPPI strategies. We denote by *, ** and *** the significant
difference between the reference strategy (CPPI) and the TIPP (resp. EPPI) strategy, at a 10%, 5%, and
1% confidence level, respectively.

Portfolio Insurance Strategy CPPI TIPP EPPI EPPI EPPI
(a = 5) (a = 10) (a = 20)

Rebalancing discipline Daily Daily Daily Daily Daily
Protection level (%) 97.5 97.5 97.5 97.5 97.5

Multiplier 14 14 - - -
η - - 14 14 14

Initial equity allocation (%) 35.27 35.27 35.27 35.27 35.27

Average excess return 1.482 0.213 *** 1.501 1.519 1.559
Standard deviation 15.616 5.666 *** 15.828 16.095 *** 16.660 ***

Sharpe ratio 0.095 0.038 *** 0.095 0.094 0.094
% < 0 75.115 53.660 *** 76.010 ** 76.955 *** 77.910 ***

Average negative excess return −4.753 −4.076 −4.786 −4.855 *** −5.087 ***
VaR 5% −8.488 −7.584 *** −8.508 * −8.644 *** −9.456 ***
ES 5% −10.324 −8.626 *** −10.419 *** −10.535 *** −10.823 ***

Skewness 3.525 0.688 3.493 3.452 3.368
Omega measure 1.413 1.096 1.410 1.404 1.391
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Figure 1. Comparison between the payoff functions of CPPI and its generalizations, with daily
rebalancing and 0.1% transaction costs. The top chart compares CPPI and TIPP in terms of excess
returns, and the bottom chart compares CPPI and EPPI in terms of excess returns. The dashed
horizontal line indicates the floor values and the solid line is introduced to facilitate the interpretation.

More precisely, TIPP outperforms CPPI regarding risk reduction while suffering from
lower excess returns. We observe that the standard deviation is three times lower than for
CPPI, and VaR and ES within the TIPP strategy are reduced by 10% and 19%, respectively.
Moreover, our analysis does not lead to rejecting the hypothesis that the CPPI skewness
exceeds or equals the TIPP one. This should not be surprising as TIPP has a solid protective
slant that protects against downside risk. On the other hand, the mechanism embedded in
the TIPP strategy forces the risky asset exposure to be systematically lower than the CPPI
one. This causes a worsening in terms of upside capture: in the presence of market upside,
the TIPP cannot guarantee effective participation in the stock market. The Omega measure
further supports such behavior.

We then proceeded to compare CPPI and EPPI. As before, we consider the correspond-
ing payoff functions, depicted in the bottom chart of Figure 1. EPPI shows a more extreme
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attitude than CPPI: for positive excess returns of the portfolio insurance strategies (y-axis),
the expected gains from implementing EPPI (blue dots) are slightly higher than those
provided by CPPI (red dots), indicating a slightly stronger tendency to upside capture.
Surprisingly, for the negative excess returns of the same strategies, the loss experienced by
implementing an EPPI strategy (blue dots) is always greater than or equal to that provided
by CPPI (red dots), indicating a weaker ability to hedge against downside risk. We investi-
gate the performance indicators described in Table 3 to strengthen such a qualitative finding.
For the EPPI strategy, we choose three different parameter values a. Considering the case
where a = 5, the performance analysis shows slightly better average excess returns than
CPPI, although this result is not statistically significant. EPPI also performs less efficiently
than CPPI in downside risk mitigation: all the risk measures examined for EPPI are worse
than those associated with CPPI. Such results are even more pronounced the larger the
value of parameter a. Moreover, the skewness is positive but lower than the CPPI one,
although not statistically significant, indicating that the strategy may be less attractive to
investors. The Omega measure provides comparable values for the two strategies examined.
In conclusion, we can argue that a powerful alternative strategy to the CPPI is the TIPP for
investors more interested in protecting themselves against downside risk.

We then compare the performance of the three portfolio insurance strategies in three
different market configurations, i.e., in low-, medium-, and high-volatility regimes, calcu-
lated according to the methodology proposed in Annaert et al. (2009); Ardia et al. (2016).
More precisely, we split the simulated return paths into tercile groups, by using the realized
volatility. The results are shown in Table 4. From the inter-regime comparison, we note that
the highest returns are obtained when the market is calm (low volatility). At the same time,
the worst situation occurs when the market is turbulent: in this case, excess returns become
negative for all the strategies examined. In low volatility, TIPP shows the best performance
in terms of risk hedging (lowest standard deviation, VaR, and ES) and exhibits the highest
Omega measure. The findings also show that TIPP may induce losses in the portfolio
since it displays negative skewness. However, we cannot reject the hypothesis that CPPI’s
skewness outperforms this. Finally, the CPPI strategy beats its variant with a stochastic
multiplier. In the moderate volatility scenario, the picture remains unchanged in terms of
risk measures. The CPPI (resp., TIPP) delivers the best (respective, worst) skewness. In the
high-volatility regime, the skewness of the time-invariant strategy is positive but still lower
than the constant parameter one.

Table 4. Comparison among CPPI, TIPP, and EPPI strategies for different volatility market scenarios
with daily rebalancing and assuming a fixed protection level. The volatility is 9.66%, 17.90%, and
27.28% for the low-, medium-, and high-volatility scenarios, with 6667, 6666, and 6667 observations,
respectively. We denote by *, ** and *** the significant difference between the reference strategy (CPPI)
and the TIPP (resp. EPPI) strategy, at a 10%, 5%, and 1% confidence level, respectively.

Volatility Subgroup Low Volatility Regime Medium Volatility Regime High Volatility Regime
Rebalancing Discipline Daily Daily Daily

Portfolio insurance strategy CPPI TIPP EPPI CPPI TIPP EPPI CPPI TIPP EPPI
Protection level (%) 97.5 97.5 97.5 97.5 97.5 97.5 97.5 97.5 97.5

Multiplier 14 14 - 14 14 - 14 14 -
η - - 14 - - 14 - - 14
a - - 20 - - 20 - - 20

Initial equity allocation (%) 64.25 64.25 64.25 35.27 35.27 35.27 95.28 95.28 95.28

Average excess return 3.683 2.396 *** 3.657 2.375 0.687 *** 2.463 −1.613 −2.443 *** −1.442
Standard deviation 11.286 3.426 *** 12.319 *** 17.326 5.494 *** 18.315 *** 16.996 6.508 *** 18.202 ***

Sharpe ratio 0.326 0.699 *** 0.297 *** 0.137 0.125 0.134 −0.095 −0.375 *** −0.079 ***
%< 0 53.817 24.269 *** 60.132 *** 79.283 55.476 *** 81.263 *** 92.245 81.238 *** 92.335

Average negative excess return −3.238 −2.036 *** −3.835 *** −4.792 −3.427 *** −5.182 *** −5.604 −5.128 *** −5.819 ***
VaR 5% −6.736 −2.783 *** −7.335 *** −8.877 −7.216 *** −9.779 *** −8.776 −8.350 *** −9.989 ***
ES 5% −8.933 −5.007 *** −9.486 *** −9.861 −7.683 *** −10.318 *** −11.781 −10.037 *** −12.244 ***

Skewness 1.924 −0.078 1.722 2.511 0.635 2.390 5.197 1.812 4.970
Omega measure 3.108 5.836 2.581 1.622 1.360 1.583 0.684 0.412 0.732
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4.2. Changing the Protection Level

In this section, we focus on the role of the protection level in determining the perfor-
mances of each strategy along the lines described in Annaert et al. (2009). As described in
Section 2, the protection level is linked to the value of the floor process. It is worth noting
that the protection level affects the investment: it triggers the protection mechanism if the
risky security suffers sharp declines, thus shifting the allocation to the non-risky security
only. In particular, the lower the protection level, the lower the capital to be protected and
the greater the investment in the security.

The results are shown in Table 5. In our analysis, we consider three different protection
levels, i.e., we assume that, for all strategies, the capital to be protected at maturity is 90%,
95%, and 97.5% of the initial capital. Furthermore, for our statistical significance tests, we
consider the case where PL = 97.5% is a benchmark for each strategy.

The left panel of Table 5 shows the results of the CPPI strategy. Based on such results,
we deduce that a lower protection level guarantees higher returns, but higher risk, both
in terms of standard deviation and VaR and ES. We cannot reject the hypothesis that the
skewness of the return distribution of the strategy with the highest PL exceeds or equals
the skewness of the other cases. The Omega measure is better when the floor is lower. The
right panel of Table 5 shows the performance analysis of the EPPI strategy. The results
obtained are similar to the previous case. Again, we cannot conclude that guaranteeing
a higher or lower amount at maturity is a more compelling investment strategy, as the
Omega measure results also confirm. For the TIPP strategy, the picture is slightly different:
although even in this case, a lower protection level guarantees higher returns but higher
risk when PL = 95%, the return distribution exhibits the greatest skewness. As expected,
the strategy with the lowest PL exhibits the higher values of the Omega measure.

Table 5. Comparison among CPPI, TIPP, and EPPI strategies for different protection levels with
daily rebalancing. Within each strategy, the benchmark is the one with the highest protection level
(PL = 97.5%). We denote by *, ** and *** the significant difference between the strategies with lower
protection levels and the reference one at a 10%, 5%, and 1% confidence level, respectively.

Portfolio Insurance Strategy CPPI TIPP EPPI

Rebalancing discipline Daily Daily Daily
Protection level (%) 90 95 97.5 90 95 97.5 90 95 97.5

Multiplier 14 14 - 14 14 - 14 14 -
η - - 14 - - 14 - - 14
a - - 20 - - 20 - - 20

Initial equity allocation (%) 140.25 70.27 35.27 140.25 70.27 35.27 150.00 75.28 37.79

Average excess return 3.644 *** 2.369 *** 1.482 2.015 *** 0.752 *** 0.213 3.739 *** 2.480 *** 1.550
Standard deviation 23.647 *** 19.174 *** 15.616 20.435 *** 10.474 *** 5.666 23.941 *** 19.740 *** 16.352

Sharpe ratio 0.154 *** 0.124 *** 0.095 0.099 *** 0.072 *** 0.038 0.156 *** 0.126 *** 0.095
% < 0 60.365 *** 70.455 *** 75.115 60.090 *** 56.995 *** 53.660 59.635 *** 70.600 *** 77.290

Average negative excess return −11.455 *** −6.924 *** −4.753 −11.327 *** −6.707 *** −4.076 −11.864 *** −7.259 *** −4.932
VaR 5% −15.713 *** −10.881 *** −8.488 −15.674 *** −10.533 *** −7.584 −15.863 *** −11.006 *** −8.929
ES 5% −17.232 *** −12.506 *** −10.324 −17.229 *** −12.046 *** −8.626 −17.473 *** −12.798 *** −10.656

Skewness 1.955 2.793 3.525 1.828 *** 1.210 *** 0.688 1.901 2.712 3.442
Omega measure 1.526 1.484 1.413 1.295 1.196 1.096 1.527 1.482 1.404

4.3. Changing the Rebalancing Frequency

In this Section, we study the impact of portfolio rebalancing frequency. In particular,
we explore the case of daily, weekly, and monthly frequencies. The results are presented
in Table 6, where we compare daily, weekly, and monthly rebalancing mechanisms for
each strategy. Intuitively, a higher rebalancing frequency leads to higher transaction costs,
regardless of how the investment strategy works. Therefore, we expect a high-frequency
strategy to show a lower excess return. Our findings support this intuition. On the other
hand, low returns are compensated by significant downside protection levels, as shown by
the standard deviation, VaR, and ES values. As the rebalancing frequency reduces, the time
interval when the strategy is buy&hold-like becomes longer so that the chance of taking
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advantage of any bullish market phases diminishes. Consequently, the skewness of the
return distribution shrinks when switching from daily to weekly and monthly investments.
Therefore, investors who prefer a positive skewness find it more profitable to pay higher
transaction costs to satisfy their need to hedge against possible losses. However, we cannot
conclude that a strategy with daily rebalancing is preferable to one with more frequent
rebalancing, as highlighted by the Omega measure.

Table 6. Comparison among CPPI, TIPP, and EPPI strategies for different rebalancing frequencies.
Within each strategy, the benchmark is the one with the highest rebalancing frequency (daily). We
denote by *, ** and *** the significant difference between the strategies with lower frequencies and
the reference one at a 10%, 5%, and 1% confidence level, respectively.

Portfolio Insurance Strategy CPPI TIPP EPPI

Rebalancing discipline Daily Weekly Monthly Daily Weekly Monthly Daily Weekly Monthly
Protection level (%) 97.5 97.5 97.5 97.5 97.5 97.5 97.5 97.5 97.5

Multiplier 14 14 - 14 14 - 14 14 -
η - - 14 - - 14 - - 14
a - - 20 - - 20 - - 20

Initial equity allocation (%) 35.27 35.27 35.27 35.27 35.27 35.27 37.79 37.79 37.79

Average excess return 1.482 2.051 *** 2.383 *** 0.213 0.495 *** 0.805 *** 1.559 2.190 *** 2.480 ***
Standard deviation 15.616 16.866 *** 18.251 *** 5.666 6.273 *** 7.408 *** 16.660 17.462 *** 18.747 ***

Sharpe ratio 0.095 0.122 *** 0.131 *** 0.038 0.079 *** 0.109 *** 0.094 0.125 *** 0.132 ***
% < 0 75.115 71.665 *** 66.850 *** 53.660 *** 51.280 *** 47.900 *** 77.910 *** 72.735 *** 67.525 ***

Average negative excess return −4.753 −5.327 *** −6.619 *** −4.076 *** −4.443 *** −5.256 *** −5.087 −5.527 *** −6.845
VaR 5% −8.488 −9.975 *** −12.866 *** −7.584 −8.009 *** −9.319 *** −9.458 −10.157 *** −13.383 ***
ES 5% −10.324 −12.523 *** −18.520 *** −8.626 −9.813 *** −13.091 *** −10.823 −13.178 *** −19.160 ***

Skewness 3.525 3.153 2.626 0.688 0.600 0.332 3.368 3.042 2.529
Omega measure 1.413 1.535 1.536 1.096 1.216 1.318 1.391 1.542 1.535

5. Concluding Remarks

We propose a comparison among the constant proportion portfolio insurance, the
time-invariant portfolio protection, and the exponential proportion portfolio insurance,
measuring both the risk profile and the risk-return trade-off. We perform our study
without specifying any model for the risky asset, exploiting bootstrapping methodology
and considering several scenarios according to the volatility, the rebalancing frequency,
and the protection level. Our results show that TIPP outreaches CPPI regarding downside
protection, even though it cannot face potential upside capture. By contrast, we show
that EPPI and CPPI are comparable in terms of equity market participation, but EPPI
is less effective in hedging against downside risks. The performance of the variable
strategies might be improved by further reducing the risky exposure of the TIPP with a
stochastic version of the multiplier, as in EPPI. Moreover, a comparison among portfolio
insurance strategies via the cumulative prospect theory may be extended to the non-
Gaussian diffusion for the underlying. We leave such open problems for further research.

Author Contributions: Conceptualization, D.M. and I.O.; Methodology, D.M. and I.O.; Formal
analysis, D.M. and I.O.; Writing—original draft, D.M. and I.O.; Writing—review and editing, D.M.
and I.O.; Funding acquisition, I.O. All authors have read and agreed to the published version of the
manuscript.

Funding: This research was funded by Sapienza Università di Roma, under the project Frictions
meet incompleteness: no-arbitrage solutions for derivative pricing and investment opportunities, Grant No.
RM1221816C3DDAC2.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author, upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.



Risks 2023, 11, 105 14 of 14

References
Acerbi, Carlo, and Dirk Tasche. 2002. On the coherence of expected shortfall. Journal of Banking and Finance 26: 1487–503. [CrossRef]
Annaert, Jan, Sofieke Van Osselaer, and Bert Verstraete. 2009. Performance evaluation of portfolio insurance strategies using stochastic

dominance criteria. Journal of Banking and Finance 33: 272–80. [CrossRef]
Ardia, David, Kris Boudt, and Marjan Wauters. 2016. Smart beta and cppi performance. Finance 37: 31–65. [CrossRef]
Balder, Sven, Michael Brandl, and Antje Mahayni. 2009. Effectiveness of CPPI strategies under discrete-time trading. Journal of

Economic Dynamics and Control 33: 204–20. [CrossRef]
Benninga, Simon, and Marshall Blume. 1985. On the optimality of Portfolio Insurance. The Journal of Finance 40: 1341–52. [CrossRef]
Black, Fischer, and Robert Jones. 1987. Simplifying portfolio insurance. Journal of Portfolio Management 14: 48–51. [CrossRef]
Black, Fischer, and Robert Jones. 1988. Simplifying portfolio insurance for corporate pension plans. Journal of Portfolio Management 14: 33–37.

[CrossRef]
Brooks, Robert, and Haim Levy. 1993. Portfolio insurance: Does it pay? In Advances in Futures and Options Research. San Jose: JAI Press.
Cesari, Riccardo, and David Cremonini. 2003. Benchmarking, portfolio insurance and technical analysis: A Monte Carlo comparison of

dynamic strategies of asset allocation. Journal of Economic Dynamics and Control 27: 987–1011. [CrossRef]
Chen, Ze, Bingzheng Chen, Yi Hu, and Hai Zhang. 2022. Hedge inflation risk of specific purpose guarantee funds. European Financial

Management 28: 1104–36. [CrossRef]
Christoffersen, Peter. 2003. Elements of Financial Risk Management. Cambridge: Academic Press.
Cont, Rama. 2001. Empirical properties of asset returns: Stylized facts and statistical issues. Quantitative Finance 1: 223–36. [CrossRef]
Dichtl, Hubert, and Wolfgang Drobetz. 2011. Portfolio insurance and prospect theory investors: Popularity and optimal design of

capital protected financial products. Journal of Banking and Finance 35: 1683–97. [CrossRef]
Dichtl, Hubert, Wolfgang Drobetz, and Martin Wambach. 2017. A bootstrap-based comparison of portfolio insurance strategies. The

European Journal of Finance 23: 31–59. [CrossRef]
Dierkes, Maik, Carsten Erner, and Stefan Zeisberger. 2010. Investment horizon and the attractiveness of investment strategies: A

behavioral approach. Journal of Banking and Finance 34: 1032–46. [CrossRef]
Estep, Tony, and Mark Kritzman. 1988. TIPP: Insurance without complexity. Journal of Portfolio Management 14: 38. [CrossRef]
Hamidi, Benjamin, Bertrand Maillet, and Jean-Luc Prigent. 2014. A dynamic autoregressive expectile for time-invariant portfolio

protection strategies. Journal of Economic Dynamics and Control 46: 1–29. [CrossRef]
Harvey, Campbell R., and Akhtar Siddique. 2000. Conditional skewness in asset pricing tests. The Journal of Finance 55: 1263–95.

[CrossRef]
Ho, Lan-chih, John Cadle, and Michael Theobald. 2010. Portfolio Insurance Strategies: Review of Theory and Empirical Studies.

Boston: Springer, pp. 319–32.
Ibragimov, Rustam, and Johan Walden. 2007. The limits of diversification when losses may be large. Journal of Banking & Finance 31:

2551–69.
Jobson, J. Dave, and Bob M. Korkie. 1981. Performance hypothesis testing with the Sharpe and Treynor measures. Journal of Finance 36:

889–908. [CrossRef]
Keating, Con, and William F. Shadwick. 2002. A universal performance measure. Journal of Performance Measurement 6: 59–84.
Lee, Huai-I., Min-Hsien Chiang, and Hsinan Hsu. 2008. A new choice of dynamic asset management: The variable proportion portfolio

insurance. Applied Economics 40: 2135–46. [CrossRef]
Leland, Hayne E., and Mark Rubinstein. 1988. The evolution of portfolio insurance. In Portfolio Insurance: A Guide to Dynamic Hedging.

New York: John Wiley & Sons.
Levene, Howard. 1960. Robust tests for equality of variances. In Contributions to Probability and Statistics. Edited by Ingram Olkin. Palo

Alto: Stanford University Press.
Post, Thierry, Pim Van Vliet, and Haim Levy. 2008. Risk aversion and skewness preference. Journal of Banking and Finance 32: 1178–87.

[CrossRef]
Sanfilippo, Gilles. 2003. Stocks, bonds and the investment horizon: A test of time diversification on the French market. Quantitative

Finance 3: 345–51. [CrossRef]
Sharpe, William F. 1966. Mutual fund performance. The Journal of Business 39: 119–38. [CrossRef]
Zieling, Daniel, Antje Mahayni, and Sven Balder. 2014. Performance evaluation of optimized portfolio insurance strategies. Journal of

Banking and Finance 43: 212–25. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/S0378-4266(02)00283-2
http://dx.doi.org/10.1016/j.jbankfin.2008.08.002
http://dx.doi.org/10.3917/fina.373.0031
http://dx.doi.org/10.1016/j.jedc.2008.04.013
http://dx.doi.org/10.1111/j.1540-6261.1985.tb02386.x
http://dx.doi.org/10.3905/jpm.1987.409131
http://dx.doi.org/10.3905/jpm.1988.409167
http://dx.doi.org/10.1016/S0165-1889(02)00052-0
http://dx.doi.org/10.1111/eufm.12338
http://dx.doi.org/10.1080/713665670
http://dx.doi.org/10.1016/j.jbankfin.2010.11.012
http://dx.doi.org/10.1080/1351847X.2015.1029590
http://dx.doi.org/10.1016/j.jbankfin.2009.11.003
http://dx.doi.org/10.3905/jpm.1988.409172
http://dx.doi.org/10.1016/j.jedc.2014.05.005
http://dx.doi.org/10.1111/0022-1082.00247
http://dx.doi.org/10.1111/j.1540-6261.1981.tb04891.x
http://dx.doi.org/10.1080/00036840600949280
http://dx.doi.org/10.1016/j.jbankfin.2006.02.008
http://dx.doi.org/10.1088/1469-7688/3/4/310
http://dx.doi.org/10.1086/294846
http://dx.doi.org/10.1016/j.jbankfin.2014.03.027

	Introduction
	Portfolio Insurance Strategies: Definitions and Features
	Constant Proportion Portfolio Insurance Strategy
	Time Invariant Portfolio Protection Strategy
	Exponential Proportion Portfolio Insurance Strategy
	Practical Issues for the Implementation of Portfolio Insurance Strategies

	Simulation Setup
	Data and Design of Empirical Analysis
	Performance Measures and Statistical Tests

	Performance Measurement Results
	Constant Proportion Portfolio Insurance vs Its Generalizations
	Changing the Protection Level
	Changing the Rebalancing Frequency

	Concluding Remarks
	References

