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Abstract: We study the valuation of a pension fund’s obligations in a discrete time and space
incomplete market model. The market’s incompleteness stems from the non-replicability of the
wage process that finances the pension plan through time. The contingent defined-benefit liability of
the pension fund is a function of the wages, which can be seen as the payoff of a path-dependent
derivative security. We apply the notion of the super-hedging value and propose its difference from
the current pension’s fund capital as a measure of distance to liability hedging. The induced closed-
form expressions of the values and the related investment strategies provide insightful comparative
statistics. Furthermore, we use a utility-based optimization portfolio to point out that in cases of
sufficient capital, the application of a subjective investment criterion may result in heavily different
strategies than the super-hedging one. This means that the pension fund will be left with some
liability risk, although it could have been fully hedged. Finally, we provide conditions under which
the effect of a possible early exit leaves the super-hedging valuation unchanged.

Keywords: valuation of pension plans; defined benefit scheme; super-hedging price; utility maxi-
mization for pension funds; early exit from pension plan

1. Introduction

The investment goal of a pension fund has special features when compared to other
institutional investors. These features stem from the pre-determined liabilities that a
pension fund has to meet under a defined contribution (DC) scheme, a defined benefit (DB)
scheme, or a mixture of both. For example, in a typical DB scheme, each pension’s member
contributes periodically to the fund, which invests the contributions to the risky market,
aiming to meet the promised liability at the time of retirement. In principle, this creates an
optimization problem with random dynamic endowment and a terminal payment (random
or not).

In a similar context, we take the position of a pension fund for which the pension
payments are given by a pre-determined function of the members’ contributions. The
latter are set as a proportion of the wage process, which is possibly correlated to the
market the pension fund invests in. Our initial question is whether the pension fund could
guarantee the promised liability to the members, or, alternatively, what is the distance
between the current capital and the promised payment. For this, we consider the pension
payment as a path-dependent derivative security whose underlying asset is the members’
wage (stochastic) process. Since the wage process is neither tradeable nor replicable,
the valuation using solely the non-arbitrage assumption is not enough (the market is
incomplete). Therefore, we propose as a measure of distance to liability full-hedging the
so-called super-hedging price, i.e., the minimum cost of the portfolio whose value at the
time of retirement is higher than or equal to the liability.

1.1. Contributions

The idea of considering a pension’s fund liability as a derivative payoff is not new
in the literature (e.g., de Jong 2008). Assuming the market’s completeness yields a single
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price of the liability (as the discounted expectation under the unique risk-neutral measure)
and, hence, there is an admissible portfolio that replicates the liability almost surely (as
in Sundaresan and Zapatero 1997). However, markets are definitely not complete. In
particular, the wage process, which both finances the pension plan and determines the
pension’s liability, is normally neither tradeable nor replicable. Rather, it is an untradeable
process that can be very closely related to the investment universe of a pension fund. In
other words, a model that imposes a complete market surely underestimates the risk that a
pension fund faces, since the undertaken risk is considered hedgeable although it is not.

On the other hand, market incompleteness makes the valuation of a pension plan
rather subjective. Namely, the non-arbitrage pricing method does not give a single price
(but an interval of prices) and hence, a single valuation needs some subjective criterion
and/or estimations, for example, pricing with expectation (under subjective probability
measure), increased by a risk premium (also adapted to subjective risk preferences) or a
pricing that is based on the market’s competition. While all these methods are valid and
meaningful, their connection to the subjectivity is strong. On the contrary, risk metrics
that are less dependent on subjective beliefs (probability measure and risk preferences) are
occasionally more appropriate and indicative.

The super-hedging value is the upper bound of the non-arbitrage pricing interval,
which does not depend on either the subjectivity of beliefs or the risk preferences.1 We
consider it as the minimum capital that the pension fund manager needs in order to cover
the liability at the retirement date (with probability one). In other words, this metric can be
seen as an upper bound of the amount of cash that suffices to guarantee the solvency of a
DB plan and hence, its difference from the current value of the pension fund’s assets can be
used as a distance measure to fully hedged liability.2

One problem with the use of a super-hedging value as an indicative pension’s plan
valuation is that in the classical diffusion continuous-time models, it can be unbounded.3

For this reason, our goal is to examine how indicative this valuation is in the simplest possible
incomplete market model for which we are able to calculate explicit formulas and figure out
the effects of all parameters. Namely, we consider a discrete-time model with a single risky
asset and a stochastic wage process, where at each period there are only three possible
events, i.e., a trinomial model (in the spirit of the classical multi-period binomial model of
Cox et al. (1979)). In contrast to the binomial model, here the market is incomplete. As we
will see in the sequel, this model is both simple and rich enough to include all the important
features of the valuation, such as the volatility of the wages and the market, their relation,
the flexibility of contribution rate, the form of the pension’s liability, etc. We argue that, as
the binomial model is so useful for non-arbitrage pricing, the simple trinomial model is
similarly useful for the pension plan’s valuation.

Through the explicit solution of the super-hedging value in the trinomial model we
first verify its meaningfulness (in contrast to the classical diffusion model). In addition,
we obtain that it is decreasing with respect to the contribution and increasing with respect
to the liability (as expected). The size of the super-hedging value is affected only by the
unhedgeable part of the wage process. More precisely, the extra event at each step (which
makes the wage unhedgeable) affects the super-hedging value only when it gives a higher
wage than the hedgeable part of the wage process. Furthermore, the effect of the relation
between the wage and the risky asset on the super-hedging value appears in a rather
simple form. In particular, a negative relation increases the value when the range of a
risky asset is sufficiently high. Putting it in a simple phrase, a negative relation tends to
increase the super-hedging value if the risky asset has high volatility. On the other hand, when
the unhedgeable part of the wage process is too high, this relation does not affect the value
(since it is hedged out).

As for the super-hedging investment strategy, we first obtain that, as long as the
unhedgeable part of the wage is not very high, a positive (resp., negative) relation between
the wage and the risky asset results in a positive (resp., negative) position in the risky asset.
However, even when the relationship is positive, in the case where the unhedgeable part of



Risks 2023, 11, 103 3 of 24

the wage is sufficiently high, the super-hedging strategy indicates a short position in the
risky asset. Besides this result, a higher liability (resp., contributions) implies a higher (resp.,
lower) investment (in absolute value) in the risky asset. The standard monotonicity between
the volatility (i.e., the range) of the risky asset and the investment position also holds.

It is quite usual in the pension fund industry for managers to charge a performance
fee (see, for instance, Deelstra et al. (2003), Giacinto et al. (2011), Sundaresan and Zapatero
(1997) and Wang et al. (2018)). This creates an extra motive to achieve a better performance,
even when the fund does have the cash to super-hedge the undertaken liability. In fact,
pension fund managers normally impose their subjective beliefs about the probability
of future outcomes and use personalized risk preferences together with the pension’s
liability to form “optimal” investment strategies. However, how could these strategies differ
from the super-hedging strategy in the cases where the full hedging of the liability is feasible? In
other words, our next exercise is to apply widely-used optimization investment strategies
in our setting and emphasize the induced differences (in sign and size) to the objective
super-hedging strategy.

For this, we follow the related literature and model a pension fund’s subjective in-
vestment criterion under a utility maximization problem on the wealth surplus (i.e., the
difference between the portfolio value and the liability payment). In short, we emphasize
that such optimization objectives can heavily deviate from the super-hedging value both in
size and sign. Through a numerical exercise, we show that a super-hedging investment can
be relatively small, while the “optimal” investment can take very large positions (especially
under CRRA preferences). In other words, even if the pension fund has the capital to
super-hedge the liability, an investment goal that focuses on the wealth surplus can lead to
a portfolio with much higher risk than needed.

Finally, we consider the case of a potential early exit from the fund. More precisely,
we consider a mandatory scheme in the sense that the member does not have the choice to
leave, but the early exit occurs randomly at each period (due to death or job termination).
The issue that we address in that section is the conditions under which the possibility of an
early exit increases the super-hedging valuation. Upon imposing a couple of reasonable
assumptions, we obtain that a higher contribution rate implies that an early exit increases
the super-hedging value and hence the risk undertaken by the pension fund.

1.2. Connection with the Literature

There exists a considerable body of literature on pension funds that studies the valua-
tion of pension liabilities assuming market completeness. A quite large number of papers
models not only pension plans’ valuation, but also the “optimal” asset allocation of a
pension fund (in both complete and incomplete markets). Our work is mainly linked to
these two literature strands: the valuation of pension liabilities and optimal liability driven
investment (LDI) with dynamic stochastic contributions and path-dependent payments.

The super-hedging price is a well-known valuation generally used for pricing con-
tingent claims in incomplete markets. A classical reference in a diffusion market model
is Karoui and Quenez (1995), where the super-hedging price is defined as the smallest
initial capital that allows the sellers to construct a portfolio that dominates the payoff
process of an option (see also Blanchard and Carassus 2022; Cvitanic et al. 1998). For
the wage-indexed liability of a pension fund, the notion of the super-hedging valuation
(among several other methods) has been discussed in de Jong (2008), where it is mentioned
that the super-hedging portfolio is not feasible because of the unbounded wage process.
To the best of our knowledge, this is the first time a super-hedging valuation has been
applied to a pension plan. Thanks to the tractability of the model, we are also able to obtain
indicative insights.

Measuring the distance to the full hedging of liability using an objective notion as
the super-hedging valuation is quite novel. The standard measure that is used for a
pension fund’s solvency is the funding ratio, which is simply the market value of the
assets divided by the present value of future liabilities. A higher funding ratio means a
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lower underfunding risk (see, for example, Leibowitz et al. 1994, where the funding ratio is
referred to as a universal measure for asset/liability management). In such a measurement,
the discounted factor is a subjective parameter that reflects the views of the future expected
outcomes and the riskiness of the financial market (see Bogentoft et al. (2001), Bolla et al.
(2016), Dyachenko et al. (2022) and Josa-Fombellida et al. (2018) for investment strategies
based on the funding ratio). While the subjectivity of a measure and the related investment
strategies give flexibility to the asset manager, these measures do not necessarily take into
account the possibility of full hedging.

On the other hand, there is also a large academic literature that focuses on the optimal
investment problem. The approach that is mostly used is the maximization of expected
utility under a continuous-time model (applying Merton’s portfolio Merton (1971) for a
pension fund’s special case as in Blake (1998)). One of the related papers that is closer to
our approach is Sundaresan and Zapatero (1997). It considers a complete continuous-time
model and the optimal portfolio is the one that maximizes the expected growth rate of the
surplus (the difference between the market value of the assets and the value of the pension
liabilities). In the same spirit, Boulier et al. (2001) used the surplus over a guaranteed
payment, while a more general analytical solution to the dynamic-multiperiod portfolio
problem of an investor with risky liabilities and time-varying investment opportunities is
developed in Giamouridis et al. (2017). In Lichtenstern and Zagst (2022), a continuous-time
post-retirement optimization problem for a specific plan is solved, which, however, does
not allow guarantees. Another widely-used criterion is linked with mean–variance (M-V)
preferences (also supported by empirical evidence provided by Chiu and Wong (2014) and
Zhou and Li (2000)). For example, Menoncin and Vigna (2017) and Vigna (2014) use an
M-V criterion considering the difference between the final wealth and an appropriate level
of risk/reward (based on Vigna (2014)). Note that valuing the pension plans through a
utility-maximization problem in these models is both challenging and quite subjective.

There are several optimal management criteria for a pension fund, besides utility
maximization, that have been studied. For example, Siegman (2007) argues that the typical
objectives of pension funds are the minimization of contributions, maximization of pension
indexation and minimization of risk with respect to funding (similarly to Josa-Fombellida
and Zapatero (2008)). On the other hand, Battochio and Menoncin (2011) and Haberman
and Sung (1994) deal with different types of risks related to stability, such as the contribution
rate, solvency, salary and inflation risks. In Hainaut and Deelstra (2011), an incomplete
market is also considered (stochastic wage process) and the objective is the optimization
of contribution adjustments and the terminal surplus. An alternative approach is taken
in Haberman and Vigna (2002), where the periodic optimization goal is to minimize the
deviation between the fund’s target and an independent liability process.

Another part of the literature on the optimal investment criteria for DC pension funds
focuses on members’ optimal control between consumption and investment during the
working life. The general goal is to secure a target level of income that maintains the
individual’s pre-retirement lifestyle (see Kobor and Muralidhar 2020). The seminal papers
on that issue (such as Bodie and Crane (1997) and Bodie et al. (2004)) are reviewed by Bodie
et al. in Bodie et al. (2010) (where human capital is a highlighted factor). These theoretical
studies are consistent with the recent empirical evidence such as that provided in Azoulay
et al. (2016) and Gabudean et al. (2021).

1.3. Structure of the Paper

The remainder of this paper is organized as follows. In Section 2, we present the model
characteristics, describe the idea of super-hedging valuation and state and discuss the main
results. Section 3 is dedicated to the utility-maximization approach and to an indicative
numerical exercise. Section 4 deals with the possibility of an early exit, whereas in Section 5
we conclude, and in Appendix A we provide the proofs of the paper’s propositions.
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2. Our Model

As already mentioned, we consider a discrete time and space model with a given
terminal time that shall be referred to as the retirement time. We define the set of times
T := {0, 1, . . . , N} for some N ∈ N and consider a single (representative) member of a
pension fund that gives (stochastic) contributions to the fund at each time in T \ N.4

We adapt a dynamic trinomial model (also used in Mark 2000), where at each time
in T there are three possible outcomes and a probability measure P that assigns positive
probabilities for all three states at each point in time.5 In particular, there are two stochastic
processes: the member’s contribution to the fund and the price of the risky asset (that the
pension fund invests in). We let (St)t∈T be the price of a risky asset and (Wt)t∈T the wage
process of the member (a fraction of which is given to the fund as a contribution).6

Regarding the pension payment by the fund to the member at the retirement time, we
consider a DB scheme (typical for the first pillar), according to which the fund’s liability
is a random lump-sum payment PN that depends on the pension member’s wages, i.e.,
PN = PN(W0, W1, . . . , WN). In view of the standard payment functions of the public pension
systems (see, among others, Blake et al. (2013), Sundaresan and Zapatero (1997) and Wang
et al. (2018)), we impose a linear function of the member’s wages:

PN =
N

∑
t=0

ātWt, (1)

where āt = at(1 + r)N−t and {at}t∈T is a pre-determined collection of positive constants
called liability factors. Typically, at increases through time, although this is not necessarily
imposed here.

The funding source of the pension plan stems from the member’s contributions,
denoted by the stochastic process {ct}t∈T\N . As mentioned above, ct is given as a known
proportion of the wage process, that is,

ct := htWt,

where ht ∈ (0, 1) for each period t ∈ T \ N.
Our first task is to study how the “promised” pension payment could be valued,

or, in other words, how much capital is needed in order to meet the liability. This is an
important issue, since a proper valuation indicates whether and to what extent the fund’s
existing and expected wealth is sufficient to guarantee the undertaken liability. The setting
is the following: The pension fund receives periodic contributions from the member and
invests them in the risky and the riskless asset in order to increase the expected return
and take advantage of the possible correlation between contributions and wages. Under
that perspective, the payoff PN can be seen as a path-dependent derivative security and its
seller (i.e., the pension fund) obtains its price periodically through the contributions. One
could then argue that a way to value the liability (or to measure the needed capital to meet
it) is the cost of the replicating portfolio. However, the wage process that generates the
liability is non-replicable. The problem could have been solved using non-arbitrage pricing
if the market were complete (as in Sundaresan and Zapatero 1997), but, under market
incompleteness, the non-arbitrage pricing does not give a unique price for the liability.

On the other hand, another reasonable way to value such a derivative is by applying
a linear pricing kernel and potentially adding a risk premium that stems from a risk-
preference function. Although reasonable, this approach has two important disadvantages:
it is heavily subjective and underestimates the extreme events. In particular, the probability
measure be used to calculate the expected payoff reflects the subjective beliefs of the pension
fund, while the risk preferences reflect the risk aversion of the fund. Moreover, valuing
with a kernel and a premium provides a valuation such that, even if it is above the current
capital of the pension fund, the probability of being insolvent could remain positive.
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We propose a less-subjective and conservative approach by applying the notion of the
super-hedging price, which is based on the second fundamental theorem of asset pricing
(see, for example, Delbaen and Schachermayer 2005). More precisely, a super-hedging
portfolio is a portfolio whose value at time N is higher than PN a.s. and the super-hedging
value is the lowest cost at which a super-hedging portfolio can be created (see Cvitanic
et al. (1998), de Jong (2008) and Karoui and Quenez (1995) for the use of this notion in
a diffusion-market model). In other words, we argue that a meaningful value of a DB
pension payment is the lowest cost that the fund should have today to create an investment
portfolio that will be a.s. higher than the liability at the retirement.

While, in principle, the super-hedging value is relatively high (it yields a conservative
pricing rule), it could provide very interesting indications not only about the solvency of the
pension fund, but also regarding the importance of the correlation between the market and
the contribution. As mentioned in the introductory section, the super-hedging valuation
gives the upper bound of the sufficient amount of capital (cost) in order to meet the liability
and, hence, it can be seen as a measure to certain solvency or to full hedging. Furthermore,
we could examine how the aforementioned correlation should be taken into account for
the investment strategy (in the spirit of an LDI) and whether and to what extent it could
reduce the cost of super-hedging. Note also that this exercise is rather objective (within our
model setting), which means that its findings are invariant with respect to probability and
risk measures.

2.1. Super-Hedging Value and Portfolio

Market incompleteness is equivalent to the non-uniqueness of the risk-neutral prob-
ability measures, and the super-hedging value is also equivalent to the supremum of
the discounted payoff under the set of all risk-neutral probability measures (see Delbaen
and Schachermayer 2005). Therefore, we first need to characterize the set of risk-neutral
measures. The process of the risky asset’s price {St}t∈T satisfies the recursive formula
St+1 := f s

t St, for each t ∈ {1, . . . , N − 1}, where S0 ∈ R+ is the initial price and the factor
f s
t takes the form

f s =


us increasing factor (Good state)
ms medium-state factor (Med state)
ds decreasing factor (Bad state).

The pension fund also invests in a riskless asset whose return each period of time is
equal to an interest rate r > 0. In the view of the first fundamental theorem of asset pricing,
we make the following standing assumption that guarantees the absence of arbitrage
opportunities:7

ds < ms = (1 + r) < us. (2)

Similarly to the risky asset price process, we set that the wage process satisfies Wt+1 :=
f w
t Wt, ∀ t ∈ {1, . . . , N − 1}, where W0 ∈ R+ is the initial wage and the factor f w

t equals uw
when the wage increases (at the good or bad state of the risky asset), dw when the wage
decreases (at the good or the bad state) and mw in the medium state (it can be higher or
lower than uw and dw). Note that the wage is not a tradeable asset, which means that
there is no specific required inequality for factors uw, mw and dw. Herein, we only assume
dw < uw and that in the medium state the wage factor is mw.

The set of equivalent risk-neutral probability measures is defined as

M := {Q ∼ P : EQ[St/(1 + r)|St−1] = St−1, for each t = 1, 2, . . . , N}. (3)

In words,M is the set of all equivalent probability measures that make the discounted
price process of the risky asset a martingale. The following notation is also useful:

g := us − (1 + r) and β := (1 + r)− ds. (4)
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Since the factors are assumed constant through time, simple calculations yield thatM is
parametrized (with a slight abuse of notation) in the following way:

M =

{
Q =

(
β(1− λ)

β + g
, λ,

g(1− λ)

β + g

)
: λ ∈ (0, 1)

}
, (5)

where Q({good state}) = β(1− λ)/(β + g), Q({med state}) = λ and Q({bad state}) =
g(1− λ)/(β + g).

Then, for every random payoff YN measureable with respect to the information up to
time N, its initial values that keep the non-arbitrage assumption are given by the interval(

1
(1 + r)N inf

Q∈M
EQ[YN ] ,

1
(1 + r)N sup

Q∈M
EQ[YN ]

)
.

The upper bound of the interval above determines the super-hedging value, in the sense that
when every price is equal to or higher than that, it creates an arbitrage opportunity. Now,
placing the pension lump-sum payment PN in the position of YN above, we may argue that if
the present value of the pension’s fund wealth is higher than (1/(1+ r)N) supQ∈M EQ[PN ],
there is an investment strategy that yields a terminal a.s. equal to or higher than PN . Under
that perspective, the super-hedging value is the minimum capital (cost) that the fund needs
at time zero to create a portfolio that guarantees the payoff of the pension obligation PN .

We distinguish two cases according to whether the relation between the wages and
the risky asset is positive or negative.

Case 1 (positive relation). Wage increases at the good state by uw.

Case 2 (negative relation). Wage decreases at the good state by dw.

Remark 1. Note that the relation (positive or negative) defined above is not directly linked to the
linear correlation coefficient. In other words, a positive relation does not necessarily imply a positive
correlation, nor does a negative correlation imply a negative relation.

We also set the variables

w̄+ = (gdw + βuw)/(g + β), w̄− = (guw + βdw)/(g + β) (6)

where w̄+ is the complete-market expected wage factor in the case of a positive relation
and w̄− in the negative case. In fact, w̄+ and w̄− are used to describe the case of a complete
market where there are only two possible future states at each node. It would be useful to
roughly interpret w̄± as the cost of the hedgeable part of the wage process and the medium
state as the unhedgeable part (in the sense that the vanishing of the medium state results in
a complete market). We also define the variable

A = max{w̄, mw}, where w̄ =

{
w̄+, Case 1
w̄−, Case 2,

(7)

and use the following notation:

At Case 1: k+ =

{
uw−dw
us−ds

, A = w̄
uw−mw
us−ms

, A = mw
, at Case 2: k− =

{
dw−uw
us−ds

, A = w̄
dw−mw
us−ms

, A = mw.
(8)
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Proposition 1.

(i) The super-hedging value of a pension plan PN of the form (1) equals

Ps
0 = W0

N

∑
n=0

(an − hn)

(
A

1 + r

)n
, (9)

where hN := 0.
(ii) The corresponding super-hedging strategy is given by

∆s
t = k±

Wt

St

N

∑
n=t+1

(an − hn)

(
A

1 + r

)n−t−1
∀t ∈ T \ N, (10)

where k± is defined in (8).

Note that if A = w̄, i.e., w̄+ or w̄− is higher than mw, the cost of the hedgeable part
of the wage remains higher than the wage at the medium state (in fact, the distance is
increasing with respect to the range uw − dw). This implies that the super-hedging strategy
always has to cover the complete-market expected wage and hence, neither the strategy
nor the super-hedging value is affected by the exact level of the factor of the medium state
mw. On the other hand, when A = mw, the medium state yields the higher wage and then
both the portfolio and the value stem solely from the medium-state wage. In particular,
when the medium state gives a higher wage than the hedgeable part of the wage, the
super-hedging value is independent of um and dm for both Cases 1 and 2. We summarize
this insightful note below.

Corollary 1.

(i) If A = w̄, then Ps
0 is not a function of mw.

(ii) If A = mw, then Ps
0 is not a function of (uw, dw).

It is important to note that the sign of the sum ∑N
n=0(an − hn)A/(1 + r)n determines

whether the future contributions are sufficient to cover the undertaken liability. If the sum
is positive, there is an unhedgeble risk for the pension fund, the value of which can be
estimated by the super-hedging value. On the other hand, a negative sum implies that
the pension fund can almost surely cover its liability and keep some surplus too. Under a
member’s perspective, only a positive sum (i.e., a positive super-hedging value) gives an
incentive to participate in this pension plan. Although we consider herein a mandatory
participation in the pension plan (first pillar), we state the following assumption that will
be imposed in some place in the sequel.

Assumption 1 (Incentive Condition).

N

∑
n=0

(an − hn)

(
A

1 + r

)n
> 0.

This assumption means that the sum of the weighted difference between factor an and
the contribution rate is positive. While for the first years factor an is normally low (even
zero, as in our numerical exercise in Section 3.1), for the years close to the retirement time,
its size should be at least equal to the contribution rate. Otherwise, the member has no
incentive to participate.

Under Assumption 1, the super-hedging value (considered as the minimum required
capital to replicate) is indeed decreasing with respect to the contribution and increasing
with respect to the liability. Note that the effect of the relation between the wage and the
risky asset on the super-hedging value is clear in (9). In particular, a negative relation
increases the value when A = w̄. That is, a negative relation tends to increase the minimum
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cost of liability replication if the risky asset has high volatility. On the other hand, when
the unhedgeable part of the wage price is too high, this relation does not affect the super-
hedging value (since it is hedged out).

A direct implication of Assumption 1 is that the sign of the super-hedging strategy
(10) solely depends on the sign of k± for each period. In particular, when mw is the highest
factor of wage change, then the super-hedging strategy indicates a negative position to the
risky asset. Hence, when Case 1 holds, we have a positive position to the risky asset, while
Case 2 indicates a negative position.

Remark 2. We directly obtain from (9) the expected monotonicity of the super-hedging value and
factors an, meaning that the higher the liability, the higher the value becomes. In addition, we
clearly obtain that the super-hedging value is decreasing with respect to the level of contributions
(more inflow to the fund, less capital is needed to cover the liability). In particular, assuming that
A > 1 + r (which means that wages are supposed to grow in their good scenarios at a higher rate
than the interest rate), the effect of the latest contributions are more important than the first ones.
This comes from the fact that A considers the good case for the wages (see (7)) and hence, hn is
attached to a higher wage (and therefore higher contribution).

All the above notices held true also for the super-hedging strategy (10). Indeed, a higher
liability means a higher (in absolute terms) position in the risky asset and higher contributions
imply a lower position (in absolute terms) to the risky asset.

Remark 3. In the special case where mw = 1 + r (a condition consistent with the so-called Fisher
effect) and if A = mw, we readily obtain that

Ps
0 = W0

N

∑
n=0

(an − hn).

This expression can be seen as a benchmark case, where the super-hedging value is simply the
initial wage scaled by the total difference between the designed liability factors and the contribu-
tion factors.

2.2. The Use of Super-Hedging Value as Distance to Liability Hedging

So far we have analyzed and discussed the super-hedging value and strategy as a way
to value a pension plan. In the cases where the pension fund’s current capital is equal to
or higher than the super-hedging value, the replication of the liability is feasible (within
the model at hand). However, since the super-hedging generally yields quite conservative
valuations, these cases do not hold often. Therefore, the use of the super-hedging valuation
therein should be as a measure for the distance between the fund’s capital and the full
hedging of its liability. In other words, if X0 denotes the current capital (market value of
holding assets) of a pension fund, a risk manager could use the following measure:

Distance to Hedging = Ps
0 − X0.

Full hedging of a non-replicable liability becomes more costly as the market becomes
more incomplete. Considering the super-hedging value as a risk measure has two main
advantages: First, it is objective (i.e., it does not depend on subjective beliefs and risk
preferences), which comes in contrast to the widely used measures of funding ratio and
asset liability gap.8 Second, it has a very practical and meaningful translation under a risk-
management perspective (together, of course, with the associate super-hedging strategy).

3. Super-Hedging and Subjective Optimization on the Surplus

This section considers the manager’s motives. It is quite usual in the pension fund
industry that managers charge a performance fee on top of the management fee. This
creates an additional motive (higher compensation) for a better performance than the
promised liability. In principle, asset managers’ investment optimization criterion takes
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into account the pension fund’s liability, their beliefs about the financial markets and the
risk preferences (imposed by the pension funds and/or themselves). The goal of this
section is to point out the possible divergence of such investment approaches from the
super-hedging methodology, especially in the cases where the full hedging of liability
is feasible.

For this, we consider the widely-used model of managers’ incentives in the related
literature, the maximization of expected utility on the surplus between the terminal wealth
and the pension liability (see, among others, Giacinto et al. (2011), Sundaresan and Zapatero
(1997) and Wang et al. (2018)). Formally, the optimal investment strategy solves the
following problem:

maxE[U(XN − PN)], (11)

where U is a strictly concave and increasing function, PN is given in (1) and XN is the
value of the fund’s portfolio at the retirement time. Therefore, we have an expected utility
maximization problem in an incomplete, discrete-time and -space market model with
random endowment and random liability.

Our goal is neither the study of the properties of the utility maximization nor the
quantitative comparison of the induced investment strategies with the super-hedging one.
Instead, we want to examine how the asset managers’ objectives could induce a totally
different investment strategy than the one that could vanish the pension fund’s risk (in
cases of sufficient capital). For that exercise in our trinomial model, we consider CRRA and
CARA utility functions and a widely-used time-inconsistent setting.

We set P = (pu, pm, 1− pu − pm) as the subjective probability measure of the asset
manager, where pu is the probability of the good state, pm the probability of the medium
state, and hence pd = 1− pu− pm of the bad state. All the expectations (and other moments)
are taken under measure P, except from the cases where another measure is specifically
stated. If ∆t denotes the amount of risky assets held at period [t, t + 1), for each t ∈ T \ N,
the wealth process takes the following form:

Xt+1 =
t

∑
n=0

∆n[Sn+1(1 + r)t−n − Sn(1 + r)t−n+1] +
t

∑
n=0

hnWn(1 + r)t−n+1. (12)

We initially consider time N − 1 and the last step of the problem:

max
∆N−1

E[U(XN − PN)|FN−1], (13)

where {Fn}n∈T stands for the filtration generated by the risky asset (or equivalently by the
wage process). Essentially, this is a static problem and due to the strict concavity of U, it
admits a unique solution ∆̂N−1.9 Formally, the optimal investment strategy is determined
by the dynamic programming principle, according to which the investment goal at each
point in time is the value function (i.e., the maximized expected utility of the latest step). We
follow, however, a different approach for two main reasons: first, the utility maximization
problem in incomplete markets with random liability and random income does not admit a
closed-form expression for the investment strategy process and hence, it could not be used
for our study herein; and second, it seems that in practice, asset managers do not consider
the time consistency as a priority issue and such inconsistency is also quite usually imposed
in the literature (Campbell and Viceira 2002; Grenadier and Wang 2007; Marín-Solano and
Navas 2010; Tian 2016).

This approach is consistent with the practical applications (see Zhao et al. 2016), where
the portfolio optimization is normally time-inconsistent in the sense that the asset managers
take into account the liability in a simpler/myopic way. In addition, in contrast to the
optimal strategy, our sub-optimal one admits a closed-form expression. More precisely,
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besides the last step, for every time t ∈ {0, 1, . . . , N − 2}, the investment goal within the
period [t, t + 1) is the optimization

max
∆t

E[Ut(Xt+1 − Pt+1)|Ft], (14)

where
Pt :=

1
1 + r

E[Pt+1|Ft], for each t ∈ T \ N. (15)

The fund’s asset manager aims to maximize the utility of the surplus at the end of each
period, where the liability value is the discounted expected value of the final liability of the
fund. In other words, at each period, she estimates under her subjective beliefs the expected
liability and optimizes the investment strategy accordingly. In addition, the model gives
us the flexibility to change the utility function at each period, which is consistent with the
widely applied life-cycle strategies (see Cairns et al. 2006; Jagannathan and Kocherlakota
1996; Lichtenstern et al. 2020). In particular, as a member approaches the retirement time,
her risk aversion increases, meaning that the investment objective also changes. In fact,
within the family of utilities with parametrized risk aversion, we can even consider risk
aversion coefficients as state-dependent.

Following the related literature, we shall work with the classic examples of utility
functions: power utility Ut(x) = xγt /γt, where γt > 0, for each t and x > 0; exponential
utility Ut(x) = −γte−γtx, where γt > 0, for each t and x ∈ R; and a mean-variance criterion
Ut(Xt) = E[Xt]− (γt/2)Var[Xt], γt > 0, for each t and for Xt being a random payment
measurable with respect to Ft.

Remark 4. When the probability of a negative surplus is positive, utility functions that are defined
only on the positive real axis (such as CRRA utility) are not suitable for modelling DB pension
funds. More precisely, if for every admissible investment strategy ∆, there is a state ω with positive
probability and a point in time t ≤ T, for which X∆

t (ω)− Pt(ω) < 0, the CRRA optimization
problem is not well-defined. In economic terms, these situations may occur when the liability PT is
too high or when the initial capital and/or the contribution rate are too low, resulting in a positive
probability of being insolvent. We include, however, these utility functions in our discussion, since
when the initial capital is higher than the super-hedging value, there is at least one investment
strategy that yields a surplus with probability one (see also the numerical example that follows) and
hence problems (14) and (15) are well-posed.

We will need to following notation for the proposition that states the closed-form
expressions of the optimal investment strategies:

L = puuw + pmmw + pddw,

Lp = uw(pug)1/(γt−1) − dw(pdβ)1/(γt−1),

Lcov = puguw − pdβdw − (pug− pdβ)L.

(16)

Proposition 2 (Utility maximization). The solution of the optimization problem (14) and (15)
for each t ∈ T \ N is given below:

(i) For power utility (assuming that X0 ≥ Ps
0):

∆̂P
t =

((pug)1/(γt−1) − (pdβ)1/(γt−1))
(

∑t
i=0 ai(1 + r)t−i+1Wi − Xt(1 + r)

)
+ DtWtLp

St(g(pug)1/(γt−1) + β(pdβ)1/(γt−1))
, (17)

where Xt is the fund’s wealth at time t.
(ii) For exponential utility:

∆̂E
t =

ln(pug/pdβ) + γtDtWt(uw − dw)

γtSt(g + β)
. (18)
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(iii) For mean-variance criterion:

∆̂MV
t =

(pug− pdβ) + γtDtWtLcov

γtSt(pug2 + pdβ2 − (pug− pdβ)2)
, (19)

where

Dt = (at+1 − ht+1) +
N

∑
i=t+2

ai

(1 + r)i−t−1 Li−1. (20)

and hN := 0.

The formulas of Proposition 2 are indicative for the way an asset manager with random
income (i.e., contributions) and a related stochastic liability (i.e., PN) invests in the risky
asset. We do have some common features for all three utility functions that we list below.

It is a well-known fact that the exponential utility and mean-variance optimization
criterion are close, in the sense that both can been seen as risk preferences with constant
absolute risk aversion (CARA).10 This connection also appears in Formulas (18) and (19).
We first note that when the risk-aversion coefficient increases the optimal position decreases
in absolute term. In fact, the optimal position is decomposed into two terms: one deals with
the utility maximization without considering the liability and the random income and the
second, which stands for the special feature, is the pension fund as investor.11 Interestingly
enough, only the first term depends on the risk aversion, from which we directly obtain the
aforementioned monotonicity. Note that the decreasing effect of γt on the position in the
risky asset is consistent with the life-cycle investment strategy, which simply reflects that
cohorts closer to retirement have a higher risk aversion and hence, lower positions in the
risky market.

Note that the second term of the exponential maximizer (18) can be written as

Dt
Wt+1(G)−Wt+1(B)
St+1(G)− St+1(B)

= Dt × (Delta-hedging in the binomial model).

The above representation is insightful. It means that the manager, additionally to her
standard utility maximization portfolio, follows a scaled replication strategy for the source
of the liability (as if the market were complete). Indeed, in the case where we do not have a
medium state, the market is complete and the replication strategy of an equal-to-the wage
payoff is the ratio (Wt+1(G) −Wt+1(B))/(St+1(G) − St+1(B)). The scale of the second
term, i.e., quantity Dt, is positive under Assumption 1 and is also increasing with respect to
the liability factors and the parameter L (note that L = E[W1]/W0). Therefore, under Case 1,
the second term is also positive and increasing with respect to the expected wage, whereas
under Case 2, it becomes negative and decreasing. Another (expected) comparative statistic
is that for all utilities the optimal strategy is increasing with respect to pu, meaning that the
higher probability for a good state (keeping the probability of the medium state stable), the
higher the position in the risky asset becomes.

Similar representation and comparative statistics held also for the mean-variance
criterion, where there is an approximation of the Delta-hedging through the covariance of
the wage and the risky asset’s price.

The situation is only slightly different under the power utility. Since therein we have
constant relative risk aversion (CRRA), it is better to consider the percentage of the wealth
invested in the risky asset, i.e., the ratio ∆̂P

t St/Xt. From (17), we again have a two-term
decomposition, with the first term stemming from the pure utility maximization problem,
while the second includes the pension fund’s special features. As before, the absolute
value of the first term is decreasing with respect to risk aversion, while the second term
is positive if we are in Case 1. In contrast, however, to the CARA utilities, the second
term of the strategy heavily depends on the risk aversion, which means that there is not
a clear connection to the replication type of the strategy. In order to have an integrated
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discussion, we run a numerical example of all the aforementioned investment strategies in
the following subsection.

3.1. A Numerical Exercise

We now state an indicative numerical example, based on which we emphasize some
of main points. Within this example, we also propose a reasonable process to determine
the liability factors at.

We consider a member that is supposed to join the pension scheme for 20 years and
contribute until the retirement time (i.e., N = 20). The contributions ct are paid at the
beginning of each period as a fixed proportion h = ht = 8% of the wage Wt (a typical
contribution rate for supplementary pension funds). We set the member’s wage at the
initial date W0 = $1000.

In order to determine the liability factors at we first impose that only the last 10 years’
wages are considered for the pension plan, i.e., at = 0 for all t = 0, 1, . . . , 10 (this is also
typical in practice). We can connect the final liability P20 with a specific replacement rate
with respect to the last wage. For that, if Pensiont is the annual (increased by interest rate)
pension until the life expectancy (say in M years), a replacement rate 10% at the final wage
means that

Pensiont = 10%W20(1 + r)t, for t = 1, 2, . . . , M.

The above annuity is measurable with respect to F20. Now, we want P20 to be at a similar
level to the value of this annuity at time t = 20, ∑M

t=0 Pensiont/(1 + r)t = 10%W20 ×M.
However, at are deterministic, which means that we need to estimate the final wage. A
simple approach is to consider an expected wage’s growth rate, which is normally slightly
higher than the risk-free interest rate. If we set r = 1%, we may consider the wage’s
growth to be 2%, which means that the expected final liability is 0.1 × E[W20] × M =
0.1× 21× 1000× (1.02)20 = $3120.

For the values of at, we impose an increasing sequence with a growth (say 10%) and
create the following equation for a11:

20

∑
t=11

ātE[Wt] =W0

20

∑
t=11

at(1 + r)N−t(1.02)t = a11W0

20

∑
t=11

(1.10)t−11(1.01)N−t(1.02)t

=a11 × 22, 837 = 3120.

We readily obtain that a11 = 0.136, and hence a12 = a11× 1.1 = 0.150 and a20 = a11× 1.19 =
0.322, which includes the determination of liability factors.

We also set, without loss of generality, the price of the risky asset at the initial date to
be S0 = $10 and choose the following factors:

us = 1.04, ds = 0.98 and uw = 1.02, mw = 1, dw = 0.99. (21)

We consider a positive relation between the wage and the risky asset (Case 1), whereas
A = w̄+ = 1.005. Application of Formulas (1) and (10) gives

Ps
0 = $410 and ∆s

0 = 25.

Therefore, the distance to full hedging is almost five times the initial contribution (h0 ×W0 = $80)
and its future value Ps

0(1 + r)N ≈ $500, which is around 16% the expected final liability
(calculated equal $3120 to above).

Now, if the pension fund’s initial capital X0 is more that $410, i.e., the distance to
full hedging is negative, there is a specific strategy that guarantees (with probability
one) the promised liability. This strategy indicates buying the risky asset at a percentage
∆s

0S0/X0 ≤ ∆s
0S0/Ps

0 = 60%.
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Remark 5. Assuming that there is no medium state, the market is complete and the unique
risk-neutral probabilities of the good and bad states are qu = β/(g + β) and qd = g/(g + β),
respectively. Under that assumption, the discounted expected value of the pension plan is

1
(1 + r)20EQ[P20] = $2065.

The present value of all the future contributions under the assumption of completeness is

19

∑
n=0

hn

(1 + r)n EQ[Wn] = $1620.

We also picture the effect of the unhedgeable part of the wage to the super-hedging
value in Figure 1. When mw is below w̄, A = w̄ and hence, the medium state does not
affect the value (in both positive and negative relation cases). However, high values of mw
heavily increase the distance to full hedging, an outcome that reflects the high risk of the
pension fund in this case.

Figure 1. The distance to full hedging as a function of mw, keeping the rest of the parameters as in
(21). Up to mw = w̄, the value is independent of mw.

We now consider the utility-based optimization strategies under the condition where
X0 = Ps

0 . For this, we demonstrate in Figures 2 and 3 the relation between the initial position
in the risky assets for super-hedging and utility-based strategies and the unhedgeable part
of the wage process. Firstly, we notice that (as stated in Proposition 1) in Case 1, mw > uw
implies negative ∆s

0 (super-hedging indicates a short position). On the other hand, all the
considered subjective strategies suggest positive positions to the risky asset.12 This example
indicates that the subjectivity of a utility maximizer prevails over the objectivity of the
hedging goal, even in the case where the goal can be fully hedged, and that the utility
maximization is considered on the terminal capital surplus. In other words, due to the
positive expected excess return of the risky asset (we used probabilities pu = 0.4, pm = 0.3
and pd = 0.3), the optimal strategies are willing to undertake unneeded investment risk
and in fact in the opposite direction to the hedging strategy. The situation is more intense
under CRRA preferences.



Risks 2023, 11, 103 15 of 24

Figure 2. Strategies at Case 1.

Figure 3. Strategies in Case 2.

4. The Effect of Early Exit

In the previous sections, we have not considered the possibility of a member’s early
exit from the pension plan. This may occur not only if a member dies before the retirement
time, but also in the case where the member stops working (at least at the job that is
linked to the pension plan). We now incorporate this possibility in our model and under
specific assumptions, we update our super-hedging pricing calculations. We consider the
case where the exit is random, in the sense that there is an exogenously given sequence
of probabilities that a member leaves the pension plan before N. Our main task is to
determine the exact conditions in which the possibility of early exit increases the distance
to full hedging (i.e., the super-hedging valuation).

In the sequel, for each t ∈ T \ N, ζt ∈ [0, 1) stands for the probability that the member
remains in the pension plan at period (t, t + 1]. Hence, so far we have imposed that
ζt = 1 for all t. It is quite reasonable to assume that these probabilities are non-increasing
through time (i.e., the annual probability of exit is not decreasing as the member gets older).
While this monotonicity is not necessary to our analysis, the following assumption is both
reasonable and very useful.

Assumption 2. The probability of early exit is independent of the risky asset’s price.
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Assumption 2 requires that our space become larger, in the sense that at each step we
have six possible outcomes briefly described below:

{GS, GE, MS, ME, BS, BE}, (22)

where G stands for the good state (increase in risky asset), M for the medium state, B for
the bad state, while S means that the member stays and E that the member exits the plan.
Incorporating the possibility of early exit in our model, the set of the risk-neutral measures
of probabilities (see (3) and (5)) changes and, for each t ∈ T \ N under Assumption 2,
contains the probability measures Q′t of the following form:

Q′t = (qu(λt)ζt, qu(λt)(1− ζt), λtζt, λt(1− ζt), qd(λt)ζt, qd(λt)(1− ζt)), (23)

where qu(λ) = β(1− λ)/(β + g), qd(λ) = g(1− λ)/(β + g), λt ∈ (0, 1), ζt ∈ [0, 1] and the
elements of Q′t denote the probabilities of events in (22) in the same order.13

Since our model considers a DB type of liability, the compensation that a member
receives at an early exit should be specifically pre-determined. A reasonable way to do so
(also consistent with the setting of the whole pension plan) is that when a member leaves
at period (t, t + 1] they will receive the payment:

Pl
t :=

{
∑t−1

n=0 ānWn + ātWt−1, t ∈ T \ N
PN , t = N.

(24)

In words, the compensation in the case of an early exit is equal to the promised liability
up to the period of the exit, where for the last period we consider the last wage associated
with the last contribution. It is important to recall that factors āt are normally increasing
in time, which means that this setting deters an early exit at the first periods (we shall
make this statement precise below). Note that we also stress the consistency of the early
compensation with the final payment, in the case of no early exit (1).

In order to calculate the distance to full hedging for the pension plan under the new
setting that allows early exit, we need to construct a tree where at each node there are six
possible states. The simplified version of this tree when N = 2 is given in Figure 4.

Figure 4. A part of the tree that allows early exit when N = 2. The notation ln stands for “leaving the
plan” at period (n, n + 1], and sn denotes the complement event (member stays in the plan).
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In order to clarify the way we calculate the super-hedging value in the case of random
early exit, we discuss in more detail the case of N = 2. Working backward in time, we
assume that we stand at t = 1. At the event of GS in the first period (i.e., the member has
stayed in the plan in the period (0, 1] and the risky asset has increased at this period), the
super-hedging value is the maximized expectation of the payoffs shown in Figure 4. We
calculate (and slightly abuse the notation):

Ps
1(G, s0) = sup

Q′∈M′

1
(1 + r)

EQ′ [P2 − c1(1 + r)|F1, GS]

=
1

(1 + r)
sup
(λ1,ζ1)

{ā0W0 + (ā1 − h1(1 + r))W1 + φ(λ1)ζ1 ā2W1 + (1− ζ1)ā2W1}

whereM′ is the new set of risk-neutral martingale measures, φ(λ1) := quuw +λ1mw + qddw
and A is given in (7). Since the above function is linear with respect to ζ1, we obtain the
supremum in two possible cases (when ζ1 = 0 and when ζ1 = 1). When ζ1 = 1, Ps

1(G, s0)
becomes consistent with (9) and, in fact,

Ps
1(G, s0) =

1
(1 + r)

(ā0W0 + (ā1 − h1(1 + r))W1 + ā2W1 A),

whereas when ζ1 = 0, we have that

Ps
1(G, s0) =

1
(1 + r)

(ā0W0 + (ā1 − h1(1 + r))W1 + ā2W1).

Note that assuming A > 1, the case of ζ1 = 1 always prevails in the last step of the tree.
Following the same line of argument, we calculate the distance to full hedging at the

initial time:

Ps
0 = sup

Q′∈M′

1
(1 + r)

EQ′ [P1 − c0(1 + r)]

=
W0

(1 + r)2 sup
(λ0,ζ0)

{
ā0 − h0(1 + r)2 + φ(λ0)ζ0(ā1 − h1(1 + r) + ā2 A) + (1− ζ0)(ā1 + ā2)

}
.

We again have the two possible suprema. When ζ0 = 0

Ps
0 =

W0

(1 + r)2

(
ā0 − h0(1 + r)2 + ā1 + ā2

)
and when ζ0 = 1, we return to the case of no early exit:

Ps
0 =

W0

(1 + r)2

(
ā0 − h0(1 + r)2 + (ā1 − h1(1 + r))A + ā2 A2

)
.

Assuming that A > 1, we then obtain that the distance to full hedging increases when
random exit is possible if and only if

h1 > ĥ1 :=
ā1(A− 1) + ā2(A2 − 1)

(1 + r)A
. (25)

In the above condition, ĥ1 denotes the bound of the contribution rate, above which the
early exit increases the distance to full hedging of a pension plan. Indeed, when the
contribution is sufficiently high, an early exit is harmful for the pension fund (the loss
income is higher), given that the liability factors at remain stable. In the same spirit, (25)
indicates that a possible early exit increases the distance to full hedging if the liability
factors are sufficiently small (meaning that ĥ1 is small and hence the condition becomes
more likely to hold). Intuitively, smaller liability factors mean that an early exit will cut the
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(high) contribution inflow in exchange of low liabilities. Finally, note that ĥ1 is an increasing
function of A, which implies that a low A has a similar effect to low liabilities. Moreover, a
low A is associated with a narrower wage tree (lower range), which in turn means lower
volatility for the liability.

The situation in the general case of N > 2 follows the same arguments. In particular,
for t ∈ {1, 2, . . . , N − 1}, we provide a bound for the corresponding contribution above
which the distance to full hedging increases (similarly to (25)). We state the exact condition
in the proposition below.

Proposition 3. Impose Assumption 1 and let A > 1. For the pension plan (24) under possible
early exit, we have the following:

(i) The distance to full hedging does not increase when early exit is possible if and only if for each
t = 1, 2, . . . , N − 1

ht ≤ ĥt :=


A−1

A [aN−1 +
aN(A+1)
(1+r) ], t = N − 1

A−1
A ∑N

n=t
an

(1+r)n−t , t = 1, 2, . . . , N − 2,
. (26)

(ii) If ht > ĥt for each t = 1, 2, . . . , N − 1, the distance to full hedging of the pension plan is given by

Ps
0 = W0

(
N

∑
n=0

an

(1 + r)n − h0

)
. (27)

Remark 6. One of the main useful features of the distance to full hedging as an indicative valuation
of a pension plan is the fact that it is not affected by the subjectivity of the probabilities. In particular,
in this section, the super-hedging is not affected by the actual level of the probabilities of exit. Rather,
the level of the standard inputs of the problem determine whether and how the price is going to
change. As we have mentioned in the case of N = 2, early exit will not affect the distance to full
hedging if the contributions are sufficiently low and the liability factors (and/or parameter A) are
sufficiently high. These notices are apparent in condition (26).

5. Conclusions

We have studied the case of a pension fund with defined-benefit liabilities that stem
from a linear function of the members’ wage process. The pension fund receives contri-
butions and invests them in a (correlated to the wage) financial market in a discrete-time
manner. We consider the liability as the payoff of a path-dependent derivative security. The
untradeability of the wage process makes the market incomplete and hence, the pension’s
fund liability cannot be fully hedged at a non-arbitrage initial cost. Under that perspective,
we propose that the difference between the cost of full hedging and the current pension’s
fund capital is a meaningful measure of the distance to fully hedged liability. While in diffu-
sion models the super-hedging value could be problematic from a practical standpoint, in
discrete-time and -space market models we are able to obtain closed-form expressions not
only for the value, but also for the induced investment strategies.

In that direction, we adapt the simplest possible incomplete model (i.e., a trinomial
tree) and analyze the related formulas. From those, we find that the distance to full hedging
is basically affected only by the unhedgeable part of the wage process. In fact, a negative
relation between the wage and risky asset processes tends to increase the distance to full
hedging when the risky asset has high volatility, while when the unhedgeable part of the
wage price is too high, the risky asset volatility could be hedged out and hence, it does
not affect the valuation. As for the super-hedging investment strategy, we find that a
positive (resp., negative) relation between the wage and risky asset results in a positive
(resp., negative) position in the risky asset (provided that the unhedgeable part of the wage
is not extreme). Furthermore, a higher liability (resp., contributions) implies a higher (resp.,
lower) investment (in absolute value) in the risky asset.
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Furthermore, we use a utility-based optimization portfolio to point out that in cases of
sufficient capital, the application of a subjective investment criterion may result in heavily
different strategies than the super-hedging one. In these situations, the pension fund will be
left with some liability risk, although it could have been fully hedged. Finally, we provide
conditions under which the effect of a possible random early exit leaves the distance to full
hedging unchanged. In particular, this holds when the contribution factor is sufficiently
low and/or the liability factors are sufficiently high.

The super-hedging value is a meaningful way to measure the positive effects of a
dedicated-to-hedging liability-driven strategy. Having established the well-posedness of
the notion of super-hedging valuation in discrete-time and -space models, several possible
extensions emerge. For example, one could consider larger incomplete-market trees that
could allow the use of more risky assets and then examine how the super-hedging value
changes when the investment pool is extended. Another extension could deal with the
function that determines the liability payment. Herein, we have considered a linear function
that in principle could be generalized in more flexible, hybrid payment structures. Another
possible extension is to examine how the option of an early exit by a member (which is
possible in pension funds with voluntary participation) could affect the super-hedging
value and strategy. From the proposed setting, a number of unquestionably interesting
questions that can be subjects for future research.
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Appendix A. Proofs

Appendix A.1. Proof of Proposition 1

(i) The main idea of the proof can be given in the simplified case N = 2. Working
backwards in time, we stand at t = 1 and we want to find the value
Ps

1 = sup 1
(1+r)EQ1 [P2|F1]− c1, where (Ft)t∈T is the filtration generated by the risky

asset. We also recall that G, M and B stand for the good, medium and bad state,
respectively. Then, for each Q1 ∈ M

EQ1 [P2|F1] =qu(λ1)P2(G) + λ1P2(M) + qd(λ1)P2(B)

=ā0W0 + ā1W1 + ā2W1φ(λ1),

where φ(λ) = qu(λ)uw + λmw + qd(λ)dw, with qu, λ, qd are the respective proba-
bilities as defined in (5). Depending on A := max{w̄, mw}, we readily obtain that
Ps

1 = (1/(1 + r))[ā0W0 + (ā1 + ā2 A− h1(1 + r))W1]. Similarly, at time t = 0:

P0
s = sup

1
(1 + r)

EQ0 [P1
s|F0]− c0 = W0

[
1

(1 + r)2 (ā0 + ā1 A + ā2 A2)−
(

h0 +
h1

1 + r
A
)]

= W0

2

∑
n=0

(an − hn)

(
A

1 + r

)2
,

given that h2 is defined to be equal to zero.
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In order to find a recursive formula of Ps
0 for N > 2 periods, we may repeat the steps

above (setting N in the position of 2 and N − 1 in the position of 1) and continue
backwards in time up to time zero to obtain (9).

(ii) Similarly, for the super-hedging strategy we consider the N = 2 case. If A = w̄, then
we could hedge the liability at the good and bad states and at the same time have a
surplus at the medium state. Indeed, sitting at time t = 1, the super-hedging strategy
solves the linear system

∆s
1S2(G) + B1(1 + r) = P2(G)

∆s
1S2(B) + B1(1 + r) = P2(B)

and also satisfies ∆s
1S2(M) + B1(1 + r) ≥ P2(M), where B1 stands for the units of the

riskless asset. The linear system gives the so-called Delta hedging ∆s
1 = a2(W2(G)−

W2(B)))/(S1(us − ds)) and since A = w, the inequality also holds. Similarly for the
first step,

∆s
0S1(G) + B0(1 + r) = Ps

1(G)

∆s
0S1(B) + B0(1 + r) = Ps

1(B)

leads to ∆s
0 = k±(W0/S0)((1/1 + r)(a1 + a2 A)− h1).

The calculations are the same for the general case to obtain (10).

Appendix A.2. Proof of Proposition 2

Thanks to our myopic objective criterion, we may work in the simplified case of N = 2,
since the general case is similar.

Hence, standing at time t = 0, we want to find the optimal strategies (for the three
different utility cases)

max
∆0

E[U(X1 − P1)]

under the subjective probabilities of the asset manager, where

P1 =
1

(1 + r)
E[P2|F1] (A1)

and
X1 = ∆0(S1 − (1 + r)S0) + X0(1 + r) + c1 (A2)

is the fund’s wealth.
For the power utility (see (17)), we calculate (A1) and (A2) and find that

∆̂P
0 =

((pug)1/(γ0−1) − (pdβ)1/(γ0−1))(a0(1 + r)W0 − X0(1 + r)) + D0W0Lp

S0(g(pug)1/(γ0−1) + β(pdβ)1/(γ0−1))

where D0 = (a1 − h1) + a2L/(1 + r) and L, Lp are as in (16).
Similarly, for the exponential utility, we solve the optimization problem for the expo-

nential utility optimization

max
∆E

0

E
[
−e−γ0(X1−P1)

]
,

where P1 and X1 are respectively given by (A1) and (A2). Hence, we conclude that

∆̂E
0 =

ln(pug/pdβ) + γ0W0(uw − dw)D0

γ0S0(g + β)
.

where L is given again in (16), while for the mean-variance criterion, we readily find that
the solution of
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max
∆MV

0

(
E[X1 − P1]−

γ0

2
Var[X1 − P1]

)
,

is

∆̂M.V
0 =

(pug− pdβ) + γ0W0LcovD0

γ0S0(pug2 + pdβ2 − (pug− pdβ)2)
,

which is consistent with (19).

Appendix A.3. Proof of Proposition 3

We have an idea of how the general case works (given that we have shown the
argument for N = 2) if we repeat the same process for N = 3. If A > 1, when ζ2 = 1 the
super-hedging value is higher than when ζ2 = 0. Then at time t = 1, we have that (with a
slight abuse of notation)

Ps
1(s0|ζ1 = 1) =

1
(1 + r)2

(
ā0W0 + (ā1 − h1(1 + r)2)W1 + (ā2 − h2(1 + r))W1 A + ā3W1 A2

)
,

while

Ps
1(s0|ζ1 = 0) =

1
(1 + r)2

(
ā0W0 + (ā1 − h1(1 + r)2)W1 + (ā2 + ā3)W1

)
.

Hence, when h2 > ĥ2 = (ā2(A − 1) + ā3(A2 − 1))/(A(1 + r)), then Ps
1(s0|ζ1 = 0) >

Ps
1(s0|ζ1 = 1). Thus, at the initial time t = 0, when ζ0 = 1,

Ps
0 =

W0

(1 + r)3

(
ā0 − h0(1 + r)3 + (ā1 − h1(1 + r)2)A + (ā2 + ā3)A

)
,

while when ζ0 = 0,

Ps
0 =

W0

(1 + r)3

(
ā0 − h0(1 + r)3 + ā1 + ā2 + ā3

)
.

Therefore, if

h1 > ĥ1 =

(
A− 1

A

)
ā1 + ā2 + ā3

(1 + r)2 ,

the super-hedging value at time t = 0 is

Ps
0 =

W0

(1 + r)3

(
3

∑
n=0

ān − h0(1 + r)3

)
,

where we recall that ān = (1 + r)N−n.
For N > 3, we first stand at t = N − 1, where we see again that A > 1 implies that

Ps
N−1(sN−2|ζN−1 = 1) > Ps

N−1(sN−2|ζN−1 = 0). Then, for each of the previous periods
t ≤ N − 2, we simply observe that Ps

t (st−1|ζt = 0) > Ps
t (st−1|ζt = 1) only if

ht ≥
A− 1

A

N

∑
n=t

an

(1 + r)n−t .

In these cases, it is a matter of simple calculations to find that the super-hedging value
of the pension plan is given by (27).
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Notes
1 In general, the term “subjective” refers to notions that are linked to personal beliefs or characteristics (i.e., notions that are not

objective within our model). For example, regarding the expected utility maximization, the subjectivity stems both from the
probability measure that is used to calculate the expected utility and from the imposed utility function (which reflects the personal
risk preferences of the pension fund manager; see, among others, Fishburn (1981)).

2 The super-hedging valuation is not a universal valuation method per se. For example, it could not be used for corporate, equity
or debt valuation. Rather, it is established and widely used as a valuation method for derivatives (and other securities with
specific maturity).

3 For the pricing of assets in incomplete markets, the super-replicating portfolio is a portfolio whose payoffs are always (in any
state of the world) at least as big as the payoff of the derivative. Although for some products, such as options, this is a very useful
approach, for a pension fund’s liabilities it is problematic as the unhedgeable wage growth is, in principle, unbounded and no
super-replicating portfolio can be found (see Cvitanic et al. 1998; de Jong 2008). Hence, for the valuation of wage-linked pension
liabilities one cannot use a replicating argument directly, since a non-hedgeable wage risk remains.

4 We may also consider the member as a whole generation (assuming homogeneity among the members), as is common in the
literature (see, among others, Josa-Fombellida and Rincón-Zapatero (2010) and Josa-Fombellida and Zapatero (2008)).

5 As we emphasize in the sequel, the exact probability that measure P assigns to the three possible states is irrelevant when we
study the notion of super-hedging pricing. Measure P is stated to generate the equivalence class of all probability measures that
assign positive outcomes to the three states (the set of probability measures that are equivalent to P).

6 Assuming a trinomial model, our processes take the form St = S0uKt
s mLt

s dt−Kt−Lt
s , for each t ∈ T, where S0 ∈ R+, 0 < ds < ms <

us are the change factors and Kt and Lt stand for the number of steps that process changes by us and ms, respectively, up to time t.
Note that this model becomes a binomial model if Lt = 0 a.s. for each t ∈ T.

7 The equality between the factor of the medium state and the interest rate payment is only for demonstration reasons. The main
role of the medium state is to represent the possibility of the risky asset to remain stable. Taking into account the time value of the
money (incorporated in the model through the interest rate), we make the reasonable simplification ms = 1 + r. The messages of
our results remain the same even if ms 6= 1 + r.

8 In principle, the subjectivity of these metrics stems from the probability measure under which the related expectations are taken
and the discounted rate, which normally reflects the riskiness of the investment strategies.

9 Note that we do not impose any portfolio constraints for the admissibility of the investment strategy. Moreover, in our simplified
model, we do not face any integrability issues.

10 Note that if the payoffs are normally distributed, these objectives are almost the same, while a direct connection between them is
obtained under the second-order expansion of the expected exponential utility too.

11 While for the exponential utility the decomposition is clear from (18), for the optimal mean-variance investment strategy a more
indicative formula is

∆M.V
t =

Et[St+1]

γtVart[St+1]
+ Corrt(St+1, Pt+1)

√
Vart[Pt+1]

Vart[St+1]
− Corrt(St+1, ct+1)

√
Vart[ct+1]

Vart[St+1]
,

where subindex t stands for the conditional expectation or variance under Ft and Corrt denotes the corresponding conditional
correlation coefficient. The first term is similar to the Merton’s portfolio, while the second and the third terms vanish when
hn = an = 0 (that is, there is no contribution and no liability).

12 Although short positions are considered riskier under the speculators’ point of view (usually due to the induced leverage), when
they are applied to the super-hedging strategy they do actually reduce the total risk of a pension fund. Indeed, herein we show
that when the unhedgeable part of the wage process implies the highest wage, the liability of the pension fund may increase
when the market drops. In this case, a long position in the market will add more risk in the aggregate level since a drop in the
market will create both an increase in the liability and losses in the invested capital.

13 Discrete-time models for evaluating financial and actuarial products in a regime-switching approach have also been studied in
Bollen (1999) and Russo (2020) (see also Liu (2010) and Yuen and Yang (2010) for option pricing on regime-switching trees).
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