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Abstract: We propose a framework for constructing diversified portfolios with multiple pairs trading
strategies. In our approach, several pairs of co-moving assets are traded simultaneously, and capital
is dynamically allocated among different pairs based on the statistical characteristics of the historical
spreads. This allows us to further consider various portfolio designs and rebalancing strategies.
Working with empirical data, our experiments suggest the significant benefits of diversification
within our proposed framework.
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1. Introduction

Pairs trading is a widely used strategy for traders and fund managers. It involves
taking simultaneous positions in two correlated assets and speculating on the path behavior
of the resulting spread. While it is difficult to fully model the dynamics of a single asset,
a pair of assets or securities may exhibit mean reverting behavior that can be better captured
by statistical models.

Each pairs trading strategy involves three main steps: (i) identification of assets,
(ii) formation of spreads, and (iii) design of trading rules. While there are various ways
to select assets for pairs trading, the two price processes for each pair should exhibit an
adequate degree of comovement so that the resulting spread is mean reverting. In such a
case, trading opportunities arise when the spread deviates from its mean.

We adopt a statistical approach to pairs trading. For any given pair of stocks, we
construct the spread such that it best fits the Ornstein–Uhlenbeck (OU) model. Specifically,
we determine the optimal ratio between two stocks, along with the model parameters,
such that the resulting spread time series achieves the maximum likelihood. This method
is an extension of the maximum likelihood estimation (MLE) approach which typically
only determines the model parameters. With the spread formed, we apply a set of trading
rules. The critical levels to enter and exit are set at a multiple of the standard deviation
from the long-term mean of spread. For more details, we refer to Lee and Leung (2020) and
references therein.

To our best knowledge, existing studies on pairs trading analyze the performance of
a single pair, rather than the aggregate performance of multiple pairs. There are several
practical benefits of trading multiple pairs and considering them together in a trading
program. Firstly, more spreads may give rise to more trading opportunities at any point
in time. Secondly, the spreads generated from different stocks are likely to be mostly
uncorrelated, which makes it an ideal setting to take advantage of diversification. Lastly,
trading multiple pairs also opens up a new direction for portfolio optimization, which does
not exist when trading a single pair.

In this paper, we propose a novel framework for constructing diversified portfolios
from multiple pairs trading strategies. Capital is allocated among different pairs based

Risks 2023, 11, 93. https://doi.org/10.3390/risks11050093 https://www.mdpi.com/journal/risks

https://doi.org/10.3390/risks11050093
https://doi.org/10.3390/risks11050093
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/risks
https://www.mdpi.com
https://orcid.org/0000-0002-0023-6289
https://orcid.org/0009-0005-0545-6167
https://doi.org/10.3390/risks11050093
https://www.mdpi.com/journal/risks
https://www.mdpi.com/article/10.3390/risks11050093?type=check_update&version=1


Risks 2023, 11, 93 2 of 18

on the statistical characteristics, such as the speed of mean reversion and volatility, of the
historical spreads. Moreover, our approach is adaptive as portfolio weights are adjusted
periodically. Among our allocation methods, we introduce the novel Mean Reversion Bud-
geting (MRB) and Mean Reversion Ranking (MRR) methods. The MRB method determines
the portfolio weights based on the speeds of mean reversion, volatilities, and estimated
average log-likelihood scores together. In contrast, the MRR method ranks spreads based
on their estimated likelihood scores and speeds of mean reversion and assigns prespecified
portfolio weights based on the rankings of the spreads.

Working with the empirical price data of six stock pairs, our experiment suggests that
the proposed framework offers some desirable return profiles and portfolio features. We
compare several allocation methods to the benchmark equal-weight portfolio and illustrate
how dynamic rebalancing can improve portfolio performance.

The rest of the paper is organized as follows. We provide a review of related studies in
Section 2. In Section 3, we outline the steps of portfolio construction and trading rules for
mean reversion trading. As part of Section 4, we demonstrate how the volatility of spreads
and speed of mean reversion affect the performance of simulated trades. In Section 5,
we describe the proposed diversification framework. Section 6 describes the asset pairs
included in our study, and our data collection process, and compares the performance of
the proposed framework to the baseline. Concluding remarks are provided in Section 7.

2. Related Studies

Examples of mean-reverting spreads can be found in a number of empirical studies.
They are generated from pairs of stocks and ETFs (Gatev et al. 2006; Avellaneda and Lee
2010; Montana and Triantafyllopoulos 2011; Leung and Li 2016), futures contracts (Brennan
and Schwartz 1990; Dai et al. 2011), physical commodity and commodity stocks/ETFs
(Kanamura et al. 2010), as well as cryptocurrencies (Leung and Nguyen 2019).

Gatev et al. (2006) provided one of the first in-depth studies on pairs trading. They
proposed a commonly used Distance Method (DM) and test the CRSP stocks from 1962 to
2002. The DM method opens a position for a pair when the prices diverge from 0 by more
than two historical standard deviations and closes the position at the next crossing of the
prices. They reported an excess return of 1.3% for the top 5 pairs of the DM, and 1.4% for
its top 20 pairs. Do and Faff (2012) examined the profitability of pairs trading accounting
for transaction costs.

Other than the DM method, the cointegration test is commonly used in many alter-
native methods for mean reversion trading. Vidyamurthy (2004) detailed a cointegration
framework for mean reversion trading based on the Engle and Granger’s error correction
model representation of cointegrated series presented in Engle and Granger (1987). Galenko
et al. (2012) examined an active ETF trading strategy based on cointegrated time series.
Leung and Nguyen (2019) constructed cointegrated portfolios of cryptocurrencies using
the Engle–Granger two-step approach and Johansen cointegration test. Huck and Afawubo
(2015) compared the performance of DM and cointegration method using the components
of the S&P 500 index.

Another popular approach, the stochastic spread method, captures the path behav-
ior of the spread through a stochastic process with mean-reverting property, such as
the Ornstein–Uhlenbeck (OU) process. The construction of spreads and extraction of
trading signals are typically derived from the analysis of parameters of the underlying
model. Elliott et al. (2005) proposed a mean-reverting Gaussian Markov chain model
to describe spread dynamics. The model’s estimates are compared with observations of
the spread to determine appropriate trading decisions. Do et al. (2006) further analyzed
the method proposed by Elliott et al. (2005) and proposed a general stochastic residual
spread method to model relative mispricing. Leung and Li (2015) studied the optimal
timing strategies for mean-reverting trading under the OU process. They solved an optimal
double-stopping problem to analyze the timing of entry and liquidation subject to trans-
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action costs. Lee and Leung (2020) examined the performance of mean reversion trading
using dynamically optimized entry and exit rules.

Additionally, there are methods that utilize copulas (Liew and Wu 2013; Xie et al. 2016),
Principal Component Analysis (PCA) (Avellaneda and Lee 2010), and machine learn-
ing (Guijarro-Ordonez et al. 2021). In recent years, new optimization algorithms have
been proposed to generate spreads with maximum in-sample mean reversion. Some of
these methods can be automated to analyze a large number of stocks simultaneously
(d’Aspremont 2011; Leung et al. 2020).

Finally, we note that all the studies mentioned above focus on the trading performance
of a single pair. The proposed framework herein is designed for trading multiple pairs
simultaneously and is optimized as a diversified portfolio.

3. Pairs Construction and Trading Rules

We construct a long-short position with two highly correlated assets S1
t and S2

t . The
portfolio value is given by

Xt = S1
t − BS2

t ,

where the coefficient B is called the hedge ratio and can be optimized. Following the
procedure detailed in Leung and Li (2016, chp. 2), we determine the optimal pair ratio
through maximum likelihood estimation (MLE), whereby the resulting historical spread
time series best fits the Ornstein–Uhlenbeck (OU) model.

An OU process is a mean-reverting process, described by the following stochastic
differential equation:

dXt = µ(θ − Xt)dt + σdWt, (1)

where µ ∈ R represents the speed of mean reversion, θ ∈ R is the long-term mean, and
σ > 0 is the volatility parameter. Here, Wt is a standard Brownian motion under the
historical measure P.

3.1. Statistical Estimation for Optimized Mean Reversion

For any given hedge ratio b, consider the observed time series of the resulting spread
Xt = S1

t − bS2
t up to time t0. Then, we apply the method of maximum likelihood estimation

to determine the optimal parameters for the OU model based on the historical data. Specifi-
cally, given xi = Xti with time increment ∆t = ti − ti−1, define the average log-likelihood
function of the past L observations as

l(µ, θ, σ, b) =
1
L

t0−1

∑
i=t0−L+1

log f (xi|xi−1; µ, θ, σ)

= −1
2

ln(2π)− ln(σ̃)− 1
2Lσ̃2

t0−1

∑
i=t0−L+1

[xi − xi−1e−µ∆t − θ(1− e−µ∆t)]2,

(2)

where

σ̃2 = σ2 1− e−2µ∆t

2µ
.

To express the OU parameter values that maximize the average log-likelihood in (2),
we define the following:

Xx =
n

∑
i=1

xi−1,

Xy =
n

∑
i=1

xi,

Xxx =
n

∑
i=1

x2
i−1,
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Xxy =
n

∑
i=1

xi−1xi,

Xyy =
n

∑
i=1

x2
i−1.

In turn, the optimal parameter estimates under the OU model are given explicitly by

θ∗ =
XyXxx − XxXxy

n(Xxx − Xxy)− (X2
x − XxXy)

,

µ∗ = − 1
∆t

ln
Xxy − θ∗Xx − θ∗Xy + n(θ∗)2

Xxx − 2θ∗Xx + n(θ∗)2 ,

(σ∗)2 =
2µ∗

n(1− e−2µ∗∆t)
(Xyy − 2e−2µ∗∆tXxy + e−2µ∗∆tXxx

− 2θ∗(1− e−µ∗∆t)(Xy − e−µ∗∆tXx) + n(θ∗)2(1− e−µ∗∆t)2).

At this stage, we maximize the average log-likelihood function over the three OU
model parameters and denote the maximized average log-likelihood by

l∗(b) = l(µ∗, θ∗, σ∗, b).

Then, the maximized log-likelihood function l∗(b) is further optimized over the ratio
b to give the optimal hedge ratio

B = arg max
b

l∗(b).

In practice, the implementation of this optimization can be done via a grid search. For
instance, suppose we limit the absolute value of the hedge ratio to be 2. Then, we compute
the maximized log-likelihood function l∗(b) for

b = {−2,−1.99,−1.98, · · · , 1.99, 2}.

The maximizer is denoted by B.

3.2. Trading Rules

We now describe the mechanism of the trading strategy in this study. Denote by S1
t

and S2
t the prices of two assets at time t. Let Ct be the capital available at time t. The initial

investment amount is C0.
A number of indicators are required in order to set up the trading signals. We consider

the M-day moving average of the spread Xt, denoted by MA(Xt). Similarly, we define
SD(Xt) to be the standard deviation of the spread over the past M-days. We use the
notations POS(Xt) and POS(S2

t ) for positions of S1
t and S2

t . Finally, K is the trading
threshold, r is the chosen risk level for the stop-loss rule, L is the length of the lookback
window, and T is the length of the entire trading period.

In turn, the trading strategy is described as follows.

1. When entering trading period at time 0, use L-days historical prices of S1
t and S2

t to
calculate the optimal pair ratio, given by

B = arg max
b

l∗(b).

2. At each time point t, construct the spread by Xt = S1
t − BS2

t .
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3. Entry rule: If the current position is zero and that Xt < MA(Xt)− K ∗ SD(Xt), then
enter a long position as follows:

POS(Xt) = Ct/S1
t , Ct = Ct − Xt · POS(Xt).

If the current position is zero but Xt > MA(Xt) + K ∗ SD(Xt), then enter the short
position:

POS(Xt) = −Ct/S1
t , Ct = Ct − Xt · POS(Xt).

4. Exit rule: If POS(Xt) > 0 and Xt > MA(Xt), then quit the long position:

Ct = Ct + Xt · POS(Xt), POS(Xt) = 0,

If POS(Xt) < 0 and Xt < MA(Xt), then quit the short position:

Ct = Ct + Xt · POS(Xt), POS(Xt) = 0,

5. Stop-loss rule: Let X0 denote the value of spread at entry time. If POS(Xt) > 0 and
Xt < X0 ∗ (1− r), then quit the long position:

Ct = Ct + Xt · POS(Xt), POS(Xt) = 0.

If POS(Xt) < 0 and Xt > X0 ∗ (1 + r), then quit the short position:

Ct = Ct + Xt · POS(Xt), POS(Xt) = 0.

6. If there is no signal indicating entry or liquidation, then stay put:

POS(Xt) = POS(Xt), Ct = Ct.

In Step 3, a long position of Xt is established if no shares of Xt are held and the price
of Xt drops below the past M-days average value minus K times standard deviation. The
number of shares purchased is determined by the ratio of current cash Ct and price of S1

t .
That is, invest all the cash at hand to long S1

t and short the corresponding S2
t with the best

pair ratio B.
As for the liquidation rule described in Step 4, the entire position is liquidated when-

ever the price of Xt rises beyond the past M-days average value. In short, we enter the long
position if the price of spread drops sufficiently far from the long-term mean, and then
wait for the price to revert and take profit. The trading rule for short positions follows a
similar logic. For more details on this approach, we refer to Lee and Leung (2020) and the
references therein.

The trading system includes four parameters: L is the length of look-back window
length that determines how many data points are used to estimate the best ratio; T de-
termines how long we will use the estimated best ratio; M is the number of days used to
calculate the moving average and standard deviation of the spread, and K is the threshold
that determines the trading boundary.

Intuitively, L and M control how much past data should be incorporated in the current
trading decisions. The other parameter, K, will have direct influence on the timing and
frequency of trades. For instance, a smaller K will result in more frequent trading.

4. Monte Carlo Simulation

In this section, we analyze how different degrees of mean reversion may impact
trading performance via Monte Carlo simulation. This analysis will shed light on capital
allocation across different spreads in our diversification framework.

We begin by considering trading a single spread, whose values are simulated according
to the OU model. There are three parameters in the model. The speed of mean reversion is
denoted by µ, the volatility of the process is denoted by σ, and the long-term mean is θ. We
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generate 1000 sample paths with different combinations of parameters and simulate the
trading transactions over one year (T = 252) for each path by following the rule described
in the previous section.

We examine the trading performance through the Sharpe ratio, average daily return,
volatility, total trading numbers, and cumulative return, which are calculated based on
the average over 1000 paths. The other parameters of the trading system are K = 1 and
M = 30 in this experiment. Since we generate the spread time series directly, there is no
need to compute the optimal pair ratio.

The results are summarized in Table 1. Among the parameters, we observe that the
speed of mean reversion µ has a significant effect on the performance. Raising µ with σ
and θ constant, the daily returns, Sharpe ratio, and number of trades all increase while the
standard deviation decreases slightly. This is intuitive since a fast mean-reverting spread
offers more trading opportunities and reduces the risk associated with the trading strategy.

Table 1. The simulated one-year mean reversion trading performance under different configurations
of OU model. The bolded numbers signify outperforming values. Parameters µ ∈ {10, 20, 30, 40, 50},
σ ∈ {0.1, 0.5, 1.0, 1.5, 2.0}, and θ is chosen from {5, 10, 15, 20, 25}.

µ σ θ Ret (%) Std (%) Sharpe PnL (%) No.Trade

10 1.0 15 0.0136 0.2951 0.0467 3.4067 15.410
20 1.0 15 0.0229 0.2903 0.0794 5.8520 18.092
30 1.0 15 0.0299 0.2881 0.1043 7.7184 20.992
40 1.0 15 0.0353 0.2841 0.1248 9.2014 23.563
50 1.0 15 0.0400 0.2797 0.1431 10.4706 26.018

30 0.1 15 0.0029 0.0286 0.1031 0.7385 20.826
30 0.5 15 0.0148 0.1433 0.1032 3.7566 20.879
30 1.0 15 0.0300 0.2872 0.1048 7.7462 20.899
30 1.5 15 0.0456 0.4295 0.1064 11.9390 20.922
30 2.0 15 0.0600 0.5780 0.1041 15.7092 20.698

30 1.0 5 0.0292 0.2779 0.1051 7.9878 20.960
30 1.0 10 0.0290 0.2821 0.1028 7.5805 21.055
30 1.0 15 0.0295 0.2871 0.1032 7.6169 20.699
30 1.0 20 0.0304 0.2888 0.1053 7.6606 20.706
30 1.0 25 0.0298 0.2834 0.1052 7.7975 20.787

Next, we examine the effect of the spread volatility σ. For different σ with µ = 30
and θ = 15, the Sharpe ratio is almost unchanged since both daily returns and volatility
increase simultaneously as σ increases. Intuitively, higher volatility may offer more trading
opportunities as the spread fluctuates more rapidly. However, higher volatility also leads
to a wider trading band, thus increasing the risk exposure. Lastly, the long-term mean θ
does not have a significant impact on trading performance as expected, given that trades
are triggered by the deviation of the spread from the long-term mean.

Based on the simulation results, the speed of mean reversion has a significantly positive
effect on performance as measured by average return and Sharpe ratio. Moreover, a faster
spread of mean reversion also results in more frequent trades. On the other hand, the
spread volatility increases the mean and standard deviation of returns simultaneously, so
the Sharpe ratio is lower for very high volatility. In contrast, the long-term mean θ does not
affect the trading performance materially. Hence, we consider the mean reversion rate as a
critical factor when designing the diversification framework for trading multiple pairs.

5. Diversification Framework

We consider a diversified portfolio approach to trading multiple pairs simultaneously.
This leads to the analysis of a number of different methods to allocate portfolio weights to
the traded pairs.
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The first step is to divide the entire trading period into stages with a defined schedule
for adjusting the allocation. During the first trading stage, we apply equal weights to trade
all the spreads in the portfolio. After that, empirical spreads and returns are recorded and
analyzed to yield an optimal allocation for the next trading stage. Moving forward, we will
periodically obtain updates on the portfolio weights and re-allocate the capital for the next
trading period accordingly.

5.1. Portfolio Weights

In our framework, capital is allocated across different pairs in order to form a diversi-
fied portfolio. There are various methods to determine the portfolio weights dynamically
over time. To that end, we consider several methods and examine their effects on portfolio
performance.

5.1.1. Mean-Variance Analysis

Inspired by Mean-Variance Analysis (MVA), one method for determining the portfolio
weights is by maximizing the Sharpe ratio. For any given lookback period, let R ∈ RN be
the vector of average returns of each pair and Σ ∈ RN×N be the corresponding co-variance
matrix of daily returns of each pair. Then, the optimal weights are those that give the best
historical in-sample Sharpe ratio. Precisely, we have

ω∗ = arg max
ω

wT R
wTΣw

, s.t. ‖w‖1 = 1. (3)

This MVA-based method assumes that the weights that have produced the best Sharpe
ratio in the recent past will lead to a good performance in the next trading period. This
depends on the stability of the returns over time, which may not be a reliable assumption.
To address this issue, we propose several alternative allocation methods based on the
characteristics of the spreads, rather than returns.

5.1.2. Mean Reversion Budgeting

We propose an allocation method, called Mean Reversion Budgeting (MRB), which
is based on the mean-reverting properties of the spreads. In essence, we seek to measure
the degree of mean reversion for each spread and assign more weights to those that are
considered highly mean-reverting.

The first index is the estimated maximum average log-likelihood function.
To measure the goodness of fit to an OU process for each spread, we consider the

corresponding log-likelihood score. For each spread i, we denote by l̂i the estimated
maximum average log-likelihood score from the previous stage. Next, we do min-max
normalization to make them all positive. Precisely, for each spread i, we define the index:

l̃i =
l̂i −min{l̂i}

max{l̂i} −min{l̂i}
.

In addition, we consider the speed of mean reversion µ. Intuitively, a more rapidly
mean-reverting spread offers more trading opportunities, so it should be allocated with
more portfolio weights. In order to account for the fluctuations due to volatility, we scale
the speed of mean reversion by the volatility parameter. Precisely, we write

µ̂r
i =

µ̂i
σ̂i

,
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where µ̂i and σ̂i are, respectively, the estimated speed of mean reversion and volatility for
each pair. In turn, comparing across all spreads, we define the normalized relative speed of
mean reversion for spread i as

µ̃i =
µ̂r

i −min{µ̂r
i }

max{µ̂r
i } −min{µ̂r

i }
.

Lastly, we incorporate both l̃i and µ̃i into the portfolio weight allocation. This results
in the formula

wi =
µ̃i l̃i

∑N
i=1 µ̃i l̃i

, i = 1, · · · , N. (4)

In summary, this means that more capital is allocated into pairs that are more OU-like
and mean-revert more rapidly.

5.1.3. Mean Reversion Ranking

The MRB allocation method above may sometimes lead to extreme portfolio weights.
For instance, if spread i has a likelihood score li that is significantly larger than the others,
the method will allocate most of the capital to that pair based on (4), leading to portfolio
concentration. Furthermore, the MRB method is susceptible to estimation errors since the
portfolio weights are functions of the estimates.

These observations motivate us to propose an alternative allocation method, called
Mean Reversion Ranking (MRR), which assigns fixed values based on the rankings of the
product of the estimated likelihood score and speed of mean reversion. Assuming that n
pairs are currently traded, we sort the n pairs in ascending order based on the product, l̃i
and µ̃i, where i = 1, · · · , n. Then, we calculate the weights of sorted pairs by(

n− 1
2n(n− 1)

,
n + 1

2n(n− 1)
, · · · ,

3(n− 1)
2n(n− 1)

)
. (5)

This method suggests that we allocate the fraction n − 1
2n(n − 1) of the capital to the pair

with the lowest likelihood value and speed of mean reversion, then another fraction
n + 1

2n(n − 1) to the pair with the second-ranked spread, and so on.
The intuition behind this approach is as follows. If we start with equal weights(

1
n , 1

n , · · · , 1
n

)
and then reduce by half the weight of the pair with the lowest likelihood

value and speed of mean reversion, then we invest the saved capital into the pair with the
highest score. This yields the fractions 1

2n and 3(n − 1)
2n(n − 1) for the smallest and largest weights,

respectively. The weights in the middle then increase uniformly based on their ranking
indices. The ranking method offers a more moderate weight distribution than the MRB
method. As our experiment shows, this method produces the highest Sharpe ratio for a
given set of spreads.

5.2. Trading Rules under Diversification Framework

Next, we present all the stages within our trading framework. To start, we let
{S11

t , S12
t , . . . , SN1

t , SN2
t } be the prices of N pairs of co-moved stocks at time t. With the

initial investment C0, we denote Ct to be the total cash at time t.
For each spread, we write MA(Xt) and SD(Xt) to represent the moving average and

standard deviation of past M-days spread, respectively. At each time t, the position of Xt is
given by POS(Xt).

The length of the whole trading period is T and the length of lookback window is
L. LR represents the window length of each small stage, also referred to as rebalancing
window size. Note that the trading period is divided into T/LR small stages. Then, there
are two types of transactions within the trading program: stage transition and intra-stage
trading.
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The complete trading procedure is described as followed:

1. Pairs ratio calculation. Entering trading period at time 0, use L-days historical prices
of each pair {Si1

t , Si2
t } to calculate the optimal pair ratio, given by

Bi = arg max
b

l∗i (b),

where l∗i (·) is the maximized average likelihood function for the i-th pair and 1 ≤ i ≤
N.

2. Spreads construction. At each time point t, construct N spreads by Xi
t = Si1

t − BiSi2
t ,

1 ≤ i ≤ N.
3. Stage transition. Entering a new stage, liquidate all the positions and use past LR-

days trading information to update the weights ω by equation (3), (4) or (5). Allocate
the total cash at hand based on weights:

Ci
t = ωi · Ct.

4. Entry of intra-stage trading. Set a trading threshold K (a positive constant, e.g., 0.5, 1,
or 1.25). Check the entry condition for each pair. For i ∈ {1, · · · , N}, if POS(Xi

t) = 0
and Xi

t < MA(Xi
t)− K ∗ SD(Xi

t), then enter the long position:

POS(Xi
t) = Ci

t/Si1
t , Ci

t = Ci
t − Xi

t · POS(Xi
t).

If POS(Xi
t) = 0 and Xi

t > MA(Xi
t) + K ∗ SD(Xi

t), then enter the short position:

POS(Xi
t) = −Ci

t/Si1
t , Ci

t = Ci
t − Xi

t · POS(Xi
t).

5. Liquidation of intra-stage trading. Check the liquidation for each pair. For i ∈
{1, · · · , N}, if POS(Xi

t) > 0 and Xi
t > MA(Xi

t), then quit the long position:

Ci
t = Ci

t + Xi
t · POS(Xi

t), POS(Xi
t) = 0.

If POS(Xi
t) < 0 and Xi

t < MA(Xi
t), then quit the short position:

Ci
t = Ci

t + Xi
t · POS(Xi

t), POS(Xi
t) = 0.

6. Stop-loss rule of intra-stage trading. Set a risk level r. For i ∈ 1, · · · , N, let Xi
0 denote

the value of each spread at entry time. If POS(Xi
t) > 0 and Xi

t < Xi
0 ∗ (1− r), then

quit the long position:

Ci
t = Ci

t + Xi
t · POS(Xi

t), POS(Xi
t) = 0.

If POS(Xi
t) < 0 and Xi

t > Xi
0 ∗ (1 + r), then quit the short position:

Ci
t = Ci

t + Xi
t · POS(Xi

t), POS(Xi
t) = 0.

7. No-trade scenario. If there is no signal of entry or liquidation, then keep the positions
unchanged:

POS(Xi
t) = POS(Xi

t), Ci
t = Ci

t.

8. Conduct intra-stage mean reversion trading for LR days and go back to step 3.

The entire framework can be briefly summarized as follows: (1) divide the trading
period into several smaller stages; (2) when beginning a new trading stage, update the
weights based on the speed of mean reversion and volatility of spreads from the previous
stage; (3) liquidate all holding positions and re-allocate the total capital based on updated
weights; (4) conduct mean reversion trading on each pair separately with the allocated
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capital until the end of this stage; (5) record the historical spreads at the end and then move
onto the next stage.

6. Backtesting

In this section, we examine the performance of the proposed diversified trading
framework through a backtest. Different allocation methods are implemented and their
results are compared. It is worth noting that we do not apply the stop-loss rule in our
experiments.

6.1. Traded Assets and Price Data

To begin, we introduce the assets used in our experiment. Six pairs of stocks are
selected from six different sectors in the US market. Each pair consists of two stocks from
the same industry, ranging from airlines to banking. Table 2 provides a description of the
companies, along with the ticker symbols of all the pairs: WM-RSG, UAL-DAL, V-MA,
MS-GS, NVDA-AMD, and CVX-XOM.

For these six pairs, we collect the daily close prices for these stocks from 1 January 2021
to 31 December 2022 using the Yahoo! Finance API.1 Figure 1 shows the price movements
of each pair. Each price time series has been divided by its initial values for normalization.
As we can see, the stock prices for each pair exhibit persistent comovement.

Figure 1. Normalized historical daily close prices of six pairs of stocks from 1 January 2021–31
December 2022. From top to bottom: WM-RSG, UAL-DAL, V-MA, MS-GS, NVDA-AMD, and
CVX-XOM.

Pairs are constructed using the method detailed in Section 3 and the daily adjusted
close prices from the first year. In the experiment, the subsequent year is the trading period.
In each quarter, data are used to generate new trading signals. With quarterly rebalancing,
we test several trading thresholds and analyze annual performance statistics.
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Table 2. The stock pairs used for testing our mean-reversion trading strategies and the description of
the company.

Pairs Symbols Description

WM-RSG Waste Management and Republic Services provide waste management and
environmental services

UAL-DAL United and Delta are two of the largest American airlines

V-MA Visa and Mastercard are two dominant players in the payment industry

MS-GS Morgan Stanley and Goldman Sachs are two large-cap stocks in the banking
industry

NVDA-AMD Nvidia and AMD are two American multinational semiconductor companies
that develop computer processors

CVX-XOM Chevron and Exxon Mobil are major companies in the energy sector

6.2. Trading on Each Pair

To demonstrate the efficacy of the proposed mean-reversion trading strategy, we first
apply the strategy to six selected pairs separately. In the formation period, we use the data
from 1 January 2021 to 31 December 2021 to compute the optimal ratio for each pair. Table 3
lists the estimated best ratio and likelihood score of each pair. The parameters are selected
as K = 1, L = 252, T = 252, and M = 63.

Table 3. Optimal ratio and likelihood score for each pair estimated from 1 January 2021 to 31
December 2021.

S1
t S2

t Optimal Ratio b Likelihood Score l

WM RSG 0.98 5.7101
UAL DAL 1.02 5.3507

V MA 0.99 5.8283
MS GS 1.00 6.1103

NVDA AMD 1.31 2.8395
CVX XOM 0.95 4.6977

Then, we construct spreads from each pair based on the best ratio. In turn, each spread
is traded in the trading period. Figure 2 illustrates separately the spread, trading positions,
and returns for the six pairs in 2022. From top to bottom in each panel, we record the
movement of spread Xt, the position change POS(Xt), and the cumulative return curve
for each pair. As we can see, almost all of the pairs, except CVX-XOM, have positive
annual profits, which demonstrates the effectiveness of the pairs trading strategy. As for
the pair CVX-XOM, the main reason for failure is that the spreads constructed from the
pairs do not display good mean reversion properties, as we can clearly observe a long-term
downward trend in the spread. With this in mind, based on the spread behaviors and
trading performance, it is intuitively optimal to allocate more weight to the first five pairs
and less weight to CVX-XOM during the trading period. This echoes our motivation to
propose a diversification framework to dynamically allocate weights on multiple pairs. It
would be interesting to see whether any of the allocation methods can assign the weights
accordingly.
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(a) (b)

(c) (d)

(e) (f)

Figure 2. The separate trading performance on six pairs with K = 1, L = 252, T = 252, and M = 63
in 2022. For each pair, we show the spread, position, and cumulative return over time. (a) WM-RSG.
(b) UAL-DAL. (c) V-MA. (d) MS-GS. (e) NVDA-AMD. (f) CVX-XOM.

As shown in Figure 3, the correlation coefficients between different spreads are gener-
ally small, with the most positive correlation coefficient being approximately 0.3. These
low correlations suggest that there is a potential for diversification benefits in combining
these spreads in a trading portfolio. By diversifying across multiple spreads, traders can
potentially reduce portfolio volatility and increase the expected return. This motivates us
to investigate the effectiveness of our proposed diversified trading framework.
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Figure 3. Correlation matrix of the constructed six spreads.

6.3. Equal-Weight Portfolio

The baseline diversification is to trade all pairs equally, which means we implement
the trading strategies for all pairs with equally allocated initial cash during the entire
trading period. This equal-weight portfolio is conceptually the most straightforward way
to create a diversified portfolio. It is included here to compare against nondiversified
trading of single pairs and against other diversification methods.

To start, we first compare the performance of the equal-weight portfolio to the per-
formance of every single pair in this section. The trading period is the year 2022, and the
average annual and daily performance statistics of the trading strategies are presented in
Table 4. We consider different trading thresholds K ∈ {0.5, 0.75, 1.0, 1.25}. With a higher K,
the spread needs to deviate further from its moving average in order to trigger a trade. The
criteria presented include daily return (DailyRet), daily standard deviation (DailyStd), daily
Sharpe ratio (DailySR), annual maximum drawdown (AnnMDD), and annual cumulative
PnL (AnnPnL). In this experiment, we observe that the equal-weight portfolio generally
outperforms single pairs in terms of daily Sharpe ratio, daily standard deviation, and
annual maximum drawdown. This indicates the effectiveness of diversification for mean
reversion trading.

Moreover, we observe that the standard deviations of individual pairs range from 0.4
to 1, while the standard deviation of our portfolio is lower than 0.3. This indicates that
the equal-weight portfolio strategy has a lower level of risk compared to the individual
pairs. This can be attributed to the diversification effect, as the portfolio strategy involves
trading multiple pairs simultaneously, which helps reduce the overall risk. Therefore, our
results demonstrate that an equal-weight portfolio strategy can generate a higher return
and achieve a lower level of risk through diversification.
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Table 4. Performance statistics of the equal-weight portfolio and trading of single pairs. The bolded
numbers signify outperforming values. The parameters selected are: K ∈ {0.5, 0.75, 1.0, 1.25},
L = T = 252, and M = 63.

Index Equal Weight WM-RSG UAL-DAL V-MA MS-GS NVDA-AMD CVX-XOM

K = 0.5

DailyRet (%) 0.0260 0.0461 0.0741 0.0266 0.0060 0.0251 −0.0181
DailyStd (%) 0.3020 0.4616 0.8667 0.5882 0.5935 1.0802 1.0132

DailySR 0.0861 0.0999 0.0855 0.0452 0.0100 0.0233 −0.0179
AnnMDD (%) −1.7527 −4.0295 −1.5036 −4.7033 −6.5959 −3.6869 −10.1602
AnnPnL (%) 6.6218 11.9691 19.3084 6.4325 1.0577 4.9606 −5.6825

K = 0.75

DailyRet (%) 0.0405 0.0337 0.0996 0.0377 0.0140 0.0435 −0.0168
DailyStd (%) 0.2702 0.4425 0.8010 0.5480 0.5233 1.0543 0.9531

DailySR 0.1499 0.0762 0.1244 0.0689 0.0267 0.0412 −0.0177
AnnMDD (%) −1.0363 −4.0295 −1.5036 −4.7033 −4.7938 −1.0167 −9.4947
AnnPnL (%) 10.5989 8.5626 27.383 9.5192 3.2131 9.9788 −5.2313

K = 1

DailyRet (%) 0.0444 0.0362 0.1075 0.0442 0.0191 0.0393 0.0005
DailyStd (%) 0.2603 0.4406 0.7962 0.5410 0.5197 1.0602 0.9026

DailySR 0.1707 0.0823 0.1350 0.0821 0.0368 0.0371 0.0005
AnnMDD (%) −0.9259 −4.0295 −1.5036 −4.7033 −3.5482 −0.6721 −7.5687
AnnPnL (%) 11.7003 9.2573 29.9381 11.3813 4.5634 8.8227 0.9027

K = 1.25

DailyRet (%) 0.0339 0.0199 0.0646 0.0190 0.0240 −0.0156 0.0336
DailyStd (%) 0.2377 0.3816 0.6833 0.4912 0.4816 0.9437 0.8126

DailySR 0.1428 0.0523 0.0945 0.0386 0.0499 −0.0165 0.0413
AnnMDD (%) −2.1982 −4.0295 −5.3303 −3.5172 −2.3069 −13.0758 −6.6102
AnnPnL (%) 8.8155 4.9415 16.9198 4.5624 5.9091 −4.9065 7.8850

6.4. Diversification Framework

We implement multiple mean reversion trading under the diversification framework
using different allocation methods, and compare the performance with the baseline equal-
weight portfolio. Since the trading period is one year (1/1/2022–12/31/2022) and the re-
balancing window is set to be three months, the trading period is divided into four periods.
As before, trading parameters are as follows: K ∈ {0.5, 0.75, 1.0, 1.25}, L = T = 252 days,
M = 90 days.

Figure 4 displays the cumulative return curves with different allocation methods in
the year 2022. Here, “MRB” stands for the Mean Reversion Budgeting method, “MRR” rep-
resents the Mean Reversion Ranking method, and “MVA” refers to the portfolio generated
by the mean-variance analysis. The equal-weight portfolio serves as a baseline portfolio
for comparison.

In terms of cumulative returns, the MRB method outperforms the baseline portfolio
by a significant margin. On the other hand, the MRR method’s returns are only slightly
higher than the baseline. This is not surprising since the rank-based method tends to spread
the weights more gradually from higher to lower-ranked pairs. In other words, the MRR
method does not penalize the poorly fitted spreads severely and does not assign oversized
weights to the spreads with the best mean-reverting properties.

However, taking volatility into account, subsequent experiments reveal that the rank-
ing method achieves a higher Sharpe ratio than the baseline. In contrast, the MVA portfolio
lags far behind the baseline. This is perhaps intuitive since the traditional mean-variance
analysis does not take into account the mean-reverting properties of the spreads.
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(a) (b)

(c) (d)

Figure 4. The accumulative returns for portfolios with different allocation methods. The trading
period is the year 2022, and the parameters are: L = T = 252, M = 90, and LR = 63 days. Each plot
corresponds to a selected trading threshold K ∈ {0.5, 0.75, 1.0, 1.25}. (a–d) K = 0.5, 0.75, 1, 1.25.

To provide a comparative analysis of different portfolio allocation methods versus the
equal-weight portfolio, we summarize the statistics of trading performance with different
thresholds in Table 5. The statistics include daily returns (DailyRet), daily standard devi-
ation (DailyStd), daily Sharpe ratio (DailySR), annual maximum drawdown (AnnMDD),
and annual cumulative profit and loss (AnnPnL).

When compared to the baseline equal-weight portfolio, the MRB method significantly
improves the annual return without increasing the standard deviation considerably. As
a result, MRB yields a higher Sharpe ratio than the baseline portfolio. The MRR method
significantly decreases volatility and also achieves a high Sharpe ratio. These observations
support the notion that allocation based on mean reversion characteristics has the potential
to improve portfolio performance.

Regarding the standard deviations of the differently weighted portfolios, it is notable
that the MRR method exhibits the lowest standard deviation among all the portfolios,
indicating that this particular combination of pairs is the least volatile. In addition, the
MRB method also appears to decrease the standard deviation when compared to the equal
weights and MVA methods. These findings provide further evidence for the advantages of
employing a portfolio weights allocation approach to mitigate risk and enhance the overall
performance of the portfolio.
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Table 5. The comparison of different portfolio allocation methods vs. the baseline (equal-weight
(EW)). The bolded numbers signify outperforming values. The trading period is the year 2022, and
the parameters are: L = T = 252, M = 90, LR = 63 days, and K ∈ {0.5, 0.75, 1.0, 1.25}.

Index EW MRB MRR MVA

K = 0.5

DailyRet (%) 0.0260 0.0410 0.0289 0.0230
DailyStd (%) 0.3020 0.2755 0.2636 0.3624

DailySR 0.0861 0.1488 0.1097 0.0633
AnnMDD (%) −1.7527 −1.9555 −1.7722 −3.5034
AnnPnL (%) 6.6218 10.7271 7.4317 5.7548

K = 0.75

DailyRet (%) 0.0405 0.0431 0.0405 0.0272
DailyStd (%) 0.2702 0.2485 0.2349 0.4414

DailySR 0.1499 0.1734 0.1723 0.0616
AnnMDD (%) −1.0363 −1.9116 −1.3602 −3.3486
AnnPnL (%) 10.5989 11.3333 10.6107 6.7990

K = 1

DailyRet (%) 0.0444 0.0479 0.0438 0.0277
DailyStd (%) 0.2603 0.2614 0.2310 0.4581

DailySR 0.1707 0.1834 0.1897 0.0604
AnnMDD (%) −0.9259 −1.9116 −1.3052 −3.3865
AnnPnL (%) 11.7003 12.6890 11.5503 6.9090

K = 1.25

DailyRet (%) 0.0339 0.0351 0.0328 0.0216
DailyStd (%) 0.2377 0.2402 0.2123 0.2618

DailySR 0.1428 0.1461 0.1543 0.0823
AnnMDD (%) −2.1982 −2.4710 −2.2249 −2.5295
AnnPnL (%) 8.8155 9.1281 8.5101 5.4669

6.5. MRB Portfolio Weights

In our experiment, the MRB method appears to be the best allocation method. In this
section, we provide more details on how the weights vary under the MRB method during
the trading period. Let us focus on the case where K = 1. Table 6 shows the estimated
parameters using the data from 1 January 2022–31 December 2022. As we can see, the
NVDA-AMD and CVX-XOM pairs have the lowest likelihood scores. Table 7 shows the
changes in portfolio weights for each quarter during that year. Notice that the weights for
the NVDA-AMD and CVX-XOM pairs are close to zero. This is consistent with the MRB
method where weights are proportional to the likelihood scores.

Table 6. Parameters estimated from 1 January 2022 to 31 December 2022.

S1
t S2

t µ σ l

WM RSG 0.1415 0.0193 5.7888
UAL DAL 0.7284 0.0316 5.2948

V MA 0.0108 0.0175 5.8850
MS GS 0.0357 0.0244 5.5570

NVDA AMD 2.7227 0.2594 3.1927
CVX XOM 2.3461 0.3394 2.9276

Table 7. MRB portfolio weights for all six pairs over four quarters from 1 January 2022 to 31 December
2022.

S1
t S2

t Period 1 Period 2 Period 3 Period 4

WM RSG 0.481 0.455 0.259 0.780
UAL DAL 0.176 0.161 0.069 0.030

V MA 0.096 0.309 0.249 0.142
MS GS 0.220 0.065 0.422 0.048

NVDA AMD 0.000 0.000 0.000 0.000
CVX XOM 0.027 0.010 0.000 0.000
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7. Conclusions

We have presented a trading program that dynamically allocates capital to multiple
mean reversion trading strategies. The approach is designed for trading multiple pairs in
order to achieve diversification effects. Moreover, the dynamic rebalancing is adaptive to
the current model estimates and based on the relative performance or path behaviors of the
pairs in the portfolio. Our empirical experiments have shown that, for a given set of pairs
traded, the allocation method plays a significant role in the success of the diversification
framework.

This paper provides portfolio managers and traders with a useful and flexible frame-
work to test trading strategies and build portfolios involving multiple pairs. The approach
discussed herein can also be applied to multiple futures spread trading that is common in
other asset classes, such as interest rates, commodities, and currencies. There are plenty
of examples of mean-reverting spreads between futures contracts in different markets,
including Brent vs. WTI crude oil, soybean vs. soybean meal, gold vs. silver, and many
more. Spread trading is very common in managed futures portfolios.

Future research directions include considering a risk-sensitive approach and incorpo-
rating additional risk controls into the trading problem. The effects on trading performance
would be of practical interest. Another direction is to consider a variation of the mean-
reverting model. In particular, regime-switching mean-reverting models have been used
for futures trading (see Leung and Zhou 2019) and they can be suitable here for multiple
spread trading.
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