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Abstract: We propose a model for risk adjustment, in the context of IFRS 17, for surrender risk.
Surrender rates are assumed to follow a stochastic process, underpinned by data. The distribution of
the present value of future individual cash flows is calculated. Using well-known techniques from
the theory of convex ordering of stochastic variables, we present closed formula approximations of
risk measures, such as quantiles, for the total portfolio. These formulas are easy to program and
enable an insurance company to calculate its risk adjustment without time-consuming simulations.
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1. Introduction

In IFRS 17, the new standard for accounting insurance contracts, a risk adjustment for
non-financial risks is required. The method is not specified, but disclosing the associated
confidence level is compulsory. One of the non-financial risks that can have a large impact
on an insurance company is surrender risk. The purpose of this article is to calculate,
and approximate, ultimo risk measures for the distribution of values of a portfolio of life
insurance contracts, given the variation in surrender rates over the horizon of the portfolio,
and use these risk measures to determine the required risk adjustment for this risk type.

1.1. IFRS 17

Generally speaking, the balance sheet of a company shall give a fair view of the
company’s financial status at a given point in time. Similarly, the income statement shall
be correct for the accounting year it reflects, in that income and cost are recognized at the
relevant time. This entails a correct valuation of assets and liabilities, including future cash
flows. Insurance companies differ from many others in that the income cash flows and cost
cash flows often occur at times wide apart, and to a large extent are stochastic in amount
and/or timing. Accounting of insurance companies hence entails particular problems.

IFRS17 (n.d.) is a new standard for the accounting of insurance contracts, published
by the International Account Standards Board (IASB). It came into force on 1 January 2023,
and is an attempt to solve the above-mentioned insurance-specific accounting problem and
hence create better visibility for investors and improve comparability between companies.
The standard is principle-based, meaning that there is some freedom for insurers to choose
methods. It proposes three different models: the General Measurement Model, the Variable
Fee Approach, and the Premium Allocation Approach. All require risk adjustment, but the
Premium Allocation Approach is only used for short-term contracts and surrender risk will
not play a large role there.

We give a brief explanation of the main principles of the standard (see also Appendix A).
The first step is to put insurance contracts that have been recognized in the reporting period
into portfolios with similar characteristics. Within each portfolio, each contract’s cash
flows are projected over the coverage period. Typically a best estimate approach, based
on expectation, is used. The cash flows are then adjusted for the time value of money, i.e.,
discounted, and for other uncertainties due to financial risks. For instance, the discount
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rate shall incorporate illiquidity adjustment. The result after this step is called the Present
Value of Future Cash Flows (PVFCF). The next step is a requirement of a risk adjustment for
non-financial risks for the portfolio of contracts. In life insurance, biometric risks are typical
examples, and so is surrender risk. The purpose of the risk adjustment is to “reflect the
compensation that the entity requires for bearing the uncertainty about the amount and
timing of the cash flows that arises from non-financial risk” (IFRS17 n.d., § 37). There is
no prescription of the model for risk adjustment. It is up to the company to choose, but
there are five criteria that the model must fulfill, and both the model and the confidence
level must be disclosed (IFRS17 n.d., § B91). The sum of the PVFCF and the risk adjustment
is called the fulfillment cash flow. Finally, if a contract gives rise to a gain on day 1, this
amount is called the contractual service margin and must be included in the liabilities and
released into the income statement over the course of the contract. On the other hand,
onerous contracts (giving rise to a loss on day 1) must be fully recognized in the income
statement immediately. We refer to Palmborg et al. (2021) for an overview of IFRS 17 and
its challenges, including an illuminating mathematical description.

The risk adjustment for non-financial risk is further discussed in IFRS17 (n.d., §§ B86–B92),
but no explicit method is given. There are basically two approaches to risk adjustment: ei-
ther a confidence level-based method is used (sometimes this is called the percentile method
or, slightly misleading, Value at Risk), or another method is used where the confidence
level is not explicit. In the latter case, the confidence level must then be estimated.

In the percentile method, a chosen quantile of the distribution of cash flows, under
uncertainty due to non-financial risks, is calculated. A weakness of the method is that the
economic motivation for choosing one or the other quantile is unclear. Nevertheless, it is
one of the approaches in use, due to its simplicity, and it is the route we will take here.

The risk adjustment bears some resemblance to the risk margin in Solvency II; however,
there are important differences. The confidence level is given in Solvency II, and the risk
margin is calculated by a prescribed cost of capital method, where even the cost of capital
rate is explicitly given. However, there are also more fundamental differences. Solvency II
takes the perspective of another player on the market who is interested in taking over the
business, and the risk margin is compensation for the non-financial risks in this takeover.
On the other hand, in IFRS 17, it is the company’s view of risk that shall be guiding the
model choice, the confidence level included. Further, the Solvency II risk margin is based
on a one-year perspective, whereas the IFRS 17 takes the more classical actuarial view of
all cash flows during the lifetime of the contract, cf. England et al. (2019). Nevertheless,
the cost of capital method is one of the methods in use. In principle, this is economically
sound, but the choice of the rate is not easy, and the requirement to disclose the confidence
level is a further challenge of this method.

1.2. Our Objective and Setup

Since the principles of IFRS 17 were first proposed and published, the method for risk
adjustment has been widely discussed within the insurance industry, and in particular the
actuarial community. There has certainly been a number of white papers (e.g., Boumezoud
et al. 2020 and IAA 2018), seminars and alike where risk adjustment has been discussed,
but to the best of our knowledge, very little research has been published on the topic. The
risk adjustment is, however, treated in England et al. (2019). Although devoted to non-life
insurance, the article contains a general and interesting discussion on the nature of the risk
adjustment, and, in particular, the differences between it and the Solvency II Risk margin.

Many companies have been (and still are) struggling to find methods for risk adjust-
ment that are based on sound models, that fulfill the five criteria, that are easy and quick to
calculate, and where the confidence level can be determined. It is our impression that no
method has yet become the best practice. A survey in 2018 (Smith et al. 2019) showed that
53% of the companies in the sample were aiming for a cost of capital method, whereas 33%
planned to use a Value at Risk method. The present work has grown out of practical needs,
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and our objective is to present a method for surrender risk, and thus to start filling the gap
in the literature.

The outset is a portfolio of life insurance contracts with similar risk characteristics. The
customers pay the insurance company’s annual premiums and will receive a predefined
payment at death if they are still in the portfolio. We assume no new customers entering the
portfolio, but that surrenders happen. By value we mean the above-mentioned PVFCF1 from
this portfolio given the stochastics for the surrender rate (but keeping other parameters
constant) over the horizon of the portfolio. The focus is on ultimo risk measures for the value,
where “ultimo” is added to distinguish these risk measures from the one-year method in
the Solvency II standard formula, where the risk factor is stochastic the first year but then
stays constant for the remaining years. The measures we will treat are (i) a suitable quantile
of the distribution of the value, and (ii) the partial expectation up to such a quantile.

We present two alternative stochastic processes for surrender rates; they are chosen
for their mathematical tractability and underpinned by data from a life insurance company.
We will see that, depending on the product and the surrender experience, one of the models
is better suited than the other for risk adjustment modeling.

Applying techniques from the theory of convex ordering of stochastic variables, we
then find closed formulas approximating the two ultimo risk measures for each of the
two model specifications. There is a rich literature on convex bounds for approximating
sums of stochastic variables with various financial applications (cf. Section 3). We are not
contributing to this domain of research, but rather developing existing tools for usage in
another area of application.

One advantage of the presented method is to avoid simulations that could be time-
consuming for large portfolios, and also subject to random errors leading to the fluctuation
in the risk adjustment. We also show that the method fulfills the criteria in IFRS 17.

1.3. Risk Measures

For a random variable, we define the two risk measures quantile at confidence level
p as

Qp[X] = sup{x ∈ R|FX(x) ≤ p}, (1)

where FX is the cumulative distribution function of X, and the partial expectation at confi-
dence level p as the average of the quantiles

PEp[X] =
1
p

∫ p

0
Qq[X]dq. (2)

(We avoid the terms “Value at Risk” and “Conditional Value at Risk” as these normally
refer to a loss variable, while we consider a value variable.)

We will use the lognormal distribution extensively, so here we collect some results
about it. Let X be a random variable such that log X is normally distributed with mean µ
and variance σ2. Then we say that X is lognormal with parameters (µ, σ). Let Φ denote the
cumulative distribution function of the standard normal distribution, and zp = Φ−1(p) the
quantile at confidence level p of this distribution. Then we have

E[X] = eµ+σ2/2

V[X] = (eσ2 − 1)e2µ+σ2

Qp[X] = eµ+σzp

PEp[X] =
eµ+σ2/2

p
Φ(zp − σ)

(3)
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1.4. Outline of the Article

Stochastic modeling of surrender rates is discussed in Section 2, where the two models
are introduced and the risk measure for a cash flow at a future point in time is calculated.
We also motivate the models with empirical data.

Section 3 introduces well-known concepts of convex ordering and comonotonicity
with application to risk measures and in particular sums of lognormal stochastic variables.

In Section 4, we apply the machinery presented in Section 3 to derive approximations
of the risk measures of the total PVFCF. All necessary parameters are calculated and
presented in terms of the (discounted) cash flows. We also present a stylized example that
shows the accuracy of the approximations.

Section 5 discusses the practical application of the method; the estimation of parame-
ters is discussed, as well as the explicit choice of risk adjustment. The model is compared
to regulatory criteria for risk adjustment.

Section 6 is conclusions.

2. Stochastic Modelling of Surrender Rates
2.1. Introduction

Surrender rates are contingent on customer behavior, and thus difficult to model. They
may depend on diverse endogenous and exogenous factors such as contract design (e.g.,
fees for surrenders or not), macroeconomics (e.g., interest rates, unemployment), portfolio
properties (e.g., distribution of age of contracts), change in regulations, or company-related
events (such as incidents leading to loss of reputation). There is a rich literature on models
of surrender rates in life insurance in the context of such explanatory factors. For a survey
of this research up to 2013, we recommend Eling and Kochanski (2013) and references
therein; it also contains a classification of different types of models. See also Barsotti et al.
(n.d.) and Milhaud and Dutang (2018).

As our current interest is to construct a reliable risk adjustment, we take a more
humble position and do not forecast customer behavior based on explanatory factors. Our
focus is on the portfolio as a whole and observed surrender rates (in proportion to the
number of in-force contracts) are our data. Typically the company has a best estimate of
the surrender rate, revised yearly. Using this estimate as a start value, we use historical
volatility to forecast the future volatility of surrender rates. These fluctuations may be
seen as the aggregate of the environmental factors mentioned above.2 We will look at two
alternative models, one where the rates fluctuate around its best estimate, and one where
the rates have a “stickiness” property, but without drift; we propose a Markov process that
is a martingale.

Let us assume that the company has calculated the future net cash flows at for each
year t = 1, 2, . . . , T, given a surrender rate of zero. Each cash flow is the net of the premium
income minus insurance outpayments and expenses. These components are calculated
given actuarial assumptions, in particular mortality. If desired, they can also be seen as
discounted. The PVFCF from the portfolio is

T

∑
t=1

at. (4)

We now introduce surrenders into the picture. Let c be the best estimate at time 0 for
the surrender rate. For technical reasons we will model the “remain rate” instead of the
surrender rate; let this be r = 1− c at time 0. Now assume that the remain rate follows
some process rt, r0 = r. Each year t, a proportion of contracts equal to rt < 1 remain.
Obviously, this means that the net cash flows will be lower than those with no surrenders
(given that they are positive). We make the simplifying assumption of homogeneity: all
contracts have the same probability rt to remain at time t, in particular, subportfolios (e.g.,
for different products) have the same expected remain rate, and the remain rate does not
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depend on the contract’s time to maturity. Then, the net cash flow will be proportional to
the state model, leading to a modified cash flow at time t:

bt = at

t

∏
s=1

rs. (5)

The total PVFCF becomes

S =
T

∑
t=1

bt. (6)

Typically we will have a cash flow and we want to make a risk adjustment for situations
when the cash flow becomes lower than expected.

2.2. The Poisson Process

A standard model of surrenders is the Poisson process. This means that the number of
surrenders L in a time interval of length 1 is Poisson(λ), where λ is the intensity. Allowing
for stochastic intensity in such a process leads to a Cox process, cf. Grandell (1991).
More precisely, let λt be a stochastic process, independent of the individual surrenders.
Conditional on the intensity λt, let the number of surrenders in the time interval [t, t + 1]
be Poisson(λt). Defining R = L/N, where N is portfolio size at the beginning of the time
interval, we see that the conditional expectation of R, given λt, is λt/N = 1− rt and its
variance is λt/N2. For large portfolios, the variance is close to zero, and the conditional
distribution of R is close to a Dirac distribution at 1− rt.

2.3. Discrete Time

Motivated by this, we model the remain rates directly, i.e., ignoring arrivals of indi-
vidual surrenders. We will look at the “lognormal model”, where rates are defined as

rt = re−σ2/2+σXt , (7)

and the “sticky model” where the remain rate is calculated by a multiplicative shock on the
previous remain rate:

rt = rt−1e−σ2/2+σXt , (8)

where Xt are standard normal and independent variables and σ is a constant parameter.
According to (3), E[rt] = r for the lognormal model, and E[rt] = rt−1 for the sticky model,
i.e., rt is a martingale. Still, both models could lead to remain rates larger than 1. We will
basically ignore this artifact of the model; it will be discussed in Section 4.2.

As we will see, both models are mathematically pleasant to work with. The relevant
question of whether they are realistic will be discussed in Section 2.6.

2.3.1. The Lognormal Model

We have

bt = at

t

∏
s=1

rs = at

t

∏
s=1

re−σ2/2+σXs

= atrte−tσ2/2+σ(X1+X2+···+Xt) = atrte−tσ2/2+σVt ,

(9)

where Vt = ∑t
s=1 Xs.

As the Xt are independent standard normal, each Vt is a normally distributed variable
with mean 0, and the covariance matrix C of {Vt}, t = 1, . . . , T is given by

Cst := cov[Vs, Vt] = min{s, t}. (10)
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In particular, the variance of Vt equals t. Hence, using (3), the quantile at confidence level p
of bt is

Qp[bt] = atrt exp
(
−tσ2/2 + σzp

√
t
)

. (11)

The partial expectation is

PEp[bt] =
atrt

p
exp

(
σ2t
)

Φ
(

zp − σ
√

t
)

. (12)

2.3.2. The Sticky Model

Using (8) recursively, we get

rt = rt−1e−σ2/2+σXt−1 = . . . = re−tσ2/2+σ(X1+...+Xt). (13)

Define Zt = ∑t
i=1(t− i + 1)Xi and recall that ∑t

i=1 i = t(1 + t)/2. Then

bt = at

t

∏
s=1

rs = at

t

∏
s=1

re−sσ2/2+σ(X1+...+Xs)

= atrte−t(1+t)σ2/4+σ(tX1+(t−1)X2+...+Xt) = atrte−t(1+t)σ2/4+σZt .

(14)

Again, as the Xt are independent standard normal, each Zt is a normally distributed
variable with mean 0, and the covariance matrix C of {Zt}, t = 1, . . . , T is calculated as
follows. Assuming t ≤ s, we obtain

Cst := cov[Zs, Zt] =
t

∑
i=1

(t− i + 1)(s− i + 1) =
t(t + 1)(3s− t + 1)

6
. (15)

In particular, the variance of Zt equals t(t+1)(2t+1)
6 . Hence, using (3), the quantile at confi-

dence level p of bt is

Qp[bt] = atrt exp

(
−t(1 + t)σ2/4 + σzp

√
t(t + 1)(2t + 1)

6

)
. (16)

The partial expectation is

PEp[bt] =
atrt

p
exp

(
σ2t(t + 1)(t− 1)

6

)
Φ

(
zp − σ

√
t(t + 1)(2t + 1)

6

)
. (17)

2.4. Continuous Time

Another approach is to work in continuous time. We will do this for the sticky model
only. Let Nt be the share of remaining contracts at time t, N0 = 1. We get in a small time
interval dt:

Nt+dt = Ntrdt
t . (18)

Define Mt = log Nt. Then Mt+dt = Mt + (log rt)dt, i.e., dMt = (log rt)dt. Integrating this
equation, we obtain

Mt =
∫ t

0
(log rs)ds. (19)

Now, let us assume that rt follows a Geometric Brownian motion drt/rt = σdW, r0 = r. It
is well known that the solution can be expressed as log rt = log r− tσ2/2 + σWt. Thus

Mt =
∫ t

0
(log r− sσ2/2 + σWs)ds = t log r− t2σ2/4 + σ

∫ t

0
Wsds. (20)



Risks 2023, 11, 62 7 of 22

Call the last integral Pt. It is a time integral of a Brownian motion which can be evaluated
using Itô calculus; it can be shown that Pt is a Gaussian process, i.e., for any finite collection
of times t1, . . . , tk, the corresponding random variables Pt1 , · · · , Ptk are multivariate normal.
In addition, E[Pt] = 0, V[Pt] = t3/3, and Cov[Ps, Pt] = t2(3s− t)/6 for t ≤ s. Hence

Mt = t log r− t2σ2/4 + σ
√

t3/3Xt, (21)

where Xt is standard normal. Changing back to N, we get

Nt = rt exp
(
−t2σ2/4 + σ

√
t3/3Xt

)
. (22)

Hence,
bt = atrt exp

(
−t2σ2/4 + σ

√
t3/3Xt

)
, (23)

whose p-quantile is

Qp[bt] = atrt exp
(
−t2σ2/4 + σzp

√
t3/3

)
. (24)

This expression of the quantile and the one derived in discrete time are very close. The
partial expectation is

PEp[bt] =
atrt

p
exp

(
σ2t2(2t− 3)

12

)
Φ

(
zp − σ

√
t3

3

)
. (25)

2.5. Term Structure of Surrender Rates

The assumption of a single best estimate for the surrender rate (and hence the remain
rate) is in some cases too restrictive. Rather one has a term structure of expected remain
rates v(t) in year t, due to known properties of the portfolio. For instance, as time passes,
the customers’ average age increases which may influence the remain rate. Then the sticky
model can be generalized as follows.3 Assume that the stochastic remain rate in year t is

rt = v(t)e−tσ2/2+σ(X1+...+Xt). (26)

This means that the remain rate is influenced by the cumulative shocks up to the year in
question. The cash flow in year t then becomes

bt = at

t

∏
s=1

rs = at

t

∏
s=1

v(s)e−sσ2/2+σ(X1+···+Xs)

= at

(
t

∏
s=1

v(s)

)
e−σ2t(t+1)/4+σ(tX1+(t−1)X2+···+Xt)

= at

(
t

∏
s=1

v(s)

)
e−σ2t(t+1)/4+σZt .

(27)

In the lognormal case, the calculations and result are similar, only simpler. The conclusion
is that the term structure does not essentially complicate the model; it changes only the
deterministic factor in each bt. To simplify the notation, in the remaining part of the paper
we will work with the case of a constant best estimate r.

2.6. Realism of the Models

The two models obviously have very different properties, and one can be favored
over the other because of some known properties of the portfolio/product. However, we
recommend choosing the model only after testing both of them on the historical data.
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We have tested the two model assumptions on four portfolios from a life insurance
company. These are all term-life insurance, but they differ in terms of the composition of
clients, for instance, two of the portfolios have been closed for some time so their clients
have higher average ages. The time series covers eight years and the corresponding remain
rates are shown in the graph, Figure 1.4

1 2 3 4 5 6 7 8
Year

0.90

0.92

0.94

0.96

0.98

Remain rate

Figure 1. Remain rate of four portfolios over time.

For each of the four portfolios, we first logarithmize the time series of remain rates.
The lognormal model is a good fit if the logarithmized time series itself is close to normal,
cf. (7), and the sticky model is a good fit if the consecutive differences of the logarithmized
time series are close to normal, cf. (8). To test this, we perform the Shapiro–Wilk test on
these two cases. The Shapiro–Wilk test fails, i.e., the null hypothesis of normality is rejected,
when the p-value is below a given threshold, e.g., 0.10. Comparing the p-values for the two
models indicates which of them is more suitable.5

The results are as follows (p-values for the lognormal model to the left and for the
sticky model to the right).

Blue 0.26 0.86
Green 0.08 0.73
Red 0.38 0.63

Orange 0.99 0.12
We observe that the normality is rejected only for the green portfolio and the lognormal

model, but also that the sticky model is far more realistic for all of the products except the
orange one. The choice between the two models can be based on an analysis of historical
data such as this test, or a Q-Q plot of the quantity log(rt) against the normal distribution,
and then of log(rt+1/rt), to examine which gives a better fit.

Both the proposed models have zero drift. If we have good reasons to believe that
a certain trend is expected going forward, this can be incorporated by using the term
structure in the previous subsection. Historical data is used to estimate the volatility, see
Section 5.1, but a historical trend will not automatically influence the rates going forward.
This is a virtue of the model

We remark that the two proposed models are special cases of the AR(1) model
log rt+1 = a + b log rt + σXt, and estimating the parameters in this model will give an
even closer fit to data. However, we do not recommend this choice, as there is a risk of
overfitting; in addition, this model will generally have a drift, and it is not obvious how to
combine it with the expected term structure.

3. Convex Ordering of Random Variables and Its Applications

To date, we have calculated the distribution of the cash flow for an individual year
in the future. Before continuing to the total portfolio, we will now make a diversion
and present some known results about convex ordering of random variables and their
application to approximations of risk measures. There is a rich and recent literature



Risks 2023, 11, 62 9 of 22

on the convex ordering of stochastic variables, and upper and lower convex bounds of
sums of lognormal variables, for different financial applications. In this direction, we
mention Deelstra et al. (2008); Linders and Stassen (2016) and Hanbali and Linders (2019)
(application to basket options), as well as Chaoubi et al. (2020) and Hanbali et al. (2022)
(counter-monotonic risks).

For a good introduction to the topic, we refer to Dhaene et al. (2006), on which a large
part of the material in this section is built.

3.1. Definition of Convex Ordering

There are different ways to introduce partial orderings between random variables.
The most obvious is to compare their distribution functions. Let X and Y be two random
variables.

Definition 1. X is said to precede Y in the stochastic dominance sense, notation X ≤sl Y, if

FX(x) ≥ FY(x) (28)

for all x.

Obviously, the stochastic dominance ordering preserves quantiles, i.e., X ≤sl Y ⇐⇒
Qp[X] ≤ Qp[Y] for all p ∈ (0, 1), so the respective quantiles of X and Y are ordered.
However, for our purposes, a weaker sense of ordering is often natural.

Definition 2. X is said to precede Y in the convex order sense, notation X ≤cx Y, if

E[v(X)] ≤ E[v(Y)] (29)

for all convex functions v.

The essence of the convex ordering is that the dominating variable Y is riskier, its tails
are “larger”. Note that, as v(t) = t and v(t) = −t are convex, a necessary condition for
X ≤cx Y is that E[X] = E[Y]. As a simple example, let X be the constant E[Y] (no other
constant would work). Then, by Jensen’s inequality, we get for any convex function v,

E[v(X)] = E[v(E[Y])] = v(E[Y]) ≤ E[v(Y)], (30)

so E[Y] ≤cx Y.
Further, it can be shown that the property is tail-symmetric, X ≤cx Y ⇐⇒ −X ≤cx

−Y.

Theorem 1. X ≤cx Y if and only if E[X] = E[Y] and

E[(X− d)+] ≤ E[(Y− d)+] (31)

for all d, where Z+ = max{Z, 0}.

The essence of the theorem is that rather than testing the inequality of the definition for
all convex functions, it suffices to test it for all functions v(t) = (t− d)+, which obviously
are convex. The expectations in the theorem are called the stop-loss premiums for the given
random variable, and the stop-loss level d. This theorem shows the usefulness of convex
ordering for actuarial purposes.

3.2. Comonotonicity

A situation that often occurs in practice is a random vector Y = (Y1, . . . , Yn) where the
marginal distributions are known, but the joint distribution is not. One might ask for “the
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extreme case”, i.e., some dependence structure that keeps the marginals but dominates all
other possible joint distributions in some sense.

Let U be a (0, 1) uniformly distributed random variable, i.e.,

FU(x) =


0 if x ≤ 0
x if 0 < x < 1
1 if x ≥ 1

(32)

In the sequel, the letter U will always denote such a variable.
The so-called probability integral transform states that for any continuous random

variable X, the random variable Y = FX(X) has a uniform distribution on (0, 1), i.e., Y d
= U

where the symbol d
= means equal in distribution.

Definition 3. The random vector Y = (Y1, . . . , Yn) is said to be co-monotonous if there exist
non-decreasing functions g1, . . . , gn defined on (0, 1) such that

Y d
= {g1(U), . . . , gn(U)}, (33)

where U is a uniformly distributed variable on (0, 1).

The random vector Y is in a sense one-dimensional; all of its components move with U.
If gi is strictly increasing, the marginal distribution of Yi is FYi (y) = P(Yi ≤ y) = P(gi(U) ≤
y) = P(U ≤ g−1

i (y)) = g−1
i (y), if 0 ≤ g−1

i (y) ≤ 1. So gi(·) is the quantile function of Yi.
The fact that all the components of a co-monotonous random vector move with U

makes it easy to calculate the risk measures:

Proposition 1. Quantiles and partial expectations are additive for comonotonic risks (X1, . . . , Xn),
i.e., for all p ∈ (0, 1) we have

Qp[
n

∑
i=1

Xi] =
n

∑
i=1

Qp[Xi], (34)

and

PEp[
n

∑
i=1

Xi] =
n

∑
i=1

PEp[Xi]. (35)

3.3. Convex Bounds for Sums of Random Variables

We now state a theorem that will prove useful for approximations in the problem
under study.

Theorem 2. Let (X1, . . . , Xn) be any random vector, U as before, and Λ any random variable. Then

n

∑
i=1

E[Xi|Λ] ≤cx

n

∑
i=1

Xi ≤cx

n

∑
i=1

F−1
Xi

(U). (36)

For the proof of the right bound6, see Kaas et al. (2000). It is instructive to look at the
proof of the left bound. Let v be any convex function. We need to show that

EΛ[v(E[X1|Λ] + . . . + E[Xn|Λ])] ≤ E[v(X1 + . . . + Xn)]. (37)

Using the law of total expectation and Jensen’s inequality for conditional expectation, we
obtain

E[v(X1 + . . . + Xn)] = E[E[v(X1 + . . . + Xn)|Λ]] ≥ E[v(E[X1 + . . . + Xn|Λ])], (38)

and the statement follows by the linearity of the last conditional expectation.
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The left bound is very useful, in particular when Λ resembles S := ∑ Xi in some way.
In fact, if Λ and S are independent, then the left bound reduces to the previously mentioned
relation E[S] ≤cx S. On the other hand, if Λ = S, we also get this. These examples show
that a non-trivial bound requires a clever choice of Λ.

3.4. Applications to Risk Measures

We will now investigate how quantiles and partial expectations behave in relation to
convex ordering. The following simple example shows that quantiles are not preserved by
convex ordering. Let X be uniform (−1, 1) and Y be uniform (−2, 2). Then Qp[X] = 2p− 1
and Qp[Y] = 4p − 2, so Qp[X] > Qp[Y] for p < 1/2 and Qp[X] < Qp[Y] for p > 1/2.
Still, it is obvious that X ≤cx Y. In fact, the example is more typical than one might think;
Ohlin’s lemma (Ohlin 1969) says that if two stochastic variables X and Y have the same
expectation and their distribution functions cross exactly once, i.e., FX(t) ≤ FY(t) for t < t0
and FX(t) ≥ FY(t) for t > t0, then X ≤cx Y. Ohlin’s lemma has been extended in different
directions (Hesselager 1993).

The good news is that partial expectations are preserved under convex ordering.

Theorem 3. If E[X] = E[Y], then

X ≤cx Y ⇔ PEp[X] ≥ PEp[Y] for all p ∈ (0, 1).

For a proof, see Denuit et al. (2005, pp. 152–54).

3.5. Application to Sums of Lognormal Variables

We will apply approximation methods induced by convex ordering discussed above.
The inspiration comes from Kaas et al. (2000, pp. 160–163), where similar cases are treated
in detail. For the convenience of the reader, we will present some material from that article,
with slightly changed notation.

Let

S =
T

∑
t=1

αt exp(Y1 + . . . + Yt), (39)

where (Y1, . . . , YT) has a multivariate normal distribution. Define

Y(t) = Y1 + . . . + Yt, (40)

and

Λ =
T

∑
t=1

βtYt, (41)

for some coefficients βt. Then Λ has a normal distribution. Conditionally on Λ = λ,
Y(t) has a normal distribution, and we may use well-known formulas for conditional
multivariate normal distributions to obtain

E[Y(t)|Λ = λ] = E[Y(t)] + ρt
σY(t)

σΛ
(λ− E[Λ]), (42)

and
V[Y(t)|Λ = λ] = σ2

Y(t)(1− ρ2
t ), (43)

where ρt is the correlation between Λ and Y(t), σΛ is the standard deviation of Λ, and σY(t)

is the standard deviation of Y(t). Hence, conditional on Λ = λ, αteY(t) is lognormal with
expectation

αt exp(E[Y(t)] + V[Y(t)]/2) = αt exp{E[Y(t)] + ρtσY(t)
λ− E[Λ]

σΛ
+

1
2
(1− ρ2

t )σ
2
Y(t)}. (44)
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In this expression, all symbols are constant, except λ−E[Λ]
σΛ

which is a standard normal
variable that can be denoted Φ−1(U) for U uniform, by the probability integral transform.
Hence, defining

Sl :=
T

∑
t=1

αt exp{E[Y(t)] + ρtσY(t)Φ
−1(U) +

1
2
(1− ρ2

t )σ
2
Y(t)}, (45)

we end up with

Sl =
T

∑
t=1

E[αteY(t)|Λ], (46)

and we may apply the left bound in (36) to conclude that Sl ≤cx S. Note that the concluded
inequality holds regardless of the choice of coefficients βt; in the application, we will choose
these to achieve a close bound. If, in addition, all αt ≥ 0 and all ρt ≥ 0, Sl is a sum of
co-monotonous variables. This means that all quantiles of Sl are additive, and so are partial
expectations.

Further, define (for non-negative αt)

Su :=
T

∑
t=1

αt exp{E[Y(t)] + σY(t)Φ
−1(U)}. (47)

Then, using the right bound in (36), we see that S ≤cx Su, and it is also a sum of co-
monotonous lognormal variables, so

Qp[Su] =
T

∑
t=1

αt exp{E[Y(t)] + σY(t)zp}. (48)

Applying this to the cash flow modeling in Section 2.1, we see that each term in (48) is
the quantile of the cash flow at time t; we may call this expression the “sum of quantiles”
whereas the correct risk measure Qp[S] is the “quantile of sum”.

4. PVFCF for the Total Portfolio

Working in discrete time, we now want to study the total PVFCF S = ∑T
t=1 bt.

Using (9), we get:

S =
T

∑
t=1

atrt exp
(
−σ2t/2 + σVt

)
(49)

in the lognormal case, and using (14) we get

S =
T

∑
t=1

atrt exp
(
−σ2t(t + 1)/4 + σZt

)
(50)

in the sticky case, where Vt = ∑t
s=1 Xs, Zt = ∑t

s=1(t− s + 1)Xs, and Xs are independent
standard normal.

In order to simplify the notation, define αt = atrt exp
(
−σ2t/2

)
in the lognormal case,

and αt = atrt exp
(
−σ2t(t + 1)/4

)
in the sticky case, so that

S =
T

∑
t=1

αt exp(σVt), (51)

and

S =
T

∑
t=1

αt exp(σZt), (52)

respectively.
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We are left with a sum of correlated lognormal distributions7.

4.1. Approximations by Convex Ordering

We will now apply the approximation from Section 3.5. Recall that this applies to
expressions of the type

S =
T

∑
t=1

αt exp(Y1 + . . . + Yt), (53)

where (Y1, . . . , YT) has a multivariate normal distribution.
In the lognormal model, we may apply this with Ys = σXs, and in the sticky model

with Ys = σ(X1 + . . . + Xs). We define

Y(t) =
t

∑
s=1

Ys =

{
σVt in the lognormal model
σZt is the sticky model

, (54)

and

Λ =
T

∑
t=1

βtYt, (55)

where the coefficients βt will be chosen later.

4.1.1. The Lognormal Model

Define
Yt = σXt. (56)

Then

S =
T

∑
t=1

αt exp(Y1 + . . . + Yt). (57)

We will calculate all the constants that appear in the expression (45) for Sl . Firstly,

E[Y(t)] =
t

∑
s=1

E[σXs] = 0, (58)

and

σ2
Y(t) = V[Y(t)] =

t

∑
s1,s2=1

cov[Ys1 , Ys2 ] = σ2
t

∑
s1,s2=1

δs1,s2 = σ2t. (59)

Further,

V[Λ] =
T

∑
s1,s2=1

βs1 βs2cov[Ys1 , Ys2 ] = σ2
T

∑
s1,s2=1

βs1 βs2 δs1,s2

= σ2
T

∑
s=1

β2
s ,

(60)

cov[Y(t), Λ] = σ2
T

∑
s1=1

βs1

t

∑
s2=1

cov[Ys1 , Ys2 ] = σ2
T

∑
s1=1

βs1

t

∑
s2=1

δs1,s2

= σ2
t

∑
s=1

βs,

(61)

and hence

ρt =
∑t

s=1 βs√
t ∑T

s=1 β2
s

. (62)
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For the choice of coefficients βt, we propose using

βt =
T

∑
s=t

αs. (63)

a choice that is motivated by linearization of S (cf. Kaas et al. 2000, p. 164). If all αt are
non-negative, then the same holds for all βt, and hence for all ρt.

Plugging all these parameters into Equations (45) and (47), we obtain

Sl =
T

∑
t=1

αt exp{ρtσ
√

tΦ−1(U) +
1
2
(1− ρ2

t )σ
2t}, (64)

and

Su :=
T

∑
t=1

αt exp{σ
√

tΦ−1(U)}. (65)

Given that all αt are non-negative, these expressions are sums of co-monotonous stochastic
variables.

4.1.2. The Sticky Model

Define
Ys = σ(X1 + . . . + Xs). (66)

The calculations in this case are similar, only slightly more complicated. Firstly,

E[Y(t)] =
t

∑
s=1

E[σXs] = 0, (67)

and

σ2
Y(t) = V[Y(t)] = σ2

t

∑
s1,s2=1

cov[Ys1 , Ys2 ]

= σ2
t

∑
s1,s2=1

cov[X1 + . . . + Xs1 , X1 + . . . + Xs2 ]

= σ2
t

∑
s1,s2=1

min{s1, s2} = σ2t(1 + t)(1 + 2t)/6.

(68)

Further,

V[Λ] =
T

∑
s1,s2=1

βs1 βs2cov[Ys1 , Ys2 ] = σ2
T

∑
s1,s2=1

βs1 βs2 min{s1, s2}

= σ2
T

∑
s=1

(βs + . . . + βT)
2,

(69)

cov[Y(t), Λ] = σ2
T

∑
s1=1

βs1

t

∑
s2=1

cov[Ys1 , Ys2 ] = σ2
T

∑
s1=1

βs1

t

∑
s2=1

min{s1, s2}

= σ2
T

∑
s=1

βs
min(s, t)(2t + 1−min(s, t))

2
,

(70)

and hence

ρt =
∑T

s=1 βs
min(s,t)(2t+1−min(s,t))

2√
∑T

s=1(βs + . . . + βT)2
√

t(1 + t)(1 + 2t)/6
. (71)
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For the choice of coefficients βt, we propose using

βt =
T

∑
s=t

αs (72)

as in the previous case. If all αt are non-negative, then the same holds for all βt, and hence
for all ρt.

Again, plugging all these parameters into Equations (45) and (47), we obtain

Sl =
T

∑
t=1

αt exp{ρtσ
√

t(1 + t)(1 + 2t)/6Φ−1(U) +
1
2
(1− ρ2

t )σ
2t(1 + t)(1 + 2t)/6}, (73)

and

Su :=
T

∑
t=1

αt exp{σ
√

t(1 + t)(1 + 2t)/6Φ−1(U)}. (74)

Given that all αt are non-negative, these expressions are sums of co-monotonous stochastic
variables.

4.2. Numerical Example

We will now apply the machinery to a portfolio of contracts. For simplification, we let
at = 1 for all t, i.e., except for surrenders there are no changes in the portfolio over time.
Let r = 0.96, i.e., the best estimate of the surrender rate at t = 0 is 4%. The horizon will be
T = 60 years. With no randomness, the cash flows will decrease exponentially as 0.96t, so
at t = 60 it is down to 0.086.

4.2.1. The Lognormal Model

Assuming σ = 0.01, we may simulate the cash flows; Figure 2 shows simulated paths
for the first 20 years.

5 10 15 20
t

0.2

0.4

0.6

0.8

1.0

Cash flow

Figure 2. Lognormal model: simulated paths of cash flows.

As the cash flows for individual years are independent in this model, the law of large
numbers applies, and the simulated cash flow paths are very close to the deterministic path.
The risk adjustment will be very small if we use this model. In addition, as all quantiles
are so close to the mean, the approximations are of limited use. Hence, for brevity, we will
continue the example for the sticky model only.

4.2.2. The Sticky Model

Assuming the same volatility as in the previous case σ = 0.01, we may simulate the
cash flows; Figure 3 shows simulated paths.
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5 10 15 20
t

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Cash flow

Figure 3. Sticky model: simulated paths of cash flows.

As expected, the variation in the cash flows is much higher for the sticky model.
We see that some paths bend upwards. This is a result of the previously mentioned

fact that the model may produce remain rates rt > 1. Once in that region, the remain rate
may also stay there for a while. In practice, this has little influence on the end result; we are
considering lower quantiles of cash flows which typically correspond to paths where the
remain rate is lower than the starting point.

A Monte Carlo simulation will be used to construct the true distribution of the cash
flows and to calculate the risk measures. Drawing 10,000 paths for cash flows, we may
aggregate them in different ways. Firstly, we can add up the cash flows for each path, and
look at the distribution of these sums, i.e., the random variable S. The quantile function of
the total looks like this (Figure 4).

0.2 0.4 0.6 0.8
p

10

15

20

25

30

35

40

PVFCF

Figure 4. Quantile function of the total portfolio value for different p.

As seen, the 20% quantile of the total is 15.2. The partial expectation is easily calculated
as the mean of the 20% worst outcomes; it is 13.0.

Secondly, we may also calculate the distribution for each point in time, this can be
done exactly, without simulation. The green line shows the cash flows without randomness,
and the other two lines show the 20% and 80% quantile, respectively, (Figure 5).
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10 20 30 40 50 60
t

0.2

0.4

0.6

0.8

1.0

Cash flow

Figure 5. 20% (blue) and 80% (orange) quantile of the cash flow in each time point t.

Adding up the quantiles, using the comonotonicity, we get the 20% quantile for
Su, which is 14.7. Comparing with the quantile of S, we see that it is a conservative
approximation, which is expected as S ≤cx Su.

Finally, we want to use the variable Sl for approximation. The quantile of Sl is then
calculated by (45) and the parameters from Section 4.1.2. It is 15.2, i.e., very close but
slightly lower than the simulated value; we remind the reader that the convex ordering
might not preserve quantiles.

A plot of the quantile of S, Sl , and Su for p between p = 0.01 and p = 0.8 is shown in
Figure 6, and of partial expectation in Figure 7.

0.0 0.1 0.2 0.3 0.4 0.5 0.6
p0

5

10

15

20

25

PVFCF

Figure 6. Quantile function of S (thick green), Sl (blue), and Su (orange), for different p.
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p

5

10
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25

PVFCF

Figure 7. Partial expectation of S (thick green), Sl (blue), and Su (orange), for different p.

In both these graphs, the orange line is Su, the blue line is Sl , and the thicker green
line is S. The partial expectation graphs are nicely ordered, as expected. This is not
the case for the quantile graphs, but it is striking how good an approximation Sl is for
the quantiles we are interested in (below 0.5). Even Su gives a reasonable, although
conservative, approximation.

5. Implementation for Risk Adjustment
5.1. Parametrization

The model requires forward-looking estimation of the parameters σ and r (or a term
structure v(t)). For the latter, typically expert judgment is used based on (recent) experience
and known properties of the portfolio.

The volatility σ is obviously very important for the size of the risk adjustment. To
estimate it, the standard procedure is to use a historical time series of surrender rates ct,
transform it into remain rates rt = 1− ct, and then calculate the sample standard deviation
of the time series Rt = log rt for the lognormal model, or Rt = log rt+1 − log rt for the
sticky model.

For the sticky model, this is not fully correct, as the sample standard deviation mea-
sures deviations from the sample mean, whereas our model specification has the mean
−σ2/2. This is normally close to zero, and if the historical time series has a trend, its sample
mean can deviate from zero. A more correct estimate can be found by maximum likelihood
estimation. The log-likelihood function is

−n
2

log(2π)− n log σ− 1
2σ2

n

∑
t=1

(Rt + σ2/2)2, (75)

where n is the number of observations. Differentiation with respect to σ gives

−n
σ
+

1
σ3

n

∑
t=1

R2
t −

nσ

4
, (76)

which leads to the estimate

σ̂ =

√√√√−2 + 2

√
1 +

1
n

n

∑
t=1

R2
t . (77)

For the portfolios in Section 2.6, the ML estimation gives a 25% higher volatility than
the classical estimation for the green portfolio (which has a clear trend), whereas, for the
other portfolios, it gives slightly lower volatility (up to 8% lower).
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For the lognormal model, this problem does not occur, as the model specification has
the mean r − σ2/2, and here r is a free variable, so the maximum likelihood estimate is
equal to the usual sample standard deviation.

In practice, there might be some obstacles to this estimation procedure. For instance,
the history could have spikes due to idiosyncratic events that are deemed not to be repeated
going forward and need to be adjusted for.

5.2. Risk Adjustment

Let us define the absolute risk adjustment ARA = Y − Qp[X], and the relative risk
adjustment for surrender risk as RRA = 1−Qp[X]/Y, where X is the stochastic variable of
PVFCF, given the volatility σ, and Y is the deterministic PVFCF when the remain rate is
constant over the horizon T. Recall that IFRS 17 requires that the chosen confidence level of
the risk adjustment is disclosed, and with this choice of method, it is given by definition.

Another choice is to define the risk adjustments using partial expectations instead of
quantiles in the risk adjustment formulas. This has certain advantages, as discussed above,
but then the question arises about which confidence level this corresponds to. Obviously,
PEp < Qp, so it may be argued that the confidence level using the PE method for risk
adjustment is different from p.

5.3. Fulfillment of Criteria in IFRS17

In IFRS17 (n.d., § B91), it is stated:
“IFRS 17 does not specify the estimation technique(s) used to determine the risk adjustment
for non-financial risk. However, to reflect the compensation the entity would require for
bearing the non-financial risk, the risk adjustment for non-financial risk shall have the
following characteristics:

(a) risks with low frequency and high severity will result in higher risk adjustments for
non-financial risk than risks with high frequency and low severity;

(b) for similar risks, contracts with a longer duration will result in higher risk adjustments
for non-financial risk than contracts with a shorter duration;

(c) risks with a wider probability distribution will result in higher risk adjustments for
non-financial risk than risks with a narrower distribution;

(d) the less that is known about the current estimate and its trend, the higher will be the
risk adjustment for non-financial risk; and

(e) to the extent that emerging experience reduces uncertainty about the amount and
timing of cash flows, risk adjustments for non-financial risk will decrease and vice
versa.”

We now briefly discuss our proposed method’s fulfillment of these criteria.
(a) Surrenders are by nature high frequency and low severity. Nevertheless, a mass

lapse event could be seen as low frequency and high severity. To model such events, the
proposed model needs to be generalized to cater for jumps in rt, but such a model would
be very hard to parametrize.

(b) Using the RRA defined in the previous section, in combination with (16):

Qp[bt] = atrt exp

(
−t(1 + t)σ2/4 + σzp

√
t(t + 1)(2t + 1)

6

)
, (78)

we obtain (note that Y = atrt)

RRA = 1− exp

(
−t(1 + t)σ2/4 + σzp

√
t(t + 1)(2t + 1)

6

)
. (79)

It is easy to verify that the risk adjustment increases with a longer horizon t.
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(c) Again, the argument of the exponential in ARA becomes more negative when σ
increases. Hence ARA (and RRA) increases with σ. The RRA for different choices of r and
T are plotted as a function of σ (Figure 8).

0.005 0.010 0.015 0.020
σ

0.1

0.2

0.3

0.4

0.5

RRA

Figure 8. Relative risk adjustment as a function of σ.

Here the green lines correspond to T = 60 and the black lines to T = 20, further the
dashed lines have r = 0.90 and the solid lines have r = 0.96.

(d) and (e) These points are about parameter uncertainty. Our approach rests on two
inputs, the best estimate r and the volatility σ. If we have short experience or another
reason to consider these estimates uncertain, we can compensate by adding a margin to
the risk adjustment. This shall not be seen as changing the chosen percentile, but rather to
compensate for the fact that the true distribution might be wider than the calculated one.

6. Conclusions

This article presents one choice of approach for risk adjustment for surrender risk.
It is based on a model calibrated to the company’s own data and hence is realistic. The
risk adjustment is calculated by a method that is easy to program and which avoids time-
consuming simulations. The final risk adjustment has reasonable properties, i.e., it fulfills
the criteria in IFRS 17.

We believe that a similar approach can be used for some other non-financial risks,
for example, mortality risk. Similarly to Solvency II, aggregation of risk adjustment for
individual risk types becomes a question. A “Solvency II approach” with pre-defined
correlations could be a solution, but obviously hard to justify. Still, it is difficult to see any
alternatives, except a full simulation of the portfolio.
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Appendix A. IFRS17 and Risk Adjustment for Non-Financial Risks

IFRS17 (n.d.) stipulates in § IN6:
“The key principles in IFRS 17 are that an entity:
. . .
(d) recognises and measures groups of insurance contracts at:
(i) a risk-adjusted present value of the future cash flows (the fulfillment cash flows) that
incorporates all of the available information about the fulfilment cash flows in a way that is
consistent with observable market information; plus (if this value is a liability) or minus (if
this value is an asset)
(ii) an amount representing the unearned profit in the group of contracts (the contractual
service margin).
. . . ”

In § 32, the fulfillment cash flow is defined:
“. . . (i) estimates of future cash flows (§§ 33–35);
(ii) an adjustment to reflect the time value of money and the financial risks related to the
future cash flows, to the extent that the financial risks are not included in the estimates of
the future cash flows (paragraph 36); and
(iii) a risk adjustment for non-financial risk (§ 37).
. . . ”

The risk adjustment for non-financial risk is defined in § 37: “An entity shall adjust
the estimate of the present value of the future cash flows to reflect the compensation that
the entity requires for bearing the uncertainty about the amount and timing of the cash
flows that arises from non-financial risk.”

In § 119, it is further stipulated: “An entity shall disclose the confidence level used to
determine the risk adjustment for non-financial risk. If the entity uses a technique other
than the confidence level technique for determining the risk adjustment for non-financial
risk, it shall disclose the technique used and the confidence level corresponding to the
results of that technique.”

Notes
1 IFRS17 uses the sign convention that (discounted) claims and expenses are positive and (discounted) premiums negative. Here

we reverse that, in order to look at it from the company’s point of view, and avoid a lot of minus signs.
2 For solvency purposes, more extreme events must be considered. Consequently, in Solvency II standard formula there is a capital

requirement for “mass lapse” risk.
3 This subsection is courtesy of Lina Balčiūnienė.
4 For confidentiality reasons, the data has been modified. However, it has been done in a way that does not distort the statistical

testing.
5 The Shapiro–Wilk test is tailored to test for normality based on the sample mean and sample variance. However, the specification

of the sticky model has a fixed mean, and to be accurate, the Shapiro–Wilk test with a known mean should be used, see Hanusz et
al. (2016) for details. The difference in our case is however negligible.

6 In fact, an improved right bound proved in Kaas et al. (2000) is ∑n
i=1 Xi ≤cx ∑n

i=1 F−1
Xi |Λ(U) if Λ and U are independent.

7 For a good overview of approximation methods, see Asmussen et al. (n.d.).
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