
Citation: Yu, Yajie, Narayan Ganesan,

and Bernhard Hientzsch. 2023.

Backward Deep BSDE Methods and

Applications to Nonlinear Problems.

Risks 11: 61. https://doi.org/

10.3390/risks11030061

Academic Editors: Dan Pirjol and

Lingjiong Zhu

Received: 2 November 2022

Revised: 24 February 2023

Accepted: 10 March 2023

Published: 16 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

risks

Article

Backward Deep BSDE Methods and Applications to
Nonlinear Problems
Yajie Yu, Narayan Ganesan and Bernhard Hientzsch *

Corporate Model Risk, Wells Fargo, New York, NY 10017, USA; jessica.yu@wellsfargo.com (Y.Y.);
narayan.ganesan.8@gmail.com (N.G.)
* Correspondence: bernhard.hientzsch@wellsfargo.com

Abstract: We present a pathwise deep Backward Stochastic Differential Equation (BSDE) method for
Forward Backward Stochastic Differential Equations with terminal conditions that time-steps the
BSDE backwards and apply it to the differential rates problem as a prototypical nonlinear problem
of independent financial interest. The nonlinear equation for the backward time-step is solved
exactly or by a Taylor-based approximation. This is the first application of such a pathwise backward
time-stepping deep BSDE approach for problems with nonlinear generators. We extend the method
to the case when the initial value of the forward components X can be a parameter rather than
fixed and similarly to also learn values at intermediate times. We present numerical results for a call
combination and for a straddle, the latter comparing well to those obtained by Forsyth and Labahn
with a specialized PDE solver.

Keywords: differential rates; FBSDEs; nonlinear pricing; deep learning for pricing

1. Introduction

As proposed in Han and Jentzen (2017), deep learning (DL) and deep neural networks
(DNN) can be used to solve high-dimensional nonlinear PDEs by converting them to
Forward Backward Stochastic Differential Equations (FBSDE) and building neural networks
to learn the control and initial value of the corresponding stochastic control problem. They
use their method on, for instance, a differential rates problem, as studied in Mercurio (2015),
for a combination of two call options. Hientzsch (2021) also gives an overview of pricing
different instruments in quantitative finance via deep BSDE and FBSDE.

To summarize, deep BSDE methods rewrite the FBSDE problem into a stochastic
control problem where one searches for a control (ultimately approximating the gradient
of the solution) and an initial value or initial value function which minimize certain
loss functions. The minimization typically occurs through stochastic gradient descent
approaches and variants (such as Adam), where the stochastic gradient with respect to the
parameters of the control and of the initial value function is obtained from a mini-batch of
realizations of the underlying dynamics (X) and corresponding realizations of the solution
of the BSDE (Y) given the current control Π. The forward deep BSDE methods (first
described in Han et al. (2018)) and the backward deep BSDE methods described here differ
by how the realization of Y is computed given the current control and the realization of X
and also by the loss function to be minimized. These pathwise deep BSDE methods have
the advantage that one only needs to implement a discretization of the forward dynamics
X and a pathwise computation of the backward dynamics for Y and the loss function
generically in a deep learning framework such as TensorFlow and can use standard deep
learning techniques. They also can be implemented for very high-dimensional problems
avoiding or at least mitigating the curse of dimensionality.

Han et al. (2018) propose time-stepping both forward and backward SDE forward in
time and transform the final value problem to a stochastic control problem in which the
objective function measures how well the given final value has been approximated. We

Risks 2023, 11, 61. https://doi.org/10.3390/risks11030061 https://www.mdpi.com/journal/risks

https://doi.org/10.3390/risks11030061
https://doi.org/10.3390/risks11030061
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/risks
https://www.mdpi.com
https://doi.org/10.3390/risks11030061
https://www.mdpi.com/journal/risks
https://www.mdpi.com/article/10.3390/risks11030061?type=check_update&version=1

Risks 2023, 11, 61 2 of 16

call their method the ”forward deep BSDE” method since it time-steps the BSDE forward.
Wang et al. (2018) consider a BSDE with zero drift term which can be trivially time-stepped
backwards and propose and demonstrate forward and backward methods with fixed X0,
describing the first pathwise backward deep BSDE method. Liang et al. (2021) solve
BSDEs with linear generators with both forward and backward methods. They indicate
a Taylor expansion approach for nonlinear generators, without giving details or results
for nonlinear problems. We describe the general approach and the application to the
differential rates setting for two variants of this pathwise backward deep BSDE method,
which is, to the best of our knowledge, the first application of this pathwise backward
method to nonlinear problems.

The backward method starts with the given final value at maturity and then time-steps
the BSDE backwards until a given initial time t0, which is assumed to be 0 without loss of
generality in this paper. In continuous time and complete markets, a trading strategy can
completely eliminate randomness; thus, all realizations of Yt0 (initial value of derivative)
for the same initial risk factors Xt0 should have the same value. Thus, if we minimize
a measure of the range of Yt0 , we should obtain a minimum of 0 and a risk-eliminating
trading strategy. In the time-discrete and/or incomplete setting, the randomness can no
longer be eliminated, but its impact can be minimized. In the pathwise backward methods,
the variance of Yt0 serves as that measure—either with respect to a Monte Carlo mean or
a to-be-learned parameter. Similarly, for random Xt0 , we minimize the square distance
from an also to-be-determined function Yinit(Xt0) represented by a DNN. This extension to
random Xt0 is new.

We consider the differential rates problem together with Black–Scholes dynamics for
European options. To force nonlinear behavior, one can consider, for example, a linear
combination of calls with coefficients with opposite signs or a straddle. Differential rates
mean that positive cash balances in the trading strategy accrue interest at a lower lending
rate, while negative cash balances (debts/loans) accrue interest at a higher borrowing rate.

For the differential rates problem, (Han and Jentzen 2017, Section 4.4) mention a
nonlinear PDE which can be solved by appropriate nonlinear PDE solvers in small dimen-
sions (see, for instance, Forsyth and Labahn (2007)). For a more general setting, Mercurio
(2015) presents PDEs and proposes PDE solution or binomial tree methods. None of these
methods work in higher dimensions due to the curse of dimensionality. All these methods
require problem-specific implementations of nonlinear PDE or tree solvers.

There are other approaches to such nonlinear problems, including in high dimensions,
that also rely on the equivalent FBSDE formulation. As mentioned above, Han and Jentzen
(2017) solve a nonlinear differential rates problem with their pathwise forward deep BSDE
method. Huré et al. (2020) solves nonlinear problems by a BSDE rollback method, where
the solution and its gradient at each time-step are sequentially learned by minimizing the
residual of the time-discretized BSDE. Warin (2018) solve nonlinear problems by repeatedly
nested Monte Carlo. While somewhat straightforward to implement, this only works for
shorter maturities and requires substantial computational resources. Raissi (2018) solves
the BSDE by adding loss terms for the residuals of all time-steps to the usual final loss
term. Training for such complex loss functions can be quite challenging and unreliable and
might not lead to solutions that satisfy all constraints and loss functions equally well, and
standard stochastic optimization methods often struggle to optimize well. None of these
works except Han and Jentzen (2017) solve the differential rates problem.

In this paper, we first introduce FBSDE for general nonlinear problems, with particular
details for the differential rates problem, time-discretize them, and then derive exact
solutions and Taylor approximations for the backward step problem. We then quickly
describe the forward and backward deep BSDE approaches that we consider—both the
batch-variance variant already described in the literature but also the novel initial variable
and network versions, the last one for varying or random Xt0 , together with a computational
graph for the network version. Then, we apply these methods to the differential rates
problem for the call combination case from (Han and Jentzen 2017, Section 4.4) and for the

Risks 2023, 11, 61 3 of 16

straddle case from Forsyth and Labahn (2007). We compare the results for a case with fixed
Xt0 and for a case with varying Xt0 with the results from Forsyth and Labahn (2007) and
see that they agree well. Finally, we conclude.

2. FBSDE for Nonlinear Problems

We are interested in solving a nonlinear PDE for a single function u that depends on
time t and an n-dimensional state vector x of the following general form:

ut(t, x) + Ltu(t, x) + f (t, x, u(t, x),∇xu(t, x)) = 0, (1)

with
Ltu(t, x) :=

1
2

Tr
(
(σσT)(t, x)(Hessxu)(t, x)

)
+ µ(t, x)∇xu(t, x), (2)

where ∇xu is the gradient vector with respect to the x and Hessxu is the Hessian matrix
with respect to the x, with µ(t, x) ∈ Rn and σ(t, x) ∈ Rn,n being appropriate vector and
matrix functions of their arguments, together with terminal condition at maturity T given as

u(T, x) = g(x). (3)

A nonlinear Feyman–Kac theorem1 shows that the solution of the above PDE also satisfies
the following FBSDE system under appropriate assumptions:

The forward SDE (FSDE) for the vector Xt ∈ Rn:

dXt = µ(t, Xt)dt + σ(t, Xt)dWt, (4)

and the backward SDE (BSDE) in terms of strategy Πt ∈ Rn:

−dYt = f (t, Xt, Yt, Πt)dt −ΠT
t σ(t, Xt)dWt, (5)

with terminal condition2

YT = g(XT), (6)

where
Yt = u(t, Xt), Πt = ∇Xu(t, Xt). (7)

In terms of pricing applications in finance, Xt is the vector of values of the underlying
assets, and g(XT) is the final payoff of the European option that one tries to replicate with
a self-financing portfolio in the underlying asset(s) and a remaining cash position. That
portfolio will contain πj(t) worth of the jth underlying asset (corresponding to index j in
the vector Xt), and Πt is the vector of the πj(t).The portfolio (including cash position) is
worth Yt at time t.

Now, Yt or equivalently u(t, Xt) represent the needed wealth at t to exactly or approx-
imately replicate the payoff when starting at Xt at time t. One can thus define price (by
replication) price(t, Xt; XT 7→ g(XT)) as the solution of the FBSDE and/or the nonlinear
PDE. In linear pricing, one has

price(t, Xt; XT 7→ g(XT)) = −price(t, Xt; XT 7→ −g(XT)). (8)

In nonlinear pricing, these two prices are no longer necessarily the same but will give an
upper and a lower price.

Using the Euler–Maruyama method to discretize time direction forward for both Xt
and Yt, we have

Xti+1 = Xti + µ(ti, Xti)∆ti + σ(ti, Xti)∆Wi (9)

and
Yti+1 = Yti − f (ti, Xti , Yti , Πti)∆ti + ΠT

ti
σ(ti, Xti)∆Wi. (10)

Risks 2023, 11, 61 4 of 16

2.1. Backward Time-Stepping

As discussed in the introduction, in deep BSDE methods, we compute pathwise real-
izations of Y given pathwise realizations of X. Since the FBSDE that we are considering are
decoupled, a realization of X can be computed independently and ahead of the realization
of Y. In the pathwise backward deep BSDE methods, we compute the realization of Y
backwards, starting from a given final value YT = g(XT) and using the realizations of ∆Wi

from X. In terms of filtration, this means that we are operating under a filtration that has
all the information about Wt until t = T and are measurable with respect to information
about X and W up to time T (and not time t as in the forward method). Since we are
using realizations of X and corresponding realizations of Y given the current strategy Π·
to compute gradients with respect to strategy parameters, the strategy can be assumed
known. Thus, the formulas in this subsection all contain realizations, not random variables.

2.1.1. Exact Backward Time-Stepping

To backward step in time direction, we rewrite (10) as

Yti − f (ti, Xti , Yti , Πti)∆ti = Yti+1 −ΠT
ti

σ(ti, Xti)∆Wi (11)

and solve for Yti .
For a differential rates setup in a risk-neutral measure, the f generator function in the

BSDE is

f (t, Xt, Yt, Πt) = −rl(t)Yt + (rb(t)− rl(t))

(
n

∑
j=1

πj(t)−Yt

)+

. (12)

This driver expresses that all assets Xj(t) and positive cash balances grow at a risk-neutral
rate rl(t) unless the cash position Yt−∑n

j=1 πj(t) is negative, and that negative cash balance
will grow at a rate rb(t) corresponding to the higher borrowing rate as compared with the
lower or equal lending rate.

There are two cases for Equation (12):
(1). If ∑n

j=1 πj(t) > Y(t):

f (t, Xt, Yt, Πt) = −rl(t)Yt + (rb(t)− rl(t))

(
n

∑
j=1

πj(t)−Yt

)
. (13)

Inserting this into Equation (11) and solving, we obtain

Yti =
Yti+1 +

(
rb(ti)− rl(ti)

)(
∑n

j=1 πj(ti)
)

∆ti −ΠT
ti

σ(ti, Xti)∆Wi

1 + rb(ti)∆ti
. (14)

(2). If ∑n
j=1 πj(t) ≤ Y(t):

f (t, Xt, Yt, Πt) = −rl(t)Yt. (15)

Inserting this into Equation (11) and solving, we obtain

Yti =
Yti+1 −ΠT

ti
σ(ti, Xti)∆Wi

1 + rl(ti)∆ti
. (16)

However, we do not know Yti before solving the nonlinear Equation (11) for it. From (14)
and (16) and the conditions involving Yti , we obtain that the condition Yti < ∑n

j=1 πj(ti) is
equivalent to

Yti+1 <
(

1 + rl(ti))∆ti

) n

∑
j=1

πj(ti) + ΠT
ti

σ(ti, Xti)∆Wi (17)

Risks 2023, 11, 61 5 of 16

and the same for the relation with ≥. Thus, if (17) is satisfied, we use (14), otherwise (16).

2.1.2. Time-Stepping from Taylor Expansion

By a first-order Taylor expansion, we have

f
(

ti, Xti , Yti , ΠT
ti

σ(ti, Xti)
)
≈ f

(
ti, Xti , Yti+1 , ΠT

ti
σ(ti, Xti)

)
− ∂ f

∂Y

(
ti, Xti , Yti+1 , ΠT

ti
σ(ti, Xti)

)(
Yti+1 −Yti

)
. (18)

Inserting this into Equation (11) and solving for Yti , we have the following:

Yti = Yti+1 +
f
(

ti, Xti , Yti+1 , ΠT
ti

σ(ti, Xti)
)

∆ti −ΠT
ti

σ(ti, Xti)∆Wi

1− ∂ f
∂Y

(
ti, Xti , Yti+1 , ΠT

ti
σ(ti, Xti)

)
∆t

. (19)

Note that f and ∂ f
∂u are evaluated at Yti+1 .

With the same setup for the differential rates problem, it is clear that there are only
two possible forms for f :

(1). If ∑n
j=1 πj(ti) > Yti+1 :

f (ti, Xti , Yti+1 , Πti) = −rl(ti)Y(ti) + (rb(ti)− rl(ti))

(
n

∑
j=1

πj(ti)−Yti+1

)
(20)

and
∂ f
∂Y

= −rb(ti). (21)

Inserting this into Equation (19), we obtain the same (14).
(2). If ∑n

j=1 πj(ti) ≤ Yti+1 :

f (ti, Xti , Yti+1 , Πti) = −rl(ti)Yti+1 (22)

and
∂ f
∂Y

= −rl(ti). (23)

Inserting this into Equation (19), we again obtain (16).
Notice that both the exact and Taylor backward steps have the same form (14) and

(16); the difference is in the conditions when they are applied.

3. Deep BSDE Approach
3.1. Forward Approach

As introduced in Han and Jentzen (2017), with forward time-stepped Equations (9) and (10),
one minimizes the loss function

E(||YF,Π
T − g(XN)||2) (24)

over parameters of the strategies Π· and over initial value Y0 , where YF,Π
T is the result of

forward stepping (10) with strategy vector Π.
The initial portfolio value Y0 is a parameter of the minimization problem, as are all

the parameters of the DNN functions πi(ti, Xti) treated as functions of Xti (that give the
stochastic vector process Πt as value of the holdings of the risky underlying securities in the
portfolio). Since X0 is fixed, instead of learning a function π0(X0), one learns a parameter
π0. Alternatively, one can learn a single function π(ti, Xti) as function of ti and Xti , which
means that all the parts of the computational graph that represent the evaluation of π(t, x)
share the same DNN parameters.3 The minimization problem is then solved with standard

Risks 2023, 11, 61 6 of 16

deep learning approaches. For the case of random X0, one also learns the initial value of Y0
as a function Yinit(X0) of X0 using the same loss function.

The minimization is typically implemented through mini-batch stochastic gradient
descent and similar approaches, such as Adam. The gradients of the expected value with
respect to the trainable parameters are approximated by the gradients of the empirical sum
over the loss function as evaluated on a number of trajectories. In this work, we generate
new trajectories for each mini-batch for each epoch/stochastic gradient descent step, and
we tested both on fixed testing batches as well as freshly generated batches. In general,
strategies and initial value functions will be somewhat noisy, since the approximation of
the expectation respective its gradient will depend on the mini-batch size. Such noise can
be reduced by increasing the mini-batch size or by various kinds of postprocessing. Given
a strategy Π and keeping it fixed, one can also compute a refined Yinit(X0) by performing
a separate optimization only on the parameters of Yinit.

3.2. Backward Approach

In the backward approach, one time-steps Equation (9) forward but time-steps Equation (10)
backward, starting from YT = g(XT). As discussed in the previous section, one can use an
analytical solution of (11) or some Taylor expansion approach. Using either approach, one
will obtain an expression or implementation

Yti = ybackstep(ti, Yti+1 , Xti , Πti , ∆Wi). (25)

For the differential rates setup, the backward step ybackstep is given by (14) and
(16) depending on whether Yti+1 satisfies (17) or not (for the exact step), or whether
∑n

j=1 πj(ti) ≤ Yti+1 or not (for the Taylor step). In general, ybackstep can be any exact
or approximate solution of (11).

As discussed before, the time-stepping of both (9) (forward) and (10) (backward)
occurs in a single realization—one generates a realization ∆Wi for all i, simulates Xti for
all i from (9) and then performs the time-stepping for this specific realization for Y . A
little bit more formally, let us define recursively backwards for any given current strategy
function π(t, x) the following random variables Yπ that are measurable as of time T:
Yπ

T = Yπ
tN

= g(XT) and

Yπ
ti
(ω) = ybackstep(ti,Yπ

ti+1
(ω), Xti (ω), π(ti, Xti (ω)), ∆Wi(ω)) (26)

realization by realization. This is a well-defined sequence of random variables, all measur-
able as of T.
For fixed X0, the loss function used in Wang et al. (2018) and Liang et al. (2021) is

var(Yπ
0) (27)

and one optimizes over functions π to find the strategy that minimizes this initial vari-
ance. (In the limit for vanishing time-steps, the gradient of the PDE solution will lead to
zero variance).

For the stochastic gradient descent approaches, this variance will be approximated by
the variance over the current mini-batch. Thus, for the mini-batch stochastic gradient step,
the loss function will be the mini-batch variance

E(||Yπ
0 − Ȳ0||2), (28)

where Ȳ0 will be the mean over the mini-batch. Similarly to before, approximating the
expectation with a finite sum over the mini-batch will introduce noise into the optimization
and into the computation of Ȳ0, which depends on the size of the mini-batch.

Thus, for estimates of the initial value of the instrument, one does not necessarily have
to use only the last mini-batch mean, one can compute the mean of Yπ

0 over a larger sample

Risks 2023, 11, 61 7 of 16

of paths or batches generated with a fixing trading strategy. Instead of using the mini-batch
mean in the loss function, one can learn Ȳ0 as a parameter/variable (resulting in the same
loss function but with different meaning of Ȳ0 = Yinit).

Once X0 is random, one can no longer use batch variance in a straightforward way.
Instead (and inspired by the parameter version just discussed), one uses a loss function

E(||Yπ
0 − Yinit(X0)||2), (29)

where the Yinit(X0) is a function represented by a DNN which is learned as part of the
DL approaches.

Restating more formally again, we can define

Yπ
0 =Yinit(X0; π) = E[Yπ

0 |X0] (30)

and define a loss function4

L(π) = E(||Yπ
0 − Yinit(X0; π)||2). (31)

We now are solving a (time-discrete but continuous in space) stochastic control problem

π∗ = argmin
π
L(π) (32)

and we define u∗0(X0) = Yinit(X0; π∗). We expect that π∗ will be an approximation (up
to time-discretization error) for the gradient of the solution of the FBSDE (and thus PDE)
in t = 0 . . . T and u∗0 will be an approximation of the solution at time t = 0. Proceeding
similarly for arbitrary t, we can similarly obtain approximations of the solution at any time
t in 0 . . . T.

We solve (32) by gradient-based optimization methods to iteratively improve strategies
until we obtain a minimum. The involved expectations cannot be analytically computed as
functions of π, so one needs to approximate them by sampling. As discussed above, one
uses mini-batch stochastic gradient descent and methods based on such (such as Adam).
Moreover, instead of exactly determining the Yinit function as a conditional expectation
given a strategy π, we update parameters for both π and Yinit at the same time.

As an illustration, the computational graph to compute a single sample for the empiri-
cal loss function for the backward method with random X0 is shown in Figure 1. (For the
initial variable version for fixed X0, both Yinit and Π0 would be variables independent of
X0, rather than networks depending on X0, and X0 would be an input.) First, one simulates
X forward, starting at the first time-step, proceeding through intermediate time-steps,
and reaching the final time-step, according to (9). At the final time-step, YT(ω) is set to
g(XT), and backward steps ybstep are taken (as discussed in Section 2.1), proceeding
throughintermediate steps, until one reaches the first time-step again. At the first time-step,
one computes Y0(ω)− Yinit(X0(ω)) (“Mismatch” shown in green), and the empirical loss
function is defined as an average over the square of the mismatch. Unfilled boxes are given
implementations/operations that do not change, pink boxes are networks to be trained,
and blue circles are randomly generated each time.

Algorithm 1 shows an entire pathwise backward deep BSDE method as pseudocode.
The computational graph shown in Figure 1 represents lines 5–9 in the pseudocode, with L
being the sum of squares of the mismatch.

Risks 2023, 11, 61 8 of 16

Yinit

Mismatch YB
0

X0

Π0

Σ0

ybstep0

∆W0

xstep0

YB
1

X1

Π1

Σ1

ybstep1

∆W1

xstep1

YB
2

X2

· · ·

· · ·

· · ·

ybstepn−1

∆Wn−1

xstepn−1

YB
n

Xn

Payoff

Figure 1. Computational graph for the entire method with initial network.

Algorithm 1 The pathwise Backward deep BSDE Method

1: procedure PATHWISEBACKWARDDEEP BSDE(batchsize)
2: . Initialization
3: Initialize DNNs Yinit(X; θu) and π(t, X; θπ) with random parameters θu and θπ

4: repeat
5: for nbatch← 1, batchsize do
6: Generate trajectory Xnbatch

ti

7: Generate corresponding backward trajectory Ynbatch
ti

with current π
8: end for
9: L← ∑batchsize

nbatch=1

(
Ynbatch

0 − Yinit(Xnbatch
0)

)2

10: Update θu by ∇θu L with SGD, Adam, or similar
11: Update θπ by ∇θπ

L with SGD, Adam, or similar
12: until stopping criterion satisfied
13: . Yinit(x; θu) approximates u(0, x) and π(t, x; θπ) approximates ∇xu(t, x)
14: end procedure

Similarly, one can introduce additional terms

E(||Yti − Ylearnedi(Xti)||
2) (33)

at some (or all) intermediate times ti to learn some approximations for the solution func-
tion Ylearnedi(Xti) as a function represented by a DNN, which is learned as part of the
minimization of the combined loss function (with initial and intermediate time terms). The
DNN thus learned will be an approximation of u(ti, Xti) = Yπ

ti
= E[Yπ

ti
|Xti]. Alternatively,

one could first learn the control from maturity to the last intermediate time using the loss
function for the intermediate time and then learn the control for the interval to the previous
intermediate times piece by piece until one reaches the initial time.

Considering the strategy Π fixed, one can thus obtain functions Yinit and Ylearnedi
as solutions of least square problems, and one can use standard approaches to compute
them. In the method described above, strategies are judged by variance against these
functions, and we are looking for strategies that minimize variance. One could alternatively
look for strategies that optimize other risk measures, such as quantiles, expected shortfall,
or unequally weighted or one-sided variances (to only or predominantly optimize over
trajectories where not enough initial capital was provided in hindsight), as long as one
can compute these loss functions appropriately on mini-batches and optimize them well.
Given any such strategies, one can then determine an appropriate initial value or price also
in different ways, not only as conditional expectations as above but possibly such that the
probability that initial capital was not enough is at most a given value, or that the expected
initial mismatch is bounded by a certain number, even in the case that initial capital was
not enough.

The setting proposed here with a variance against the conditional expectation most
closely fits with the setting of the forward pathwise deep BSDE and the underlying PDE,
and we thus use it here exclusively. We intend to study the other settings in future work.

Risks 2023, 11, 61 9 of 16

All the pathwise backward methods except the one using batch variance are novel, to
the best of our knowledge, and we are the first to apply them to nonlinear generators f , in
particular nonlinear with respect to y.

4. Results

We present results on two financial derivatives treated in the literature. The two finan-
cial derivatives are a call combination (long one call on the maximum across assets with a
strike of 120 and short two calls on the maximum with a strike of 150, with a maturity of
0.5 years) as in5 Han and Jentzen (2017) and a straddle on the maximum (long both a put and
a call, with a strike of 100.0 with a maturity of 1 year) as in Forsyth and Labahn (2007). These
two instruments correspond to the payoff g in (6) as g(MT) = (MT − K1)

+ − 2(MT − K2)
+,

with K1 = 120 and K2 = 150 for the call combination and g(MT) = (MT − K)+ + (K−MT)
+

with K = 100 for the straddle, both with Mt = maxn
i=1 Xi

t as the maximum across assets,
which in one dimension simplifies to Mt = Xt. While we are presenting results for the
one-dimensional case to compare with the results of Forsyth and Labahn (2007), the same
method can be applied to high dimensions. We refer to Ganesan et al. (2022), who show the
application of the forward pathwise deep BSDE methods to high-dimensional boundary
value/barrier option problems and leave high-dimensional examples for the backward
pathwise deep BSDE methods introduced here for future work.

Both examples use constant-coefficient Black–Scholes dynamics for the underlying
Xt, where µ(t, Xt) = µ and σ(t, Xt) = σ in (4), but with different constant values, as listed
in the subsections. Both examples are differential rates problems, where the BSDE (5) has
the generator f (t, Xt, Yt, Πt), as given in (12), once again with different parameters for the
two examples.

4.1. Call Combination

For the example from Han and Jentzen (2017), we picked σ = 0.2, µ = 0.06, rl = 0.04,
and rb = 0.06. We used 50 time-steps. For the fixed X0 case, we picked X0 = 120. For
the random/varying X0 case, we picked a uniform distribution within the range [70, 170].
We use various batch sizes, prescaling, Adam with default parameters and exponentially
decaying learning rate, two hidden layers with dim + 10 = 11 neurons, and activation
function Softplus for the first two layers and then identity on the output layer.

The loss function behaves similarly for all methods, and we show an example in
Figure 2.

Figure 2. Loss function over 20,000 mini-batches for long call combination for batch-variance method
with exact backward step. Loss functions for the other variants look very similar. Batch size 512.

Figure 3 shows the Y path values for fixed X0 (on the left) and for uniform random
X0 (on the right) for the long call combination. Notice that the random X0 variant covers
much more of the solution surface. Figure 4 shows initial Yinit network results vs. rollback,
minimal loss solution and the range of the 10 last validation solutions for long and short,
and solution and strategy from different methods. We see that the solutions from different

Risks 2023, 11, 61 10 of 16

deep BSDE (including Taylor vs. exact step) are close to each other, and the strategies are
also rather similar, with the forward strategy slightly different but close.

(a) Fixed X0. (b) Random X0.

Figure 3. Y path values at 20,000 mini-batches for the batch-variance version with exact backward
step (other variants look very similar) for long call combination with fixed X0 on the left and initial
network version with random X0 on the right. Notice the much smaller coverage for fixed X0. Batch
size 512.

(a) Portfolio values for different methods (b) Strategies for different methods

(c) Backward exact—Yinit vs. rollback (d) Backward exact—long and short

Figure 4. Call combination: results for random X0. Batch size 512. Panels (a–c) show results for a
long position. (d) shows results for both long and short positions.

4.2. Straddle

(Forsyth and Labahn 2007, Table 1 on page 28 in hjb.pdf) picked σ = 0.3, µ = rb = 0.05,
and rl = 0.03. We used 100 time-steps (one of the numbers of time-steps for which results
are given in tables in Forsyth and Labahn (2007)). The strike for the straddle is 100. We
used various batch sizes, prescaling, Adam with default parameters and exponentially
decaying learning rate, two hidden layers with dim + 10 = 11 neurons, and activation
function Softplus for the first two layers and then identity on the output layer, as in the call
combination case.

Risks 2023, 11, 61 11 of 16

We first consider the fixed X0 case. Like Forsyth and Labahn (2007), we pick X0 to be
100. In Figure 5, we plot Y0 estimates and parameter for different backward and forward
methods for a certain range of mini-batches, showing the behavior once the methods
have converged to a region where the mini-batch size limits how well the loss function is
approximated (and thus the results vary within a range). We see that the method that learns
the Y0 parameter initially converges more slowly (which the lower price converging even
more slowly than the upper price) than the batch-variance methods. However, once close
to true value, its convergence is smoother and better than the batch-variance methods—and
it varies less. Computing the mean over 100 mini-batches rather than over one leads to a
faster and smoother convergence of the initial value for the batch-variance variants.

(a) All mini-batches. (b) Detail.

Figure 5. Y0 estimates or parameters for the straddle case—all 20,000 mini-batches (a) and detail (b).
Exact backward step. (Batch size 256). The results for Taylor backward step look very similar.

We use this example to visualize the details of the pathwise backward methods. We set
π to the strategy obtained after optimizing over 100, 1000, and 20,000 mini-batches using the
exact backward step with the batch-variance variant for fixed X0. Using these strategies, we
generate many samples from the rollback random variable Yπ

0 and show them in Figure 6.
The optimization starts with a π DNN with random weights and biases. In the beginning
of the optimization, the strategy cannot control the distribution of the rollback well yet, but
it slowly reduces the distribution’s variance, making it (approximately) unimodal. After
batch 100, the strategy for the short position already creates a unimodal distribution for
the rollback, while the strategy for the long position still results in a distribution that is
bimodal and more spread out. After batch 1000, both strategies result in unimodal and
narrowing distributions. After batch 20,000, the strategies are even narrower and more
peaked, with clearer separation between short and long.

(a) With π from batch 100 (b) With π from batch 1000 (c) With π from batch 20,000

Figure 6. Distribution of the rollback Yπ
0 for strategies of certain batches in the optimization. Straddle.

Backward method with exact backward step. Single DNN for π. Batch size 512.

In Figure 7, we show the distribution of batch means for freshly generated mini-
batches, now only for the policy from the 20,000th mini-batch. This distribution is much
narrower and clearly separated between long and short. For comparison, we also plotted
the mean over all generated mini-batches.

Risks 2023, 11, 61 12 of 16

In Figure 8, we show the distribution of batch losses for freshly generated mini-batches,
again only for the policy from the 20,000th mini-batch. For comparison, we also plotted
the average loss over all generated mini-batches. We can see that the losses are similarly
distributed for short and long positions. To estimate the loss very well from a single mini-
batch, one would need a batch size that is 10 or 100 times larger. However, using stochastic
gradient descent approaches has the advantage of implicit regularization and avoidance of
local minima.

Figure 9 shows loss curves over five independent runs started from different seeds.
Crosses indicate losses approximated by single mini-batches; black shows loss approxima-
tions averaged over ten mini-batches, with red showing ranges implied by ten mini-batches.
While the behavior under different seeds is different in the beginning, it becomes very
similar and lies in the same range once the optimization through stochastic gradient descent
or Adam progresses more and more. The curves all go through the same phases—an initial
fast decrease which subsequently slows down and then slowly decreases and stabilizes
once the loss reaches the magnitude of estimation and stochastic gradient noise.

Figure 7. Distribution of batch means of the rollback Yπ
0 for the strategies after the 20,000th batch in

the optimization. Straddle. Backward method with exact backward step. Single DNN for π. Batch
size 512.

Figure 8. Distribution of batch losses for the rollback Yπ
0 for the strategies after the 20,000th batch in

the optimization. Straddle. Backward method with exact backward step. Single DNN for π. Batch
size 512.

Risks 2023, 11, 61 13 of 16

Figure 9. Loss function over 20,000 mini-batches for the short and long straddle for batch-variance
method with exact backward step with a single DNN for π for five independent realizations. Behavior
is very similar for other variants.

One can similarly extract, visualize, and study the distribution of the rollbacks and
their means and losses defined on them (with respect to batch mean, with respect to a
learned mean, or with respect to an externally given reference mean). In the noisy region
where the loss has stabilized up to noise, the distribution of the rollbacks, means, and losses
during the stochastic gradient descent method or Adam method starts to resemble the
distribution under one (randomized or deterministic) policy but with much larger sample
size. This actually means that if we work with the distribution of rollbacks, means, or
losses over a sequence of mini-batches from the optimization from that noise region, we
will obtain results corresponding to methods with larger samples and mini-batch sizes,
allowing us to obtain quite accurate results despite the relatively small mini-batch size
(such as 128, 256, or 512). Since the loss estimate from a single mini-batch is not very
accurate, selecting the strategy to be from the mini-batch with the smallest loss estimate
does not necessarily result in picking the strategy with the smallest actual loss. However,
one can pick several candidate strategies and estimate the loss more accurately and then
select the one with the smallest accurate loss or use an ensemble from some with small
accurate losses. Since our results (mean or range over mini-batches during optimization)
agree well with the range of results given by Forsyth and Labahn (2007), we do not do so
here, but we plan to do so in future work.

We compare our lower and upper price against the results given in (Forsyth and
Labahn 2007, Tables 2 and 3) in Table 1. The results are very close to each other. Since
Forsyth and Labahn use a PDE method, they report results for a certain number of space
steps, while our method does not discretize space. They report results for higher numbers
of space steps (and an equally higher number of time-steps) which are even closer to our
results, but the different number of time-steps does not allow definite conclusions.

In Table 2, we report the results over five different random seeds. One can see that the
price across seeds varies within an interval around the prices given in Forsyth and Labahn.
The particular seed does not impact the price a lot. The range of prices over mini-batches
in the optimization in the noise region provides estimates that are consistent with estimates
across different random seeds.

For the random X0 case, we pick X0 uniformly within the range [50, 150] but plot
results within the range [80, 120]. We saved and discretized Figure 1 from (Forsyth and
Labahn 2007, Figure 1) (the hjb PDF version), extracted relative coordinates for the points
on the curve and converted them to values, and plotted them as curves in the figures
(curves shown in black).

Figure 10 shows comparisons of the backward exact deep BSDE method (both mini-
mum loss solution and range of last 10) against the curves from (Forsyth and Labahn 2007,
Figure 1), while Figure 11 shows comparisons of different deep BSDE methods against
each other. It can be seen that the curves from (Forsyth and Labahn 2007, Figure 1) are
within the range for both batch sizes and that the different methods mostly agree, although

Risks 2023, 11, 61 14 of 16

somewhat more so for batch size 512.6 Similarly to before, exact vs. Taylor step only has
minimal impact.

Table 1. Different pricers. * Means that Taylor is different by 0.01. Fixed X0. Y0 range over every 100
in the last 1000 in parentheses. Middle of range as price.

Method Upper Price Lower Price

Results from Forsyth and Labahn-101 nodes

Fully Implicit HJB PDE (implicit control) 24.02 23.06
Crank–Nicolson HJB PDE (implicit control) 24.05 23.09

Fully Implicit HJB PDE (pwc policy) 24.01 23.07
Crank–Nicolson HJB PDE (pwc policy) 24.07 23.09

Forward deep BSDE—20,000 batches, size 256

Learned Y0 (shared) 24.06 (23.99–24.14) 23.10 (23.02–23.17)
Learned Y0 (separate) 24.07 (24.01–24.12) 23.10 (23.06–23.15)

Backward deep BSDE—20,000 batches, size 256

Batch variance/1 (shared) 24.14 (23.98–24.30) 23.19 (23.00–23.37)
Batch variance/100 (shared) 24.08 (24.06–24.09) 23.13 (23.09–23.16)
Batch variance/1 (separate) 24.06 (23.94–24.19 *) 23.10 (22.95–23.25)

Batch variance/100 (separate) 24.07 (24.06–24.09 *) 23.12 (23.10–23.13)
Learned Y0 (shared) 24.06 (23.99–24.14) 23.10 (23.02–23.17)

Learned Y0 (separate) 24.06 (24.01–24.11 *) 23.10 (23.06–23.15)

Table 2. Impact of random seed. Fixed X0. Exact backward step. Range of price over seeds. Y0 range
over every 100 in the last 1000 in parentheses.

Method Upper Price Lower Price

Results from Forsyth and Labahn—101 nodes

Fully Implicit (implicit control) 24.02 23.06
Crank–Nicolson (implicit control) 24.05 23.09

Fully Implicit (pwc policy) 24.01 23.07
Crank–Nicolson (pwc policy) 24.07 23.09

Backward deep BSDE—20,000 batches, size 512, five seeds

Batch variance/1 (shared) 24.02–24.08
(23.87–24.29)

23.06–23.12
(22.91–23.33)

Batch variance/100 (shared) 24.06–24.07
(24.03–24.09)

23.11–23.12
(23.09–23.15)

(a) Batch size 128 (b) Batch size 512

Figure 10. Yinit(X0) for two batch sizes and backward exact step plotted against Forsyth and Labahn
curves from (Forsyth and Labahn 2007, Figure 1).

Risks 2023, 11, 61 15 of 16

(a) Batch size 256 (b) Batch size 512

Figure 11. Yinit(X0) for various methods for two batch sizes.

5. Conclusions

We first introduced FBSDE for general nonlinear problems, with particular details
for the differential rates problem, time-discretized them, and then derived exact solutions
and Taylor approximations for the backward step equation. We then quickly described
the pathwise forward and backward deep BSDE approaches that we consider—both the
batch-variance variant already described in the literature and also the novel initial variable
and network versions; the last one is for random X0. Then, we applied these methods for
the differential rates problem for the call combination case from Han et al. (2018) and for
the straddle case from Forsyth and Labahn (2007). We compared the results for a case with
fixed X0 and for a case with varying X0 with the results from Forsyth and Labahn (2007)
and saw that they agree well with Forsyth and Labahn (2007) and each other.

The deep BSDE methods described in this paper use a very different approach from the
PDE methods in Forsyth and Labahn (2007), but they give results that agree well with those
published there. This makes us confident that these methods can be used to generically
and efficiently approximate solutions to such nonlinear pricing problems, using relatively
small batch sizes such as 128, 256, or 512.

6. Disclaimer

Any opinions, findings and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views of Wells Fargo Bank, N.A.,
its parent company, affiliates, and subsidiaries.

Author Contributions: Conceptualization, Y.Y., N.G. and B.H.; methodology, Y.Y., N.G. and B.H.; soft-
ware, Y.Y., N.G. and B.H.; validation, Y.Y., N.G. and B.H.; formal analysis, Y.Y., N.G. and B.H.; investi-
gation, Y.Y., N.G. and B.H.; writing—original draft preparation, Y.Y., N.G. and B.H.; writing—review
and editing, B.H.; visualization, Y.Y., N.G. and B.H.; supervision, B.H.; project administration, B.H.;
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable

Acknowledgments: The authors would like to thank Orcan Ogetbil, Daniel Weingard, and Xin Wang
for proof reading drafts and giving helpful feedback; Vijayan Nair for discussion regarding methods,
presentation, and results, as well as for reviewing the paper; and Agus Sudjianto for supporting this
research. They would also like to thank Dan Pirjol for suggestions and recommendations that helped
improve the readability and presentation of this manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Risks 2023, 11, 61 16 of 16

Notes
1 Set Zt = ΠT

t σ(t, Xt) and f̃ (t, X, Y, Z) = f (t, X, Y, σ(t, Xt)
−T ZT

t). Then, (Pardoux 1998, Theorem 2.2) with this Zt and f̃ shows
that one can construct a solution Yt and Zt of the BSDE from a classical C2,1 solution of a corresponding PDE and a solution Xt.
Rewriting the PDE and BSDE in terms of ΠT

t instead of Zt and using function f rather than f̃ gives the form reported below. For
the opposite direction, (Pardoux 1998, Theorem 2.4) shows how a solution Yt of the BSDE (corresponding to a X that starts at x at
time t) gives a continuous function u(t, x), which is a viscosity solution of the corresponding PDE.

2 In general, the terminal condition could be given as a random variate GT that is measurable with respect to the information
available of time T (i.e., the sigma algebra generated by Xt with t ≤ T). The FBSDE approach then will be more general than the
PDE approach. If there is an exact (or approximate) Markovianization with a Markov state Mt, the strategy Πt and the solution
Yt would in general be functions π(t, Mt) and u(t, Mt) of that Markov state. We only treat the usual final value case here.

3 There are many introductions into DL, DNN, and common forms of DNN. For a minimal one geared towards deep BSDE, see
Hientzsch (2021).

4 This is actually the expectation of the conditional variance var(Yπ
0 |X0) over the distribution of X0.

5 Here, we consider the 1-dimensional case, while Han and Jentzen (2017) consider the 100-dimensional case.
6 Notice that (Forsyth and Labahn 2007, Figure 1) do not give the number of space or time-steps used for their plot.

References
Forsyth, Peter A., and George Labahn. 2007. Numerical methods for controlled Hamilton-Jacobi-Bellman PDEs in finance. Journal

of Computational Finance 11: 1–44. Available online: https://cs.uwaterloo.ca/~paforsyt/hjb.pdf (accessed on 15 March 2023).
[CrossRef]

Ganesan, Narayan, Yajie Yu, and Bernhard Hientzsch. 2022. Pricing barrier options with deep backward stochastic differential equation
methods. Journal of Computational Finance 25. Available online: https://ssrn.com/abstract=3607626 (accessed on 15 March 2023).
[CrossRef]

Han, Jiequn, and Arnulf Jentzen. 2017. Deep learning-based numerical methods for high-dimensional parabolic partial differential
equations and backward stochastic differential equations. Communications in Mathematics and Statistics 5: 349–80.

Han, Jiequn, Arnulf Jentzen, and Weinan E. 2018. Solving high-dimensional partial differential equations using deep learning.
Proceedings of the National Academy of Sciences 115: 8505–10. [CrossRef] [PubMed]

Hientzsch, Bernhard. 2021. Deep learning to solve forward-backward stochastic differential equations. Risk Magazine, February.
Available online: https://ssrn.com/abstract=3494359 (accessed on 15 March 2023).

Huré, Côme, Huyên Pham, and Xavier Warin. 2020. Deep backward schemes for high-dimensional nonlinear PDEs. Mathematics of
Computation 89: 1547–79. [CrossRef]

Liang, Jian, Zhe Xu, and Peter Li. 2021. Deep learning-based least squares forward-backward stochastic differential equation solver for
high-dimensional derivative pricing. Quantitative Finance 21: 1309–23. Available online: https://ssrn.com/abstract=3381794
(accessed on 15 March 2023). [CrossRef]

Mercurio, Fabio. 2015. Bergman, Piterbarg, and beyond: Pricing derivatives under collateralization and differential rates. In Actuarial
Sciences and Quantitative Finance. Berlin: Springer, pp. 65–95. Available online: https://ssrn.com/abstract=2326581 (accessed on
15 March 2023).

Pardoux, Étienne. 1998. Backward stochastic differential equations and viscosity solutions of systems of semilinear parabolic and
elliptic PDEs of second order. In Stochastic Analysis and Related Topics VI. Berlin: Springer, pp. 79–127.

Raissi, Maziar. 2018. Forward-backward stochastic neural networks: Deep learning of high-dimensional partial differential equations.
arXiv arXiv:1804.07010.

Wang, Haojie, Han Chen, Agus Sudjianto, Richard Liu, and Qi Shen. 2018. Deep learning-based BSDE solver for LIBOR market
model with application to bermudan swaption pricing and hedging. arXiv arXiv:1807.06622. Available online: https://ssrn.com/
abstract=3214596 (accessed on 15 March 2023).

Warin, Xavier. 2018. Nesting Monte Carlo for high-dimensional non-linear PDEs. Monte Carlo Methods and Applications 24: 225–47.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://cs.uwaterloo.ca/~paforsyt/hjb.pdf
http://doi.org/10.21314/JCF.2007.163
https://ssrn.com/abstract=3607626
http://dx.doi.org/10.21314/JCF.2021.016
http://dx.doi.org/10.1073/pnas.1718942115
http://www.ncbi.nlm.nih.gov/pubmed/30082389
https://ssrn.com/abstract=3494359
http://dx.doi.org/10.1090/mcom/3514
https://ssrn.com/abstract=3381794
http://dx.doi.org/10.1080/14697688.2021.1881149
https://ssrn.com/abstract=2326581
https://ssrn.com/abstract=3214596
https://ssrn.com/abstract=3214596
http://dx.doi.org/10.1515/mcma-2018-2020

	Introduction
	FBSDE for Nonlinear Problems
	Backward Time-Stepping
	Exact Backward Time-Stepping
	Time-Stepping from Taylor Expansion

	Deep BSDE Approach
	Forward Approach
	Backward Approach

	Results
	Call Combination
	Straddle

	Conclusions
	Disclaimer
	References

