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Abstract: Logistic regression is a very popular binary classification technique in many industries,
particularly in the financial service industry. It has been used to build credit scorecards, estimate the
probability of default or churn, identify the next best product in marketing, and many more applica-
tions. The machine learning literature has recently introduced several alternative techniques, such as
deep learning neural networks, random forests, and factorisation machines. While neural networks
and random forests form part of the practitioner’s model-building toolkit, factorisation machines are
seldom used. In this paper, we investigate the applicability of factorisation machines to some binary
classification problems in banking. To stimulate the practical application of factorisation machines,
we implement the fitting routines, based on logit loss and maximum likelihood, on commercially
available software that is widely used by banks and other large financial services companies. Logit
loss is usually used by the machine learning fraternity while maximum likelihood is popular in
statistics. Depending on the coding of the target variable, we will show that these methods yield
identical parameter estimates. Often, banks are confronted with predicting events that occur with
low probability. To deal with this phenomenon, we introduce weights in the above-mentioned loss
functions. The accuracy of our fitting algorithms is then studied by means of a simulation study
and compared with logistic regression. The separation and prediction performance of factorisation
machines are then compared to logistic regression and random forests by means of three case studies
covering a recommender system, credit card fraud, and a credit scoring application. We conclude
that logistic factorisation machines are worthy competitors of logistic regression in most applications,
but with clear advantages in recommender systems applications where the number of predictors
typically outnumbers the number of observations.

Keywords: logistic regression; factorisation machines; random forests; machine learning; recom-
mender system; credit scoring; logit loss; maximum likelihood estimation

1. Introduction

The logistic regression model is one of the most commonly used statistical tech-
niques for solving binary classification problems (Siddiqi 2017; Hand and Henley 1997;
Baesens et al. 2016). Banks are heavily reliant on logistic regression when building retail
credit scorecards. The latter methodology allows for a straightforward transformation
of the estimated default probabilities into scores and facilitates the interpretation of the
predictor variables in terms of their importance and effect on default through the odds ratio.
Not only are these models applied to assess the creditworthiness of clients but also to other
areas, such as debt collection and marketing. In marketing analytics, it has frequently been
used, amongst others, to build customer attrition models and campaign response models.
There are many other popular classifiers, such as neural networks, XGBoost, and random
forests (see, e.g., Lessmann et al. 2015), but these are mostly used for building challenger
models and not often implemented as production models. One of the reasons for this is
the lack of interpretability of some of these models, which hampers their implementation
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and acceptance by regulators. Yet, as discussed by Gilpin et al. (2018), there are meth-
ods to overcome this limitation, e.g., Shapley values, Local Interpretable Model-agnostic
Explanations (LIME), and Accumulated Local Effects (ALE) plots, but these have not yet
been adopted widely. In this paper, our focus is on factorisation machines, a modelling
technique that is popular among machine learners, but seldom used by statisticians and
practitioners. A reason for the lack of interest among statisticians is that they are probably
unaware of the many papers on factorisation machines that are mostly published in ma-
chine learning conference proceedings. Practitioners, on the other hand, use commercial
software for building production systems and fitting algorithms for factorisation machines
are restricted or not readily available. Therefore, the main aim of this paper is to make
practitioners and statisticians aware of the power of this modelling tool as a binary classifier
and to provide fitting algorithms for use in commercial software (SAS). Using the logistic
regression model definition, we adapt the standard definition of factorisation machines to
include logistic factorisation machines and develop fitting algorithms based on maximum
likelihood and logit loss. Logit loss is usually used by the machine learning fraternity,
while maximum likelihood is popular in statistics. Depending on the coding of the target
variable, we will show that these methods yield identical parameter estimates. Often, banks
are confronted with predicting events that occur with low probability. To deal with this
phenomenon, we introduce weights in the above-mentioned loss functions. The accuracy
of our fitting algorithms is then studied by means of a simulation study and compared with
logistic regression. The separation and prediction performance of the methods are then
investigated by means of three case studies covering a recommender system, credit card
fraud, and credit scoring applications. Like factorisation machines, tree-based learning
methods also address the interactive features between variables, and, therefore, we include
random forests (Breiman 2001) when we investigate the predictive ability of factorisation
machines. In the end, we will show that factorisation machines are worthy competitors of
logistic regression and random forests and should be included in the modelling toolkit of
statisticians and practitioners.

The paper is organised as follows. In the next section, we introduce logistic fac-
torisation machines, and then, in Section 3, we discuss the algorithms for fitting logistic
factorisation machines. In particular, we show that subject to the binary coding of the target
variable, identical parameter estimates are obtained when minimising the sum of logit
loss or by maximising the logistic log-likelihood. In Section 4, we provide an overview of
metrics that are typically considered for evaluating the performance of binary classifiers.
In order to test the accuracy of our routines, we conduct a simulation study of which the
results are presented and discussed in Section 5. Then, in Section 6, the performance of the
techniques is further evaluated in a number of case studies that involve the prediction of
customer preferences (a recommender system application), prediction of credit card fraud
(a fraud application), and prediction of the probability of default (a scorecard application).
The first data set is an artificially constructed one that clearly demonstrates the ability of
factorisation machines in a recommender system setting. The second data set is publicly
available from the Kaggle website, and the last data set was sourced from one of our client
projects. The latter data set is proprietary to the client and cannot be disclosed. Section 7
concludes the paper.

2. Logistic Factorisation Machines

For binary response models, the response Y of an individual or an experimental unit
can take on one of two possible values, denoted for convenience by 0 and 1 (for example,
Y = 1 if a certain event occurred, otherwise, Y = 0). The probability of an event occurring,
given a set of predictor variables X, can be written as p(X) = P(Y = 1|X). Then, p(X) may
be modelled by the logistic function p(X) = 1

1+exp(−β′X)
, where β is a vector of parameters

and p is the linkage function in a generalised linear model. Let x denote a particular
realisation of X, then the odds of a positive event are p(x)

1−p(x) . Notice that since p(x) ∈ [0, 1],
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the logarithm of the odds ranges in the set of real numbers, thus constituting an unrestricted
continuous quantity to which it is possible to fit a linear regression model as

logit(p(x)) = ln
(

p(x)
1− p(x)

)
= β′x. (1)

In order to simplify our notation somewhat, we will drop the conditional dependence
notation p(X) and use p for the probability of an event occurring. Given an observed data
set (Yn, Xn1, . . . , XnK), n = 1, . . . , N, the binary logistic regression model (LR) can now be
written as

logit(pLR
n ) = ln

(
pLR

n
1− pLR

n

)
= ZLR

n = β0 + ∑K
k=1 βkXnk for n = 1, . . . , N (2)

Here, ZLR
n is the linear regression predictor function, Xnk is the n-th observation of the k-

th predictor variable, βk is the parameter or coefficient of the k-th variable, β0 is an intercept
(or bias) term, N is the number of observations, and K is the number of predictor variables.
Note from (2) that pLR

n = exp
(
ZLR

n
)
/
(
1 + exp

(
ZLR

n
))

and 1− pLR
n = 1/

(
1 + exp

(
ZLR

n
))

.
Similarly, the logistic regression model with all two-way interactions (LRI) can be

defined as

logit(pLRI
n ) = ln

(
pLRI

n
1− pLRI

n

)
= ZLRI

n = β0 + ∑K
k=1 βkXnk +

K−1

∑
k=1

K

∑
j=k+1

βkjXnkXnj (3)

for n = 1, . . . , N, where ZLRI
n is the linear regression predictor function that incorporates

all two-way interactions between the predictor variables. For a detailed exposition of
logistic regression, see Kleinbaum and Regression (2005) and Hilbe (2009). In this paper, we
will not be interested in the interpretation of the interaction effects between two variables
but rather in whether the presence of interaction terms in the model improves prediction.
Although the interpretation of the coefficient of the interaction between two variables is
straightforward in linear models, Ai and Norton (2003) showed that this is not the case
when fitting non-linear models. In the latter case, they showed for logit and probit models
that the interaction effect could not be evaluated simply by looking at the sign, magnitude,
or statistical significance of the coefficient of the interaction term. Instead, the interaction
effect requires the computation of the cross derivative, and like the marginal effect of a
single variable, the magnitude of the interaction effect depends on all the covariates or
predictors in the model. In addition, it can have different signs for different observations,
making simple summary measures of the interaction effect difficult. In particular, they
showed that the sign of the interaction coefficient does not necessarily indicate the sign
of the interaction effect between the two variables and that the interaction effect could
be non-zero even if the coefficient of the interaction term is zero. We will not pursue this
further but felt that it is important to note when interpreting interaction effects.

Rendle (2010) defined factorisation machines as a general-purpose supervised learning
algorithm that can be used for both classification and regression tasks. It is an extension
of a linear model that is defined to capture interactions or associations between predictor
variables even within high dimensional sparse data sets. Combining the definition of
factorisation machines in Rendle (2012) with the logistic model with interactions as given
in (3), we can define second-order logistic factorisation machines (LFM) as follows

logit(pLFM
n ) = ln

(
pLFM

n
1−pLFM

n

)
= ZLFM

n

= β0 + ∑K
k=1 βkXnk + ∑K−1

k=1 ∑K
j=k+1 ∑G

g=1 φkgφjgXnkXnj for n = 1, . . . , N
(4)
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where G is the number of factors, and ZLFM
n is the second-order factorisation machine

predictor function. Note that as stated by Slabber et al. (2022),

βkj ≈
G

∑
g=1

φkgφjg (5)

Again, β0 is the intercept, β1, . . . , βK are the regression coefficients, and φk, k = 1, . . . K
is a G dimensional vector of factor loadings for each variable. Here,

〈
φk, φj

〉
= ∑G

g=1 φkgφjg
denotes the inner product of the vectors φk and φj. Note that both the β’s (1+K parameters)
and φ’s (KG factor loadings) have to be estimated and that G is an input parameter for the
fitting procedure. Therefore, the LFM model in Equation (4) has 1 + K + KG parameters (or
coefficients), while the regression model in Equation (3) has 1+K +K(K− 1)/2 parameters.
When G < (K− 1)/2, LFM requires fewer parameters to be estimated. The advantages
and disadvantages of FMs compared to regression models with interaction are discussed
in Slabber et al. (2021) and Slabber et al. (2022). As mentioned in the latter papers, when
the number of predictors is large, ordinary two-way interaction regression models suffer
from a combinatorial explosion of parameters which make them impractical to fit (see,
e.g., James et al. (2021)). In such cases, LFM provides an attractive alternative since the
number of parameters increases in a linear rather than in a quadratic way.

3. Fitting Logistic Factorization Machines

As stated previously, we have a data set (Yn, Xn1, . . . , XnK), n = 1, . . . , N, and we
want to estimate the parameters of models (2), (3), and (4). In the machine learning literature,
for binary responses Yn = +1 or −1, logit loss (LL) is often used (see, e.g., Rendle (2012)),
while in statistics, for binary responses Yn = 1 or 0, maximum likelihood (ML) is the
method of choice (see, e.g., Kleinbaum and Regression (2005)). Let Zn denote any of the
above-mentioned predictor functions, and let l(Yn, Zn) denote some loss function, then to
estimate the parameters contained in Zn, we can minimise ∑N

n=1 l(Yn, Zn). We will now
show identical parameter estimates resulting from minimising the sum of logit loss and
maximising the logistic log-likelihood.

Denote the binary encoding +1/−1 by Y′n and the binary encoding 1/0 by Yn. Then,
for binary responses Y′n, and the omission of a constant factor (see Rendle 2010), the logit
loss is defined by

lLL
(
Y′n, Zn

)
= ln

(
1 + exp

(
−Y′nZn

))
= I

(
Y′n = −1

)
ln(1 + exp(Zn)) + I

(
Y′n = 1

)
ln(1 + exp(−Zn))

where I(.) is the indicator function.
Then, since Y′n = 2Yn − 1, the above equation can immediately be written as

lLL
(
Y′n, Zn

)
= I(Yn = 0) ln(1 + exp(Zn)) + I(Yn = 1) ln(1 + exp(−Zn)) , (6)

We have pn = exp(Zn)/(1 + exp(Zn)) and 1− pn = 1/(1 + exp(Zn)), and, therefore,
ln(1− pn) = − ln((1 + exp(Zn)) and ln(pn) = − ln((1 + exp(−Zn)). Substituting this
into (6) yields

lLL(Y′n, Zn) = −I(Yn = 0) ln(1− pn)− I(Yn = 1) ln(pn)
= −{(1−Yn) ln(1− pn) + Yn ln(pn)} = −lML(Yn, pn)

(7)

with lML is the logistic log-likelihood.
Therefore, except for a constant factor, minimising logit loss is the same as minimising

the negative of the logistic log-likelihood. So minimising logit loss should provide the same
parameter estimates as maximising the logistic log-likelihood.
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In the imbalanced case, where the number of non-events (zeros) far outnumbers the
number of events (ones), the logistic log-likelihood is usually weighted in the following way

∑N
n=1 wn{Yn ln(pn) + (1−Yn) ln(1− pn)} , (8)

with wn = 1
2N1

if Yn = 1, wn = 1
2N0

if Yn = 0, N1 = ∑N
n=1 I(Yn = 1), and N0 =

∑N
n=1 I(Yn = 0) and N1 + N0 = N (see, e.g., Venter and De Jongh (2023)). Then, the

totals for the events and non-events are 1
2 each, and the overall total of all the weights is 1.

Again, maximising (8) will yield the same parameter estimates as minimising

∑N
n=1 wn

{
ln
(
1 + exp

(
−Y′nZn

))}
., (9)

with wn = 1
2N1

if Y′n = +1 and wn = 1
2N0

if Y′n = −1 and N1 = ∑N
n=1 I(Y′n = +1)

N0 = ∑N
n=1 I(Y′n = −1) and N1 + N0 = N

To fit the logistic regression models given in (2) and (3), we will use SAS PROC GLM
for maximising (8) with respect to the parameters contained in ZLR

n and ZLRI
n . The LFMs

can then be obtained by using the NLP algorithm in SAS PROC OPTMODEL to minimise
(8) or (9) with respect to the parameters contained in ZFM

n . Note that SAS software is
widely used in the financial services industry and is often the preferred choice for im-
plementing production systems. Note that SAS Viya incorporates a procedure for fitting
factorisation machines (PROC FACTMAC), but this routine has limited application (see
Slabber et al. (2022)) and cannot be applied to binary classification problems. It requires
a SAS Viya licence that is more expensive than the licence required to run our routines.
Note that the NLP algorithm intelligently selects starting values for the algorithm and
does not require the specification thereof, although it is provided as an option. To fit the
random forests, we used SAS PROC HPFOREST. Unless stated otherwise, we used the
default settings when fitting these models and denote them by RF. For the implementation
of imbalanced data sets, we used balanced random forests (BFR).

Once a model has been fitted, an estimate p̂n for pn becomes available. To predict or
classify a binary value, an ‘optimal’ threshold (t) or cut-off must be determined. This will
be discussed in more detail in the next section.

4. Performance Measures

As stated previously, our main objective is to evaluate the performance of LFMs in
comparison with LR and LRI using typical data sets found in banking. We will discuss
the measures that are mostly referenced in the literature. See, for example, Siddiqi (2017);
Baesens et al. (2016); Prorokowski (2019); Engelmann and Rauhmeier (2006); and James et al.
(2021). Performance measures are commonly broken into discrimination (or separability
measures) and calibration (or accuracy or goodness-of-fit measures). Discrimination mea-
sures quantify the degree of separability between the two classes assessed, and calibration
measures quantify how close the estimated value deviates from the observed value. See
Baesens et al. (2016) for a detailed discussion. Before giving our overview of the typical
performance measures, note the difference between goodness-of-fit and predictive accuracy.
Goodness-of-fit is how well a model can predict data points that were used to estimate
its parameters, whereas predictive accuracy is how well a model can predict new data
points. To assess the latter, a data set is usually split into a so-called training set and a
test or validation set. We have divided the discussion of the metrics or measures into two
subsections, namely popular measures that are, in our opinion, frequently used in practice
and other measures that seem to be less popular.

4.1. Popular Measures

The confusion matrix, or error matrix, and metrics derived from it are widely used in
practice to assess the prediction performance of binary classifiers. The matrix is frequently
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cited on the internet and in reliable sources such as James et al. (2021) and Baesens et al.
(2016). Consider the confusion matrix depicted in Table 1. Since we are working with binary
classification, positive and negative corresponds to the target value (an event occurred or
not), the columns represent the actual values, and rows represent the predicted values.
Then, TP is the true positive where a positive predicted value matches the actual one, TN
is the true negative where a negative predicted value matches the actual one, FP is a false
positive (Type 1 error) where the predicted value is positive but actually negative, and FN
is a false negative (Type 2 error) where the predicted value is negative but actually positive.

Table 1. Confusion or error matrix as a metric of prediction performance.

Pr
ed

ic
te

d

Actual

Positive Negative

Positive True positives (TP) False positives (FP)

Negative False negatives (FN) True negatives (TN)

Note that for the models considered here, some cut-off values or thresholds have to be
determined to obtain the above matrix once the model has been fitted. From this matrix, a
number of other metrics may be derived, namely

Accuracy (A) is defined as A = TP+TN
TP+FP+TN+FN and is the proportion of the binary

values that were predicted correctly.
Precision (P) is defined as P = TP

TP+FP and gives the proportion of predicted positives
that were truly positive. This metric is preferred if we want to be very sure of our prediction;
for example, we do not want to predict a customer defaulting on a loan incorrectly.

Recall (R) or the true positive rate is defined as R = TP
TP+FN and is the proportion of

actual positives that were predicted correctly. This metric is usually used when we want to
capture as many positives as possible; for example, when predicting the presence of cancer,
we want to capture the disease even if we are not very sure. Note that in the statistical
literature, recall is sometimes referred to as sensitivity (see James et al. 2021).

Specificity (S) is defined as = TN
FP+TN and is the proportion of actual negatives that

were predicted correctly. Note that 1− S = FP
FP+TN is the false positive rate which is the

proportion of negative cases that were incorrectly predicted as positives.
Probability of correct classification (PCC) is defined as PCC =

(
TP

TP+FN + TN
TN+FP

)
/2

and measures the performance of the classifier detecting either of the classes. Again, this
measure can also be used to select a threshold which maximises the PCC.

The F1 score F1 = 2
(

P∗R
P+R

)
is the harmonic mean of recall and precision and obtains

its maximum when recall equals precision. So, F1 tries to find a model with good precision
and recall; for example, if you evaluate the credit worthiness of clients applying for a certain
product, you want to be sure that the client is creditworthy, and you want to identify as
many such clients as possible. The F1 score manages this trade-off. The measure is also
frequently used to obtain the best threshold or cut-off value that results in the best F1 score.
Since the F1 score gives equal weight to precision and recall, the score is often adjusted
by weighting the importance of the two metrics. Many other metrics derived from the
confusion matrix are possible, such as variants of the F-score, the Matthews correlation
coefficient, Fowlkes-Mallows index, and diagnostic odds ratio (see Prorokowski (2019)).

The Gini coefficient (Gini) is one of the most frequently used metrics for evaluating
the classification performance of any model used for binary classification tasks. Contrary to
the above-mentioned metrics, the Gini does not rely on the choice of a threshold. The fact
that this measure is invariant to threshold choice is important since typically financial insti-
tutions employ different thresholds in different applications. For example, the threshold
used for assigning credit limits or for deciding on the type of credit card to issue is not the
same. The Gini coefficient is defined as Gini = 2(AUC)− 1, where AUC is the area under
the receiver operating characteristic ROC curve. The latter curve is obtained by plotting the



Risks 2023, 11, 48 7 of 21

true positive rate (also sensitivity or recall) against the false positive rate (also 1-specificity)
for a range of thresholds or cut-off values. This provides a direct link between the confusion
matrix and the construction of the Gini coefficient as outlined below. Once the ROC curve
is determined, the AUC tells us how much the model, regardless of the chosen threshold,
is able to distinguish between positive and negative cases and therefore is a measure of
the degree of separability between the two classes. The AUC typically varies between
0.5 (a model with no separation power or a ‘random’ model) and 1 (a model with perfect
separation power), and the Gini typically varies between 0 (no separation) and 1 (perfect
separation). The Gini coefficient is a way to adjust the AUC to simplify interpretation; for
example, a perfectly random model has a Gini of 0, a perfect model of a Gini of 1, and
a perfectly reversing model of a Gini of −1. Negative Ginis are indicative of something
that has seriously gone wrong in the modelling process, for example, when predicting the
wrong class (predicting the non-events instead of the events). Note that AUC, and therefore
Gini, is both threshold and scale invariant and not affected by oversampling. For more
detail regarding the use of Gini in practice, the interested reader is referred to Engelmann
and Rauhmeier (2006); Siddiqi (2012); and (SAS Institute Inc. 2010).

Remark 1. The metrics A, P, R, PCC, and F1 should be interpreted carefully when dealing with
imbalanced data sets where the event rate is typically small, i.e., when the number of actual positives
is much smaller than the actual negatives. Therefore, ‘good’ values for these metrics are dependent
on the event rate, which is equal to the number of events (positives) divided by the number of
observations. For example, if the event rate is 2% and the accuracy is 90%, then the accuracy is poor.

4.2. Other Measures
4.2.1. Goodness-of-Fit

Maximum likelihood estimation is used to estimate the parameters in the logistic
regression model and finds the minimal discrepancy between the observed response and
the predicted response. The resulting summary measure of this discrepancy is known as
the deviance (see McCullagh and Nelder (1989)). The Akaike information criteria (AIC)
and the Schwartz-Bayesian Information Criteria (SBIC) can be useful for comparing the
goodness-of-fit of models. Both these information criteria are fairly simple derivations
from the deviance, adjusted for sample size and a number of predictors. However, the
above-mentioned measures have no standard of magnitude, and there are no statistical
tests for these indices and no cut-off for what constitutes a good fit. So, they are occasionally
used to compare non-nested models, i.e., models that do not have the same cases and where
one model has a subset of predictors from the other model. When models are nested, such
as in our case, there is no need for AIC and SBIC, and the likelihood ratio (difference in
deviances) can be used as a statistical test for goodness-of-fit. Note that AIC and SBIC give
the modeller an indication of how well the model fits for a specific misclassification cost,
while the Gini gives you an indication of your model’s separation performance on average
across all misclassification costs. Misclassification costs are mostly assumed to be equal,
but this is not the case in imbalanced problems where the misclassification of a (rare) event
could be worse than the misclassification of a non-event.

Other goodness-of-fit statistics that are often used in practice (see Baesens et al. (2016)
and Prorokowski (2019)) include the Hosmer–Lemeshow, Spiegelhalter, Kolmogorov–
Smirnoff, and Vasicek statistics as well as the Brier score. Note that these quantities do not
cater for misclassification cost.

4.2.2. R-Square Measures

In logistic regression, there is no true R-squared value as there is in ordinary least
squares regression; however, the deviance (see McCullagh and Nelder (1989)) is often used
as the equivalent of the sum of squared errors in linear regression and many R-square
measures have been based on it. Shtatland et al. (2000) analysed a number of deviance-
based R-square measures and argued that the measures should be used simultaneously
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when comparing the quality of the fit of logistic regression models. They motivate its use
for its similarity to the very popular use of the R-square statistic in linear regression and
claim that the measures have some advantages compared to popular information criteria
such as AIC and SBIC in terms of interpretability. Allison (2014) discusses the shortcomings
of these measures in a predictive power context and recommends that the measures used
by McFadden and Zarembka (1974) and Tjur (2009) be used instead.

4.2.3. The H Measure (H)

The H-measure was proposed by Hand (2009) as an alternative for AUC. This mea-
sure satisfies a criterion for coherence of performance measures that the AUC does not.
According to Hand (2009), the AUC is a coherent measure of separability between classes
since it is based solely on the order of scores of the objects and not on the numerical
values of those scores. He argues further that separability is not the same as classifica-
tion performance since separability appears to ignore the central role of the classification
threshold. Implicit in the AUC is a hidden assumption that each rank of the objects is
equally likely to be chosen as the threshold. This is an unrealistic assumption in most
practical applications, and he then proposes the H-measure, which takes into account the
context of the application without requiring a rigid value of relative misclassification cost
to be set. In a recent paper, Hand and Anagnostopoulos (2022) address queries that users
have raised about the measure, including questions about its interpretation, the choice of
misclassification cost weighting function, and other practical concerns. Of course, defining
a suitable misclassification cost function for a specific problem is not an easy task and is
open to criticism. Although this measure has been promoted for some time, it has not
gained popularity among practitioners. One of the reasons is that it has not been taken up
in regulatory guidelines and that the Gini is often preferred in practice despite the criticism
against its use (see Baesens et al. (2016)).

4.3. Summary

Because of the multitude of metrics, we have decided to stick to the widely used Gini
coefficient since it provides an indication of a model’s ability to separate the classes on
average across all classification costs. Although it is not a coherent measure of prediction
performance, it is a coherent measure of separability between classes. In our simulation
study below, our main objective is to check whether the fitting algorithms converge and
estimate the true parameter values accurately. A secondary objective is to compare the
binary classifiers in terms of their performance. Since no real application is at the core of
the simulation study, misclassification cost is of secondary importance, and we will rely
on the Gini as a coherent measure of separability between classes. However, when we
analyse practical data sets, we will compare the prediction performance of the models by
calculating F1 scores in the following way. Using the training data set, we will fit each
model and calculate the F1 score as the maximum F1 score obtained by the particular
model over a range of possible cut-off values. Then, the cut-off value corresponding to
the maximum F1 score, obtained on the training set, is used to obtain the F1 scores for the
particular model on the validation set.

5. Simulation Study

To test the accuracy of our fitting routines in terms of correctly estimating the model pa-
rameters, we conducted a simulation study where we generated data according to model (3).
We considered sample sizes of N = 500, 1000, 1500, and K = 10 predictor variables, each
generated independently as standard normal variables. The model parameters were set as
follows: β1 = 1, β2 = 2, β3 = −3, β4 = 1, β5 = 1, β12 = 1, β13 = 1, β23 = 2, β9 10 = −2,
and all other β′s as zero. The binary responses Yn values were then generated as follows:

Yn =

{
1 if un ≤ pn
0 otherwise

for n = 1, . . . , N
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where the un’s are generated as standard uniform variables ( un ∼ U(0, 1)). Note that when
we minimise the sum of logit loss, all the zeros should be replaced by minus ones.

We repeated the process 200 times, and to each of the 200 data sets, we fitted LR, LRI
and 2- and 4-factor LFMs. We used maximum likelihood estimation in all cases, but for
FMs, in order to numerically check the equivalence of the parameter estimates from (8) and
(9), we included minimising the sum of logit loss. It also served as a further check for the
accuracy of our algorithmic implementations. The two- and four-factor LFMs fitted with
logit loss will be denoted by LLFM2 and LLFM4, respectively, and maximum likelihood
fits by MLEFM2 and MLEFM4, respectively.

Tables 2–4 contain the average, standard deviation and mean squared error (MSE) of
the fitted coefficients of the predictor variables as obtained over the 200 data sets. Since
the results for the different sample sizes were similar, we will only present the results for
N = 1000 and make some remarks about the other sample sizes. Note that the bias may be
obtained as the difference between the true parameter value and the average obtained over
simulation runs (see Table 2). Since the data sets were generated according to model (3),
one would expect that LRI should perform best, in terms of lowest bias and variance,
followed by the LFMs and then LR. However, excluding LR, all LFMs obtained the lowest
bias and variance and hence the smallest mean squared error, with the two-factor logistic
factorisation machine being the best. The LR estimates have the lowest variance of all but
are extremely biased, as is expected. When inspecting the coefficient estimates obtained
for the individual simulation runs, we were not surprised, due to the proof in (7), to find
that up to eight decimals, the logit loss and maximum likelihood fit of both the two- and
four-factorisation machines gave the same coefficient estimates for each of the data sets.
This holds for the coefficients of the predictor variables, as well as for the inner product
approximations (5) of the coefficients of the interaction terms. At a summative level, the
results in Tables 2–4 confirm this as well. An explanation for the better performance of the
factorisation machines is that fewer parameters have to be estimated, causing less variation
and hence higher accuracy. Note that LR has the lowest MSE for the predictor coefficients
but exhibits the most bias for the non-zero predictor coefficients and is, as expected, clearly
not the preferred model.

Table 2. Average of predictor coefficient estimates over 200 repetitions for N = 1000 for logistic
regression (LR), logistic regression with interaction (LRI), two factor factorisation machine based on
logit loss (LLFM2) and maximum likelihood (MLEFM2), and four factorisation machines (LLFM4
and MLEFM4).

Betas True Value LR LRI LLFM2 MLEFM2 LLFM4 MLEFM4

0 0 0.225 0.008 0.014 0.013 0.012 0.013

1 1 0.576 1.157 1.075 1.075 1.136 1.136

2 2 1.046 2.321 2.155 2.155 2.278 2.278

3 −3 −1.578 −3.486 −3.240 −3.240 −3.419 −3.419

4 1 0.561 1.171 1.092 1.092 1.149 1.149

5 1 0.565 1.172 1.080 1.080 1.149 1.149

6 0 0.002 0.009 0.005 0.005 0.008 0.008

7 0 −0.005 0.002 0.002 0.002 0.000 0.000

8 0 0.003 −0.005 −0.007 −0.007 −0.006 −0.006

9 0 −0.008 0.003 −0.004 −0.004 0.003 0.003

10 0 0.005 0.006 0.011 0.011 0.007 0.007
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Table 3. Standard deviation of predictor coefficient estimates over 200 repetitions for N = 1000 for
logistic regression (LR), logistic regression with interaction (LRI), two factor factorisation machine
based on logit loss (LLFM2) and maximum likelihood (MLEFM2), and four factorisation machines
(LLFM4 and MLEFM4).

Betas LR LRI LLFM2 MLEFM2 LLFM4 MLEFM4

0 0.082 0.158 0.129 0.129 0.148 0.148

1 0.088 0.154 0.136 0.136 0.149 0.149

2 0.111 0.256 0.225 0.225 0.248 0.248

3 0.134 0.345 0.311 0.311 0.328 0.328

4 0.093 0.169 0.153 0.153 0.164 0.164

5 0.095 0.170 0.147 0.147 0.164 0.164

6 0.078 0.148 0.127 0.127 0.142 0.142

7 0.089 0.147 0.130 0.130 0.143 0.143

8 0.080 0.143 0.127 0.127 0.136 0.136

9 0.095 0.154 0.135 0.135 0.149 0.149

10 0.087 0.154 0.138 0.138 0.149 0.149

Table 4. Mean squared error of predictor coefficient estimates over 200 repetitions for N = 1000 for
the logistic regression and factorisation machine models.

Betas LR LRI LLFM2 MLEFM2 LLFM4 MLEFM4

0 0.057 0.025 0.017 0.017 0.022 0.022

1 0.188 0.049 0.024 0.024 0.041 0.041

2 0.921 0.169 0.074 0.074 0.139 0.139

3 2.039 0.355 0.154 0.154 0.284 0.284

4 0.201 0.058 0.032 0.032 0.049 0.049

5 0.198 0.058 0.028 0.028 0.049 0.049

6 0.006 0.022 0.016 0.016 0.020 0.020

7 0.008 0.021 0.017 0.017 0.021 0.021

8 0.006 0.020 0.016 0.016 0.018 0.018

9 0.009 0.024 0.018 0.018 0.022 0.022

10 0.008 0.024 0.019 0.019 0.022 0.022

As far as the estimation of the interaction coefficients is considered, we will present
the results for LRI and only MLEFM2 below since the other LFMs performed similarly.
The MSE for the interaction coefficients are given in Table 5 for LRI and in Table 6 for
MLEFM2. Again, the results for LLFM2 and MLEFM2 were the same, and we observed
slightly bigger MSE’s for the four-factor LFMs (MLEFM4 and LLFM4). When comparing
the MSEs of the LRI and MLEFM2 fit, remarkably, the MSE of the MLEFM2 fits is much
smaller than that of LRI despite the fact that the latter model was used to generate the data
sets. This is testimony to the remarkable ability of factorisation machines to approximate
this model with fewer parameters. In this case, LRI had to estimate 1 + K + K(K−1)/2,
i.e., 65 parameters while MLEFM2 only had to estimate 1 + K + KG, i.e., 31 parameters.
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Table 5. Mean squared error of interaction coefficient estimates for LRI (N = 1000).

2 3 4 5 6 7 8 9 10

1 0.06821 0.08044 0.02662 0.02950 0.02522 0.02432 0.02343 0.02842 0.02549

2 0.20197 0.03057 0.03199 0.03260 0.03029 0.02791 0.03498 0.03719

3 0.04024 0.04144 0.04289 0.03534 0.04172 0.04525 0.04125

4 0.03165 0.02307 0.02285 0.02166 0.02837 0.02934

5 0.02131 0.02465 0.02273 0.02747 0.02052

6 0.02056 0.02078 0.02142 0.02436

7 0.01717 0.02657 0.02172

8 0.02304 0.02339

9 0.16936

Table 6. Mean squared error of interaction coefficient estimates for MLEFM2 (N = 1000).

2 3 4 5 6 7 8 9 10

1 0.00510 0.00747 0.00001 0.00003 0.00009 0.00001 0.00001 0.00010 0.00017

2 0.02911 0.00005 0.00008 0.00040 0.00009 0.00005 0.00014 0.00013

3 0.00006 0.00008 0.00031 0.00005 0.00005 0.00034 0.00014

4 0.00000 0.00000 0.00000 0.00000 0.00009 0.00028

5 0.00000 0.00000 0.00000 0.00011 0.00006

6 0.00000 0.00000 0.00009 0.00011

7 0.00000 0.00015 0.00006

8 0.00008 0.00014

9 0.02429

We also recorded the time (in seconds) that the algorithms took to converge, as well
as the Gini coefficients obtained for each of the fits. The results appear in Tables 7 and 8.
Clearly, the factorisation machines took a longer time to converge than the logistic regres-
sion fits. Interestingly, compared to the four-factor factorisation machines, the two-factor
factorisation machines took less time on average to converge but seem to struggle more
in some cases (see the larger maximum convergence times). As far as the Gini results are
concerned, LR is way-off, as expected, while the other techniques give fairly similar results.

Table 7. Time that the estimation algorithms of the models took to converge over the simulation runs.

Average Standard Deviation Minimum Maximum

LR 0.057 0.015 0.032 0.185

LRI 0.095 0.065 0.062 0.825

LLFM2 5.807 7.158 0.364 28.634

MLEFM2 5.310 6.526 0.336 37.872

LLFM4 8.572 3.820 1.013 21.079

MLEFM4 8.491 3.917 1.101 20.204
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Table 8. Gini coefficients obtained by the models over simulation runs.

Average Standard Deviation Minimum Maximum

LR 0.750 0.023 0.679 0.803

LRI 0.935 0.011 0.904 0.964

LLFM2 0.926 0.014 0.846 0.956

MLEFM2 0.926 0.013 0.844 0.956

LLFM4 0.933 0.011 0.903 0.962

MLEFM4 0.933 0.011 0.902 0.962

To test the predictive ability of the various methods considered here, we repeated the
above simulation study by changing the underlying model that was previously used to
generate the data set. We also randomly split the generated data sets in a 70% training set
and a 30% validation set. When generating the data, we used the same specification as
before but included an extra (standard normal) predictor variable with a coefficient of two.
We then excluded the variable when fitting the algorithms to the data sets. The algorithms
were fitted to the training set only and then used to predict the validation set. We again used
Gini as our performance measure. Tables 9 and 10 contains the average fitted and predicted
Ginis obtained as well as the standard deviation, minimum and maximum. In order to
evaluate the performance of the models, in this setting, with a popular tree-based method,
we include standard random forests (RF) as a competitor. Consider the results for the
training set in Table 9. Except for LR and RF, the other algorithms give fairly similar Gini
estimates with the logit loss, and the maximum likelihood fits again, providing, almost
always, exactly the same Ginis for each data set. Here, LR performs the worst and RF
the best. For the validation set (Table 10), the predicted Ginis of LRI and the two-factor
factorisation machines are best. Interestingly the four-factor factorisation machines break
down, which might be due to overfitting the training data set and then being unable to
generalise to the validation set.

Table 9. Fitted Ginis on the training set obtained over 200 simulation runs.

Average Standard Deviation Minimum Maximum

LR 0.689 0.031 0.605 0.763

LRI 0.877 0.018 0.821 0.926

LLFM2 0.859 0.021 0.791 0.913

MLEFM2 0.859 0.022 0.768 0.913

LLFM4 0.873 0.018 0.816 0.924

MLEFM4 0.873 0.018 0.816 0.924

RF 0.999 0.001 0.999 1.000

The same might be true for RF; however, RF slightly outperforms LR on the validation
set but performs poorly relative to LRI and the two-factor FMs. This is expected since the
data sets are generated from an underlying model that favours LRI and FMs. The results
in Table 10 show that the choice of G, the number of factors in the LFM, is crucial and an
inappropriate choice can be catastrophic, as indicated by the negative Ginis in the table.
A remark about this will be made in the last section.
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Table 10. Predicted Ginis for the validation set obtained over 200 simulation runs.

Average Standard Deviation Minimum Maximum

LR 0.671 0.045 0.546 0.801

LRI 0.800 0.035 0.658 0.886

LLFM2 0.816 0.036 0.657 0.901

MLEFM2 0.816 0.036 0.676 0.901

LLFM4 0.245 0.235 −0.290 0.789

MLEFM4 0.251 0.222 −0.231 0.788

RF 0.696 0.049 0.537 0.798

Remark 2. The results for the other sample sizes were similar, with the larger sample sizes providing
better results in terms of less variance and bias observed.

6. Analysis of Prediction Performance on Some Data Sets

In this section, we investigate and compare the prediction performance of LFMs with
LRI and LR by analysing three data sets. Various studies have confirmed that FMs perform
well in recommender system applications and in sparse data settings, but little is known
about their performance in the typical binary classification problems banks deal with.
In this section, we will investigate two such applications where logistic regression has a
stronghold, namely fraud identification and credit scoring. However, before we discuss the
latter case studies, we decided to first illustrate the behaviour and prediction performance
of FMs on an artificially constructed binary data set that is typically found in recommender
system applications. This will set the scene for what is to follow in the banking applications.
Note that we now drop the notation that distinguished between logistic loss and maximum
likelihood and will subsequently refer to the two-factor LFM as LFM2 and the four-factor
LFM as LFM4 and so on.

6.1. Artificial Recommender System Example

In this subsection, an artificially constructed binary data set as given in Table 11 is
studied. Theoretically, 20 users (denoted by U1 to U20) may record their preferences for
20 items (denoted by I1 to I20). Users could be customers indicating their propensity to buy
certain items, recording their preferences for movies, or selecting political candidates they
would vote for. Another application could be the identification of the next best product to
sell, and Table 11 could then represent the products that a customer owns (indicated by
ones) or does not own (indicated by zeros).

The shaded values in Table 11 indicate missing observations, in other words, values
that are not available and have to be predicted from the observed values. In our case,
the positive responses of the users have been organised in five blocks containing four users
each, and assuming no missing values, a clear structure of identical users is visible in
Table 11. For example, users U1 to U4 all picked items I1 to I4, and users U13 to U16 all
picked items I13 to I16. Of course, should the labels of users and items be randomised, the
block structure of identical users will not be clearly visible. The shaded values represent
120 of the 400 values that were randomly removed from the data set and that we want
to predict. Can an LFM model the underlying associations between the users using the
280 observations and then predict the missing values correctly?
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Table 11. The full binary ratings data set where the shaded zeros and ones indicate the removed
ratings.

I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11 I12 I13 I14 I15 I16 I17 I18 I19 I20

U1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
U2 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
U3 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
U4 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
U5 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
U6 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
U7 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
U8 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
U9 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
U10 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
U11 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
U12 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
U13 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
U14 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
U15 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
U16 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
U17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
U18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
U19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
U20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

Before we can fit an LFM to the incomplete data set (without the missing values),
we have to input it into an appropriate format understood by the algorithms. The data
set is therefore encoded using one hot coding (see Slabber et al. (2021) or Rendle (2012)),
which means that the two predictor variables (users and items) will escalate to 40 nominal
predictors (20 users plus 20 items). If we want to fit an LFM with two factors (LFM2),
this will require the estimation of 121 (1 + K + KG = 1 + 40 + 40× 2 = 121) parameters.
This is a significant reduction compared to fitting a full two-way LRI where 821 (1 +

K + K(K−1)
2 = 1 + 40 + 20(39) = 1 + 40 + 780 = 821) parameters need to be estimated.

Note that for LRI, the number of parameters to be estimated is more than the number of
observations, which will result in failure; however, an unweighted LFM2 model fitted to the
280 observations obtained a near-perfect fit and prediction. For example, the estimated and
predicted probabilities (p̂LFM2

n ) obtained for the actual ones varied between 0.999999981 and
0.999999998 and for the actual zeros between 0.000000000 and 0.000000046. So rounded to
the nearest integer, we will estimate and predict Table 11 perfectly. Therefore, if we construct
a confusion matrix by using any threshold (say) between 0.0001 and 0.9999, we will obtain
100% for all the confusion matrix-based measures given in Section 4.1. Impressively, with
only 70% of the binary values available, LFMs were able to pick up the block structure, and
resulting associations between users and items and make a perfect prediction.

To test the power of the method further, we removed 50% of the ratings. When
rounding the estimated and predicted probabilities to the nearest integer, we obtained a
perfect fit but predicted two of the removed zeros as ones. However, when 70% of the
values in the original set were removed, the LFM models fitted and predicted poorly. In all
the above-mentioned cases studied, the LR and LRI models performed poorly. LR failed
to pick up the associations between users and items because these models do not contain
any interaction terms. LRI failed completely due to the input matrix being singular, caused
by the fact that the number of predictors outnumbered the number of observations. LFMs
perform well because the factor structure enables the individual factors to borrow strength
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from each other to pick up the associations between users and items (see Rendle (2010) and
Slabber et al. (2021)).

Remark 3.

(a) When inspecting the results of the LFM fits, we noticed that, when all the observations on the
edges of a block structure are removed, LFMs struggle to predict those values correctly.

(b) A straightforward implementation of RF on this problem provided poor results. This is
expected because it is well-known that RFs struggle with sparse data sets. Of course, research
on improving RFs to cater for these types of problems are ongoing (see, e.g., Hariharan et al.
2017; Wang et al. 2018). However, given the fact that LFM2 provide a perfect fit on both
training and validation sets, it is clearly the winner in this case.

6.2. Credit Card Fraud Example

The contents and context of this Kaggle data set are described in Kaggle (2021). In brief,
it contains data on N = 284, 807 transactions, of which 492 are fraudulent (Yn = 1) and
the remainder clean (Yn = 0). There are K = 30 regressors, of which 28 are principal
component transformations of features that are not detailed due to confidentiality issues;
the other two regressors are described as ‘Time’ and ‘Amount’. Here, we refer to the
regressors simply as X1, X2, . . . , X30. This is a large data set, and the illustration below
follows the modelling paradigm of dividing the data set into training and validation sets.
The rows of the data set were permutated randomly, and then half of them were put into
the training set and the remainder into the validation set. Thus, the training data set has
Ntrain = 142, 404 observations with Ntrain,1 = 245 frauds and Ntrain,0 = 142, 159 cleans.
This data set is highly unbalanced since the fraction of frauds is only 0.172% of the total.
As described in Section 2, expressions (8) and (9), the assignments of the weights in the
fitting criterion are used to address this matter. We take wn = 1/2Ntrain,1 if Yn = 1 and
wn = 1/2Ntrain,0 if Yn = 0. Then, the totals of the weights for the frauds and the cleans
are 1/2 each, and the overall total of all the weights is 1. This enables the small number of
frauds to play a meaningful role in the model training. The results obtained for this data
set are given in Tables 12 and 13. The Ginis obtained by the models for the training and
validation data sets are given in Table 12, and the F1 scores are in Table 13. Since we are
dealing with a highly imbalanced data set, we fitted a balanced random forest (BFR) (see
Agusta 2019). Consider the results presented in Table 12. Very high Ginis are obtained
by all models on the training set; however, on the validation set, there is a more than
15% drop in separation performance of BRF and the LFMs. This indicates that the models
overfit the training set and fail to generalise to the validation set (see, e.g., Engelmann and
Rauhmeier (2006) and James et al. (2021). Interestingly, the LRI fit does not exhibit this
substantial drop in separation performance and obtains similar results as LR. Standard
SAS output provides the 95% confidence interval of the LR Gini on the validation set as
(0.8942, 0.9644), and since this model is parsimonious compared to LRI, it will be preferred
in practice. However, when the F1 scores in Table 13 are considered, the practitioner could
make a different conclusion since the best F1 score on the validation set is obtained by
BRF (F1 = 0.860) and the second best by LR (0.803). BRF achieves perfect separation on
the training set (F1 = 1.000), while the LR score of 0.815 is close to what LR achieved on
the validation set. In the end, the consistency achieved by LR in terms of both Gini and F1
scores, as well as the interpretability advantage, will sway the practitioners’ decision in its
favour. Note that we did not calculate F1-scores for the LFM4 and LFM6 models since we
felt that the parsimonious model (LFM2) is of more interest to the practitioner and gave
similar performance to the others as seen in Table 12.
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Table 12. Ginis obtained by the various models on the full data set.

Modelling Technique Train Validation Number of Parameters to Estimate

LR 0.987 0.929 31

LRI 0.994 0.925 466

LFM2 0.998 0.824 91

LFM4 0.999 0.835 151

LFM6 0.999 0.741 211

BRF 0.996 0.737

Table 13. F1 scores obtained by the various models on the full data set.

Modelling Technique Train Validation

LR 0.815 0.803

LRI 0.648 0.507

LFM2 0.782 0.752

BRF 1.000 0.860

In retrospect, the better performance of LR is no surprise since 28 of the 30 predic-
tor variables resulted from a principal components analysis (PCA) where each principal
component is orthogonal to each other. Therefore, it is highly unlikely that LR will be out-
performed by LFMs, LRI, and even BRF since the presence of interaction terms is unlikely.

Since LFMs have distinguished themselves as performing well in data sets where the
number of predictors is more than the number of observations, we randomly selected 200
fraud cases and 200 non-fraud cases from the data set. We then split the data set into a
training set containing 100 fraud cases and 100 non-fraud cases and allocated the remaining
observation to the validation set. The results are given in Table 14 (Gini coefficients) and
Table 15 (F1 scores). Note that LRI could not be fitted because the number of parameters to
be estimated (466) is much larger than the number of observations (200) resulting in the
input matrix being singular.

Table 14. Ginis obtained by the models on the reduced data set.

Modelling Technique Train Validation Number of Parameters to Estimate

LR 0.995 0.827 31

LRI

LFM2 0.999 0.816 91

LFM4 0.999 0.857 151

LFM6 0.999 0.853 211

BRF 0.999 0.843

Table 15. F1 scores obtained by the models on the reduced data set.

Modelling Technique Train Validation

LR 0.989 0.900

LRI

LFM2 1.000 0.881

BRF 1.000 0.916
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When we compare the results in Table 12 to that in Table 14, it is interesting to note
that LR separation performance drops dramatically. Although all models seem to overfit,
the separation obtained is good, with LFM4 having the highest Gini but by a small margin.
This supports the finding by Rendle that FMs generally perform very well when the number
of predictors outnumbers the number of observations, i.e., when K > N. As far as Table 14
is concerned, the F1 scores obtained by the models on the training and validation sets are
close, with BRF marginally the best performer.

Remark 4.

(a) To run PROC OPTMODEL, we had to adapt the SAS Config file by changing MEMSIZE
from 2G to 10G; otherwise, one gets stuck in memory problems, especially when fitting LFM6.

(b) We considered various other data sets where the number of observations was reduced by
keeping the number of frauds and non-frauds equal. As the sample size gets smaller, the
advantage of the FMs over LR, LRI, and BRF becomes more prominent.

6.3. Credit Scoring Example

In this section, we compare logistic factorisation machines and logistic regression
with respect to their ability in separating the defaulters from non-defaulters, and we
use a large proprietary data set obtained from a bank. Note that the information on the
predictor variables is classified as confidential. The data set was previously analysed by
De Jongh et al. (2015), and we will use a reduced data set resulting from their study that
contains 38 predictor variables and 335,523 observations, of which 10,267 (3.06%) defaulted.
Because of the larger number of zeros, we found that the unweighted fit performed as well
as the weighted fit and will only present the results for the unweighted fits. For this data
set, we have available both the original and the weights-of-evidence (WoE) transformed
variables. The original data set comprised 1,294,811 observations and 802 variables that
were reduced through a process of variable selection and elimination of correlated variables.
The Gini statistic obtained after fitting an LR model to the WoE transformed variables of
the reduced data set was 0.829, as seen in Table 8 of the above-mentioned paper. Below,
we obtain similar values on a random 50% split of the reduced data set in a training and
validation set.

Before fitting the models, we standardised the original variables, which is recom-
mended by Frost (2019) if one expects the presence of interaction terms. The fits on the
original standardised and the WoE transformed data set are given in Tables 16 and 17
below. As mentioned previously, we fitted the model on the training data set while the
performance is evaluated on the holdout portion (validation data set). The Ginis obtained
for the data sets are given in Table 16, and the F1 scores are in Table 17. As in the previous
example, because we are dealing with an imbalanced data set, we fitted a balanced random
forest (BFR).

Table 16. Ginis obtained by the models for the credit scoring data set.

Modelling
Technique

Standardised Original
Variables

WoE Transformed
Variables Number of

Parameters
Train Validation Train Validation

LR 0.772 0.783 0.814 0.824 39

LRI 0.805 0.800 0.847 0.825 742

LFM2 0.797 0.802 0.828 0.829 115

LFM4 0.804 0.804 0.832 0.830 191

LFM6 0.809 0.807 0.836 0.830 267

BRF 0.999 0.883 0.999 0.862
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Table 17. F1 scores obtained by the models for the credit scoring data set.

Modelling
Technique

Standardised Original
Variables

WoE Transformed
Variables

Train Validation Train Validation

LR 0.383 0.386 0.398 0.399

LRI 0.400 0.386 0.433 0.401

LFM2 0.393 0.391 0.411 0.406

BRF 0.999 0.391 0.977 0.402

Consider the results in Table 16. In both the original standardised and the WoE case,
the highest Gini on the validation data set is obtained by BRF, followed by the LFM models
and then the LR and LRI models. Except for BRF, where the Gini on the training set is
considerably larger than that obtained on the validation set, all models seem to generalise
well and exhibit no signs of overfitting. The consistency of the results of the latter models
on both the training and validation set indicates the stability of the models (see, e.g.,
Engelmann and Rauhmeier (2006)). Now consider the results in Table 17 where the F1
scores are presented. As in the previous example, we omitted the four- and six-factor LFMs
since their performance are similar to the two-factor LFM, (refer to Table 16). As seen in
Table 17, BRF clearly achieve the best F1 score on the training data set (for the original and
WoE variables) but perform similar to the other models on the validation sets. So, as far as
predictive performance is concerned, there is little to choose between these models.

As motivated below, in the case of the WoE transformed data, one would expect that
no interactions between variables are present; hence one would expect that the models
studied here should perform similarly. However, in this example, this also seems to hold
for the standardised original variables. This concurs with a remark made by Crook (2014)
that he seldomly found significant interaction terms when building retail credit scorecards.
So, in this case, practitioners will most probably select the easily interpretable and simpler
LR model for further analysis and implementation.

Remark 5. On WoE Transformation.

Banks almost always use the WoE transformation to build retail credit scorecards
using ordinary logistic regression. This so-called balance scorecard methodology (see, e.g.,
Siddiqi (2017)) relies on fitting logistic regression models where the predictor variables
are typically binned in categories, and then the target variable is used to obtain a WoE
value for each category of the predictor variables. Here, the WoE value, in a specific
category, is obtained as the logarithm of the ratio of the percentage non-events and the
percentage events. There are three main advantages of this transformation in credit scoring:
(a) outliers and missing values are grouped in classes and binned separately, (b) no dummy
variables are needed since categorical variables are handled by WoE, and (c) WoE eliminates
the need for linear transformations of non-linear relationships, such as log and square
root. The WoE variables are constructed by means of a transformation applied to the
categories resulting from the discretization, typically by means of classification trees, of the
original inputs. In our opinion, logistic factorisation machines do not have clear advantages
over the above-mentioned methods when the predictor variables are WoE transformed.
The main reason is that the WoE should be monotonic for each variable. According to
Zeng (2014), one criterion used for a good binning algorithm is that a logistic regression
run on a single WoE variable should provide a slope of close to one and an intercept close
to ln

(
N0
N1

)
. Schaeben (2020) further argued that WoE is a special case of logistic regression

when the predictor variables are jointly conditional independent, given the target variable.
It is a required modelling assumption of weights-of-evidence to ensure its features and
proper estimates of probabilities. Therefore, WoE-transformed predictor variables cannot
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reasonably include interaction terms, providing little scope for LRI or FMs to provide better
prediction performance than LR. However, if the original (untransformed variables) are
used, the inclusion of proper interaction terms in logistic regression compensates for the
lack of joint conditional independence completely (see Schaeben (2014)).

According to Sharma (2011), WoE transformations usually work well in logistic models
not containing interaction terms, and this lack of adaptation with respect to interacting vari-
ables is one of the main criticisms that may be made regarding the mentioned methodology.
However, recently, Giner-Baixauli et al. (2021) extended the WoE-based methodology to
include new WoE variables that capture interaction effects. The authors also show that
the extended WoE approach enables the improvement of the predictive capability over the
standard WoE-based methodology.

In conclusion, if the WoE transformation is applied, we are of the opinion that there is
little scope for the application of LFMs in retail credit-scoring contexts. However, in appli-
cations where the original untransformed data is used or when the number of predictors is
more than the number of observations, its use as a challenger model is recommended.

7. Conclusions

In this paper, we introduced the reader to LFMs and compared their performance
with logistic regression and random forests. We have implemented LFM fitting routines
in SAS using PROC OPTMODEL, and since SAS is widely used by large companies, we
trust that these routines will facilitate the application of LFMs commercially. A simulation
study confirmed the accuracy of our routines, and by using two bank-related data sets,
we illustrated the strengths and weaknesses of these models. In the process, we hope that
we have succeeded in convincing the reader that LFMs are worthy competitors to random
forests (BRF) and logistic regression (LR and LRI). The LFMs have clear advantages over the
other methods in high-dimensional and sparse data settings and performed competitively
on the banking data sets. In comparison to logistic regression (i.e., LR without interaction
terms), it comes at the cost of many more parameters, which would be impractical from
the model monitoring point of view. However, their inclusion as a challenger model is
highly recommended.

As far as future research is concerned, we suggest that a detailed study be designed to
compare the predictive performance of classifiers, including discrete choice models that
address interactive effects, such as proposed by Ai and Norton (2003) and Jiang (2021).
Ai and Norton (2003) studied the estimation and inference problems for interaction terms in
logit and probit models. Jiang (2021) proposed a semiparametric-ordered response in which
explanatory variables can interactively affect the ordered response dependent variable of
interest. Such a study should include a plethora of metrics for balanced and imbalanced
data sets. Additionally, as far as the predictive accuracy of LFMs is concerned, the choice
of the number of factors G is important. This is worth pursuing further, along with the
reduction in computational demands as well as the applicability in high-dimensional sparse
data settings.
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