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Abstract: The class of forward-LIBOR market models can, under certain volatility structures, produce
unrealistically high long-dated forward rates, particularly for maturities and tenors beyond the liquid
market calibration instruments. This paper presents a diagnostic tool for analysing the quantiles
of distributions for forward term rates in a displaced lognormal forward-LIBOR model (DLFM). In
particular, we provide a quantile approximation that can be used to assess whether the modelled term
rates remain within realistic bounds with a high probability. Applying this diagnostic tool (verified
using Quasi-Monte Carlo (QMC) simulations), we show that realised forward term rates for long
time horizons may be kept within realistic limits by appropriately damping the tail of the DLFM
volatility function.
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1. Introduction

Early one-factor short rate models were able to keep long-dated interest rates within
realistic limits by using a mean reversion feature (see, e.g., Vasiček 1977; Cox et al. 1985; or
Hull and White 1990). Mean reverting short rates tend to decrease when high and increase
when low. This property is imposed in the risk-neutral instantaneous short rate dynamics
by a component of the drift dependent on the level of the short rate. However, if one
considers the resulting dynamics of these models for, say, quarterly forward rates with
simple compounding, when viewed under the respective forward measures to the end of
their accrual periods, mean reversion manifests itself in the fact that the volatility of these
rates decay with increasing time to maturity; there is no “mean reverting” component in
the drift of these rates because simply compounded forward rates must be martingales
(i.e., driftless) under the forward measure to the end of the accrual period in any arbitrage-
free model.

Historically, simply compounded forward rates have had the label “forward LIBOR”,
and models constructed directly on the basis of such market-quoted rates were called
“LIBOR Market Models” (LMM).1 While the London Interbank Offer Rate (LIBOR) and
similar interest rate benchmarks in other jurisdictions are widely2 being replaced by bench-
marks based on overnight rates, such as the Secured Overnight Funding Rate (SOFR) in the
United States, simply compounded term rates are still key market objects. Consequently,
the LMM and its extensions remain important tools for the modelling of interest rate risks.3

In keeping with long-standing convention, we shall speak of simply compounded forward
rates as “forward LIBORs.”

In such models, a decay of forward rate volatility with increasing time to maturity
must be introduced explicitly (as opposed to implicitly via the mean reversion feature
in short rate models) in order to prevent unrealistic long-term behaviour of the model
dynamics. This is also true of models specified in terms of the volatilities of instantaneous
forward rates in the Heath et al. (1992) (HJM) framework; however, in the present paper,
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we focus on models specified in terms of volatilities of simply compounded forward
rates, i.e., LMM-type models.4 When choosing a volatility specification, there is no readily
available algorithm to determine whether the choice will lead to realistically bounded
realised forward LIBORs, other than using time-consuming Monte-Carlo methods. This is
particularly important when extrapolating beyond the reach of current market calibration
instruments when, for example, modelling the risk of longer-dated liabilities.5 In this paper,
we develop and show the efficacy of a diagnostic tool for analysing the distributional
behaviour of realised forward LIBORs arising from volatility specifications. This is useful
for detecting poorly performing volatility parametrisations and evaluating the effectiveness
of mitigation strategies.

We focus on a displaced diffusion extension of the LMM, namely the displaced lognor-
mal forward-LIBOR model (DLFM), since it is more flexible (discussed in Section 2 below)
yet still analytically tractable. In particular, we provide an efficient quantile approximation
using the moment approximations derived in Van Appel and McWalter (2018, 2020), which
are adapted here to the more generally applicable spot risk-neutral measure.6 Quasi-Monte
Carlo (QMC) simulations show that our quantile approximation is an accurate and useful
tool in analysing the distributional behaviour of long-dated forward-LIBOR rates. We then
show that unrealistically high forward-LIBOR rates may be kept within realistic limits by
appropriately damping the long-dated background volatility tail using, for example, a
sigmoid function.

The paper is structured as follows. Section 2 describes some requirements of a modern
term structure model and provides an overview of the DLFM under the spot risk-neutral
measure. Section 3 introduces our quantile approximation with an outline of the Van Appel
and McWalter (2020) moment approximation algorithm adapted to the spot measure.
The accuracy of our quantile approximation is demonstrated under different scenarios in
Section 4 using QMC simulations. Furthermore, we describe a useful volatility damping
methodology to keep long-dated forward-LIBOR rates within realistic limits. We conclude
with Section 5.

2. The Model

Complex derivatives have highlighted the need for term structure models that can
produce changes in the shape, both in the gradient and curvature, of the yield curve. A
model may gain this ability through the mechanisms of time-dependent volatilities or
multiple driving factors. The latter allows financially convincing instantaneous forward
rate correlation structures while the former is just as financially sound and capable of pro-
ducing the desired terminal de-correlation, even in a one-factor model (see, e.g., Fries 2007,
sct. 21.2.1). We do not consider the effectiveness of either mechanism individually since the
class of forward-LIBOR market models inherently possesses both.

Our focus is on the DLFM, firstly, for its ability to capture skew effects and remain
analytically tractable. Secondly, it can produce CEV-like skews with a parsimonious
parametrisation (see, e.g., chp. 3 of Brace 2008 or Svoboda-Greenwood 2009). Furthermore,
under a specific parameter specification, the DLFM may describe any discretized Gaussian
model within the HJM framework (see, e.g., chp. 24 of Fries 2007; chp. 3 of Brace 2008;
or chp. 14 of Andersen and Piterbarg 2010b). This is accomplished by setting the DLFM
displacement parameter equal to the reciprocal of the accrual period of each rate, integrating
the instantaneous forward rate volatility function over the discrete forward LIBOR tenors,
and specifying the appropriate correlation structure. Lastly, the DLFM can produce negative
forward LIBORs under a suitable parametrisation, which has become a desirable feature in
periods of extremely low interest rates.

An important modelling consideration is the pricing measure. We may choose between
the T-forward, terminal or spot measures. The latter is induced by a discretely compounded
analog of the continuously compounded bank account numéraire, while the terminal
measure corresponds to a special case of the T-forward measure in which the numéraire is
the last modelled maturity zero-coupon bond. The terminal and spot measures are suitable
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when it comes to derivatives that require a numéraire that remains alive over the entire
tenor structure. We, however, prefer the spot measure since it can be extended to any time
horizon by simple compounding and it is more efficient when it comes to simulation. More
specifically, under the terminal measure very large forward LIBOR realizations produce
very small zero-coupon bond prices, resulting in normalized payoffs becoming very large
(see, e.g., Example 5.1 in Brace 2008).

To fix notation, definitions, and terminology used throughout the paper, let tenor
dates be given by 0 =: T0 < T1 < ... < TM < TM+1. The time-t price of a zero-coupon
bond paying a unit of currency at maturity Ti is denoted P(t, Ti). Define the accrual factors
as τi = Ti+1 − Ti, in which case the time-t value of the forward LIBOR from Ti to Ti+1 is
given by

Fi(t) := F
(
t; Ti, Ti+1

)
=

1
τi

(
P
(
t, Ti

)
P
(
t, Ti+1

) − 1

)
. (1)

We denote by QB the spot measure associated with the numéraire asset7

B(t) := P
(
t, Tϑ(t)

) ϑ(t)−1

∏
i=0

(
1 + τiFi(Ti)

)
, (2)

where ϑ(t) := min{i : Ti ≥ t}. Then the DLFM dynamics of Fi(t) under QB are

dFi(t) = µ̃i(t)(Fi(t) + ai)dt + σi(t)(Fi(t) + ai)dWBi (t), (3)

for t ≤ Ti, where

µ̃i(t) := σi(t)
i

∑
j=ϑ(t)

ρijσj(t)τj(Fj(t) + aj)

1 + τjFj(t)
, (4)

ai are the constant displacement factors, σi(t) is the instantaneous volatility of Fi(t), and
WBi (t) is the ith component of an M-dimensional QB Brownian motion with instantaneous
correlations given by:

d
〈

WBi , WBj
〉

t
= ρij dt. (5)

The correlation matrix formed by the elements ρij is denoted by ρ and is assumed to
be of rank n. If n = M, then ρ is full rank.

It is worth remarking that the forward rates in (3) have an unknown distribution
but are approximately displaced-lognormally distributed, and as a consequence, Fi(t) + ai
are approximately lognormally distributed. Under the assumption of lognormality of
Fi(t) + ai, Van Appel and McWalter (2020) derive a computationally tractable algorithm
that accurately and efficiently approximates the moments of the forward rate distribution
under the T-forward measure. In the next section, we adapt this algorithm to the spot
measure and provide a quantile approximation.

3. Quantile Approximation

In this section, we provide an algorithm for a computationally tractable quantile
approximation of the entire forward rate curve under the spot measure, QB . We closely
follow the terminology and notation set out in Van Appel and McWalter (2020) by defining
a vector of displaced forward rates, H(t), in terms of vectors F(t) and a with the elements
Fi(t) and ai, for 1 ≤ i ≤ M and t ≤ Ti, as

H(t) := F(t) + a. (6)

Let H̄(t) and ΣH(t) denote the mean and covariance of H(t). Then, we assume that

Y(t) := log
(

H(t)
)

(7)
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is normally distributed as

Y(t) ∼ N
(
Ȳ(t), ΣY(t)

)
, (8)

where Ȳ(t) and ΣY(t) are the mean and covariance, respectively, so that H(t) is lognormally
distributed as

H(t) ∼ logN
(
Ȳ(t), ΣY(t)

)
. (9)

Therefore, the quantile of each realised forward rate, Fi(Ti), for 1 ≤ i ≤ M is

QF
i
(

p; Ȳi(Ti), ΣY
ii(Ti)

)
= exp

(
Ȳi(Ti) +

√
2ΣY

ii(Ti) erf−1(2p− 1)
)
− ai, (10)

where

p := QB
(

Fi(Ti) < QF
i
(

p; Ȳi(Ti), ΣY
ii(Ti)

))
(11)

with Ȳi(Ti) and ΣY
ij(Ti) determined recursively through time in increments of ∆. We outline

this algorithm in the following steps:

1. For Tϑ(t)−1 ≤ t < Tϑ(t) and ϑ(t) ≤ {i, j} ≤ M, calculate

Ȳi(t) = log
(

H̄i(t)
)
− 1

2 ΣY
ii(t) (12)

and

ΣY
ij(t) = log

(
ΣH

ij(t)

H̄i(t)H̄j(t)
+ 1

)
, (13)

where H̄(0) = H(0), Ȳ(0) = Y(0) and ΣH(0) = ΣY(0) = 0.
2. Determine

Ȳi(t + ∆) = Ui(X̄) + 1
2 tr
(
∇2Ui(X̄)ΣX

)
(14)

and

ΣY
ij(t + ∆) = ∇Ui(X̄)>ΣX∇Uj(X̄) + 1

2 tr
(
ΣX∇2Ui(X̄)ΣX∇2Uj(X̄)

)
(15)

for ϑ(t) ≤ {i, j} ≤ M, where tr(·) is the trace operator using

Ui(X) :=
[
Yi(t) + µi(t)∆ + 1

2L
0µi(t)∆2

+
n

∑
h=1

{
σi(t)ρ̃ih ∆Bh + Lhµi(t)∆B̃h

}]
X

(16)

with

µi(t) = σi(t)
i

∑
j=ϑ(t)

ρijσj(t)τj(Fj(t) + aj)

1 + τjFj(t)
− 1

2 σ2
i (t), (17)

and where L0µi(t) and Lhµi(t) are defined in (A1) and (A2), respectively. The random
variable

X := [Y(t), B]> (18)
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is composed of two independent multivariate normal random variables, Y(t) and
B ∼ N

(
0, ΣB

)
, where

B :=



∆B1

∆B̃1

∆B2

∆B̃2
...

∆Bn

∆B̃n


and ΣB :=



∆ 1
2 ∆2 0 0 · · · 0 0

1
2 ∆2 1

3 ∆3 0 0 · · · 0 0

0 0 ∆ 1
2 ∆2 . . . 0 0

0 0 1
2 ∆2 1

3 ∆3 0 0
...

...
. . . . . .

...
...

0 0 0 0 · · · ∆ 1
2 ∆2

0 0 0 0 · · · 1
2 ∆2 1

3 ∆3


.

Thus, X ∼ N
(
X̄, ΣX

)
with

X̄ =

[
Ȳ(t)

0

]
and ΣX =

[
ΣY(t) 0

0 ΣB

]
.

The elements of the gradient, ∇Ui(X̄), Hessian, ∇2Ui(X̄), and their corresponding
derivatives can be found in Appendix A.2. It is worth remarking that since (10) only
requires the diagonal elements of ΣY we may significantly reduce the execution time
by computing

ΣY
ii(t + ∆) = ∇Ui(X̄)>ΣX∇Ui(X̄) + 1

2 tr
(
ΣX∇2Ui(X̄)ΣX∇2Ui(X̄)

)
(19)

and using

ΣY
ij(t + ∆) ≈

√
ΣY

ii(t + ∆)ρij

√
ΣY

jj(t + ∆) (20)

to approximate the off-diagonal elements. The resulting trade-off, along with a lower-
order approximation, is fully explored in Van Appel and McWalter (2020).

3. Compute

H̄i(t + ∆) = exp
(
Ȳi(t + ∆) + 1

2 ΣY
ii(t + ∆)

)
(21)

and

ΣH
ij(t + ∆) = H̄i(t + ∆)H̄j(t + ∆)

(
exp

(
ΣY

ij(t + ∆)
)
− 1
)
. (22)

4. If t + ∆ < TM, repeat steps 1 through to 3.
5. Once all the rates are evolved to expiry, the quantiles QF

i
(

p; Ȳi(Ti), ΣY
ii(Ti)

)
are com-

puted using (10) for each Fi and Ti, with 1 ≤ i ≤ M.

In the following section, we demonstrate the capability of the quantile approximation
in (10) as a diagnostic tool to analyse the long-dated behaviour of forward LIBORs implied
by the model.

4. Numerical Results

To verify the capability of the quantile approximation, given in (10), we used QMC
simulations. In particular, we use Sobol’ sequences (see Joe and Kuo (2003, 2008)), Brownian-
bridging and a predictor-corrector algorithm (see Hunter et al. 2001), in conjunction
with 220 − 1 sample paths of Fi(t), for 1 ≤ i ≤ M = 199 and τi = 0.25, at times
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t ∈ {0, ∆, 2∆, . . . , Ti} with increments of ∆ = 0.25. Furthermore, to allow the replication of
our results, we used the flexible and well-known instantaneous volatility parametrisation

σi(t) := σ(t, Ti, a, b, c, d) =
[

a + b
(
Ti − t

)]
e−c(Ti−t) + d, (23)

while making the piecewise constant assumption

σ2
ij :=

1
τj

∫ Tj+1

Tj

σ2
i (t)dt, (24)

for j = 0, 1, . . . , α− 1.
The next subsection takes advantage of the fact that a special DLFM specification

yields a discretized Gaussian model from within the HJM framework. This allows us to
demonstrate the forward rate quantile, provided in (10), for well-behaved forward LIBORs
under a mean reverting Gaussian short rate process described in the HJM framework. This
example further illustrates the forward rate mechanism that keeps long-dated forward
rates bounded and realistic.

4.1. DLFM Specification of a Discretized HJM Model

The model in this section is for illustrative purposes. For its simplicity, we considered
a one-factor mean-reverting Vasiček model, which has an initial instantaneous forward rate
curve that is given by

f (0, T) = µV + e−αVT(r(0)− µV

)
− σ2

V

2α2
V

(
1− e−αVT

)2
, (25)

where r denotes the instantaneous short rate. The model parameters {αV, µV, σV} and r(0)
are positive constants with their classical interpretation; that is, r(0) is the initial short rate
or spot rate, αV is the mean reversion speed, µV is the long-run mean of the process and σV

is the short rate volatility. Then, in the terms of the HJM framework, the Vasiček model
evolves the instantaneous forward rate according to

d f (t, T) =
(

σf (t, T)
∫ T

t
σf (t, s)ds

)
dt + σf (t, T)dBQ(t), (26)

where BQ is a standard Brownian motion under the risk-neutral measure, which is associ-
ated with the usual bank account numéraire and

σf (t, T) = σV exp
(
− αV(T − t)

)
(27)

is the instantaneous forward rate volatility.
The volatility function in (27) provides a key insight for forward rates derived from a

mean-reverting short rate process; the time-homogeneous forward rate volatility structure
must exponentially decay to zero with increasing time to maturity.

The above HJM model description can be discretized to yield a DLFM using a partic-
ular specification as follows (for details on linking the HJM and DLFM, see, e.g., chp. 24
of Fries 2007; chp. 3 of Brace 2008; or chp. 14 of Andersen and Piterbarg 2010b). For
1 ≤ i ≤ M, set the displacement parameter equal to the reciprocal of the accrual period,

αi =
1
τi

, (28)

and construct the discrete tenor volatility by integrating the instantaneous forward rate
volatility in (27) over the LIBOR tenor structure to produce
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σi(t) :=
∫ Ti+1

Ti

σf (t, s)ds = σ

(
t, Ti,

σV

αV

(
1− exp (−αVτi)

)
, 0, αV, 0

)
, (29)

which is a simple reformulation of (23). Then, determine the initial forward LIBOR curve,
Fi(0), with the relationship in (1) using (25) to compute

P(0, Ti) = exp
(
−
∫ Ti

0
f (0, s)ds

)
= exp

(
V1(0, Ti)−V2(0, Ti)r(0)

)
, (30)

where

V1(0, Ti) =
(
V2(0, Ti)− Ti

)[
µV −

σ2
V

2α2
V

]
− σ2

V

4αV

V2(0, Ti)
2 (31)

and

V2(0, Ti) =
1
αV

(
1− exp (−αVTi)

)
. (32)

To present this Vasiček example of well behaved realised long-dated forward LIBORs,
we used the following model input parameters: αV = 0.15, µV = 0.09, σV = 0.025, and
r(0) = 0.07. Figure 1a shows the Vasiček realised forward LIBOR standard deviation,

denoted as
√

ΣF
ii(Ti) :=

√
ΣH

ii(Ti), for 1 ≤ i ≤ M computed using (22) (red dots).8 Here,
the rate of increase in the forward rate standard deviation decreases and flattens out for
longer maturities. This is a direct result of the time-homogeneous forward rate volatility,
which exponentially decays to zero with increasing time to maturity. This can be seen in
Figure 2a, which is a visualisation of the integrated instantaneous Vasiček forward rate
volatility, (27), given in (29). For 1 ≤ i ≤ M, Figure 1b shows the realised Vasiček forward
LIBOR quantile, QF

i
(

p; Ȳi(Ti), ΣY
ii(Ti)

)
, given in (10), for p = {0.01, 0.5, 0.99} along with

the mean, F̄i(Ti) = H̄i(Ti) − αi, computed using (21). The p = {0.01, 0.99} quantiles
flatten out with increasing time to maturity, showing that the realised forward LIBORs
remain bounded. Again, this is due to the time-homogeneous forward rate volatility, which
exponentially decays to zero with increasing time to maturity, which prevents the forward
rate process from diffusing when it is far from maturity. This effect can be seen in Figure 2b,
which displays 26 − 1 sample path realisations of Fi(t) for t ≤ Ti with a fixed i = M = 199.
Figure 1 shows that our diagnostic tool is accurate when compared to the QMC sample
estimates (black circles), which we take to be our benchmark, given the relatively large
sample size along with the use of Brownian bridging and a predictor-corrector algorithm.

Given that we have demonstrated the link between well behaved realised forward
LIBORs and a decaying volatility function, σf (t, T), under a simple scenario, we next
explore the accuracy of our diagnostic tool in a more sophisticated multifactor scenario.
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(a)
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(b)

Figure 1. Diagnostic tool for analysing the distribution of long-dated forward LIBORs in the
discretized Vasiček model. (a) Comparing the realised forward LIBOR standard deviation ap-
proximation to a benchmark QMC sample estimate. (b) Comparing the realised forward LIBOR
p = {0.01, 0.5, 0.99} quantile and mean approximations to their benchmark QMC sample estimates.
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Figure 2. Illustrating the evolution of Fi(t) with a time-homogeneous exponentially decaying instan-
taneous volatility function under the discretized Vasiček model. (a) Visual representation of (29).
(b) Sample path realisations of Fi(t), for i = M = 199.

4.2. DLFM with a Background Level of Volatility

We consider an n = 5 factor DLFM scenario with input parameters taken from
Van Appel and McWalter (2020). The initial forward-LIBOR rate curve is specified as:

Fi(0) =
log
(
Ti + 1

)
y

+ x, for F0(0) = 0.08 and FM(0) = 0.04 (33)
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and ρ is the correlation matrix, which is the rank-n reduced version of the Schoenmakers
and Coffey (2003) formulation, ρSC, with elements specified by

ρSC
ij = exp

[
− |i− j|

M− 1

(
− log ρ∞ + ζ

M− i− j + 1
M− 2

)]
, (34)

where, 0 ≤ ζ ≤ − log ρ∞ and {i, j} ≤ M are tenor indices. The rank reduction method
used is the approach of zeroing the smallest M− n eigenvalues and rescaling (see, e.g.,
Brigo and Mercurio 2006, sct. 6.9.2). For the displacement factors, we chose the following
CEV-inspired parametrisation (see, e.g., chp. 3 of Brace 2008 or Svoboda-Greenwood 2009):

ai =
1− γ

γ
Fi(0), (35)

where γ = 0.45 is the CEV elasticity parameter since it is parsimonious and produces
CEV-like skews. Table 1 provides a summary of the DLFM volatility and correlation input
parameters for this scenario.

Table 1. Summary of the DLFM volatility and correlation input parameters.

a b c d ρ∞ ζ

0.03 0.08 1.35 0.07 0.40 0.8

Here the realised forward LIBOR standard deviation does not flatten as in the Vasiček
illustration of Section 4.1, but rather continues to increase with an upward curvature for
long-dated maturities (as seen by comparing Figure 3a to Figure 1a). This is as a result
of the level-d background volatility present in (23), which is responsible for diffusion
of the long-term forward rates even when they are far from maturity. Figure 3b shows
that this parameter set could be considered realistic for maturities out to approximately
35 years, with a p = 0.99 quantile of around 40%. For longer maturities, however, there
is a clear upward curvature developing in the p = 0.99 realised forward LIBOR quantile
(as with the realised forward LIBOR standard deviation in Figure 3a), which is an indication
that forward LIBORs with longer maturities may encounter extreme outlier realisations.
Further support for this is evident in the divergence between the mean and median realised
forward LIBOR for the long maturities, which indicates that the large (outlier) sample paths
become prominent. Exploding forward rates are well documented in the literature (see, e.g.,
Andersen and Piterbarg 2010a, sct. 4.5.3), with one solution being to restrict the volatility.
This is the subject of the next section.

Figure 3 indicates that the approximations made by our diagnostic tool start to become
less accurate for maturities longer than 35 years. This is seen in Figure 3a by comparing

the realised forward rate standard deviation approximation,
√

ΣF
ii(Ti), (red dots) to the

benchmark QMC sample estimates (black circles). A similar observation can be made in
Figure 3b for the quantile approximation, QF

i
(
0.99; Ȳi(Ti), ΣY

ii(Ti)
)
, (magenta line). This is

due to the gradual breakdown of the lognormal forward-LIBOR rate approximation, which
can be seen in Figure 4, with the lognormal Q–Q plots for two different maturities. In
particular, Figure 4a is a lognormal Q–Q plot of the realised sample QMC forward-LIBOR
rate maturing at 25 years (i = 99); here, the assumption of approximately lognormal
forward-LIBOR rates is reasonable. However, the lognormal Q–Q plot in Figure 4b for the
realised sample QMC forward rate maturing at 50 years (i = M = 199) shows that the
lognormal assumption erodes as a result of large outlier forward LIBOR realisations.

While the diagnostic tool in Figure 3 shows a loss of accuracy for long-dated forward
LIBORs, this only occurs when the realised rates were already unrealistically high (greater
than 50%). Thus, the quantile approximation is fit for the purpose of identifying unreal-
istically high rates, which only occur when the lognormal assumption breaks down. The
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next section describes a volatility-damping methodology that keeps long-dated forward
LIBORs within realistic limits.
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Figure 3. Diagnostic tool for analysing the distribution of long-dated forward LIBORs in the
five-factor DLFM scenario. (a) Comparing the realised forward LIBOR standard deviation ap-
proximation to a benchmark QMC sample estimate. (b) Comparing the realised forward LIBOR
p = {0.01, 0.5, 0.99} quantiles and mean approximations to their benchmark QMC sample estimates.
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Figure 4. Assessing the lognormal assumption on the distribution of forward LIBORs at two maturi-
ties (25 and 50 years) under the five-factor DLFM scenario using Q–Q plots. (a) A lognormal Q–Q
plot for the realised QMC sample of the forward LIBOR maturing at 25 years. (b) A lognormal Q–Q
plot for the realised QMC sample of the forward LIBOR maturing at 50 years.

4.3. DLFM with Damped Background Volatility

We now demonstrate an approach that could be used to ensure realistic behaviour in
the DLFM. This entails damping the level-d background volatility in (23) after a set cut-off
time, T̃, using a sigmoid function with damping intensity, θ, defined as

σ̃i(t) = σi(t)ςi(t), (36)



Risks 2023, 11, 29 13 of 18

where

ςi(t) := 1 + I{Ti−t>T̃}

erf
(

2− θ
{

Ti − t− T̃
})
− erf(2)

2

. (37)

For illustration purposes, we set T̃ = 8 years and θ = 0.11. Figure 5a compares the un-
damped volatility in (23), which includes the level-d background (red line), to the damped
volatility in (36) (blue dashed line).

0 5 10 15 20 25 30 35 40 45 50

0

0.02

0.04

0.06

0.08

0.1

0.12

(a)

0 5 10 15 20 25 30 35 40 45 50

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

Figure 5. Diagnostic tool for analysing the distribution of the long-dated forward LIBORs in the five-
factor DLFM scenario using the damped instantaneous volatility function in (36). (a) Comparison of
the un-damped (23) and damped (36) instantaneous volatility functions. (b) Comparing the realised
forward LIBOR p = {0.01, 0.5, 0.99} quantiles and mean approximations to their benchmark QMC
sample estimates (on the same scale as Figure 3b).
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Using the damped instantaneous volatility function in (36), we reproduce the results from
the DLFM scenario presented in Section 4.2. Firstly, by comparing Figures 5b and 3b (which
are generated on the same scale), it is clear that the damping of the instantaneous forward rate
volatility has kept the long-dated realised forward LIBOR quantiles more tightly bound and
realistic to the 50-year maturity. The realised forward LIBOR standard deviation in Figure 6a
flattens out for longer maturities and does not continue to increase with an upward curvature
as in Figure 3a. These results are reminiscent of those in Section 4.1 for the Vasiček illustration,
with a similar bounding effect in the realised forward LIBOR quantiles and standard deviation.
Finally, Figure 6b is a lognormal Q–Q plot of the sample QMC realised forward rate maturing
at 50 years (i = M = 199) and shows that the assumption of approximately lognormal forward
LIBORs is now more plausible when compared to Figure 4b.
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Figure 6. Implications of using the damped instantaneous volatility function (36) on realised forward
LIBOR standard deviation and the approximate lognormality at the 50 year maturity under the five-
factor DLFM scenario. (a) Comparing the realised forward LIBOR standard deviation approximation
to a benchmark QMC sample estimate (on the same scale Figure 3a). (b) A lognormal Q–Q plot for
the realised QMC sample of the forward LIBOR maturing at 50 years.
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In summary, the parametrisation in (23) may provide flexibility while calibrating to
the short end of the market with a background level, d, of volatility. However, this may
lead to unrealistic outlier rate realisations for longer maturities and tenors, particularly
those beyond the reach of current calibration instruments. In such cases, the quantile
approximation, given in (10), may be used to identify if a given calibration produces
realistic behaviour in the long-dated forward LIBORs.

5. Conclusions

The diagnostic tool presented in this paper allows for a tractable analysis of the
distribution of long-dated forward term rates implied by the DLFM under different forward
rate volatility parametrisations. This is particularly relevant for long-term asset/liability
management (needed, for example, in the pension and life insurance industry), where one
needs to model interest rates for maturities and tenors beyond the reach of current market
calibration instruments. When poor-performing volatility specifications are detected,
we have demonstrated that damping the instantaneous volatility function ameliorates
the situation.

Migrating the forward LIBOR moment approximation approach of Van Appel and
McWalter (2020) to the spot risk-neutral measure has the advantage of better numerical
stability, and it also means that it is immediately clear that any reasonable market price
of interest rate risk results in a negligible impact of carrying out the analysis under a
risk-neutral rather than the statistical (a.k.a. “real-world”) measure. The change in drift
between these two distributions is given by the market price of risk only (rather than being
conflated with the volatility of some numéraire asset), and since we are only interested in
quantiles of unrealistically high interest rates, this change in drift has a negligible effect on
the outcome of the analysis using our tool.

QMC simulations show that our approach yields accurate quantiles when compared to
benchmark estimates under realistic volatility specifications. When a volatility specification
leads to a violation of the lognormal assumption, our method is less accurate. Even though
accuracy is somewhat diminished in these cases, our quantile approximation remains viable
for identifying unrealistic LIBOR ranges. In conclusion, our quantile approximation may
be used to verify whether or not a DLFM calibration produces realistic behaviour.

Our approach of ensuring the realistic long-term behaviour of forward term rates is
particularly useful for scenario generation in the pension and insurance industries, where
claims must be priced beyond liquid market instruments. For example, the European
Insurance and Occupational Pensions Authority (see EIOPA 2022) mandates that partic-
ipants price claims beyond the last liquid point (LLP) in market rates. They require that
the forward rate term structure is extrapolated to a constant ultimate forward rate (UFR),
which is stipulated by regulation at regular intervals. This may well lead to the need to
further dampen the modelled volatility of long-term forward rates;9 our tool can assist in
implementing this in a realistic fashion. We anticipate conducting further research in this
area by applying our approach under both the risk-neutral measure for pricing claims and
the real-world measure for risk management.
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Appendix A. Expressions Needed in Section 3

Appendix A.1. Operators and Derivatives of Ui(X̄)

Suppressing t-dependence for brevity, the operators are given by

L0µi =
i

∑
g=ϑ(t)

µg
∂µi
∂Yg

+
1
2

σ2
g

∂2µi
∂Y2

g
, (A1)

Lhµi =
i

∑
g=ϑ(t)

σgρ̃gh
∂µi
∂Yg

, (A2)

where the derivatives are10

∂µi
∂Yj

= cijxj,

∂2µi

∂Y2
j
= cijyj,

∂3µi

∂Y3
j
= yj

∂2µi

∂Y2
j
− 2τjcijx2

j ,

∂4µi

∂Y4
j
= yj

∂3µi

∂Y3
j
− 6τjxj

∂2µi

∂Y2
j

,

for ϑ(t) ≤ i and k 6= j in terms of

cij = σiρijσjτj(1− ajτj),

xj =
exp(Yj)

(1 + τj(exp(Yj)− aj))2 ,

yj =
1− τj(exp(Yj) + aj)

1 + τj(exp(Yj)− aj)
.

Appendix A.2. Gradient and Hessian Elements of Ui(X̄)

As in Appendix A.1 we suppress t dependence. The elements of the gradient,
∇Ui(X̄), are

∂Ui(X̄)

∂Yi
=

[
∂µi
∂Yi

∆ +
1
2

∂L0µi
∂Yi

∆2
]

Y=Ȳ
+ 1,

∂Ui(X̄)

∂Yj
=

[
∂µi
∂Yj

∆ +
1
2

∂L0µi
∂Yj

∆2
]

Y=Ȳ
for ϑ(t) ≤ j < i,

∂Ui(X̄)

∂∆Bl
= σi ρ̃il for 1 ≤ l ≤ n,

∂Ui(X̄)

∂∆B̃l
= Llµi

∣∣∣
Y=Ȳ

for 1 ≤ l ≤ n,
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and the elements of the Hessian, ∇2Ui(X̄), are

∂2Ui(X̄)

∂Y2
j

=

[
∂2µi

∂Y2
j

∆ +
1
2

∂2L0µi

∂Y2
j

∆2
]

Y=Ȳ
for ϑ(t) ≤ j ≤ i,

∂2Ui(X̄)

∂Yj∂Yk
=

1
2

∂2L0µi
∂Yj∂Yk

∆2
∣∣∣∣
Y=Ȳ

for ϑ(t) ≤ {j, k} ≤ i and k 6= j,

∂2Ui(X̄)

∂Yj∂∆B̃l
=

∂2Ui(X̄)

∂∆B̃l∂Yj
=

∂Llµi
∂Yj

∣∣∣∣
Yj=Ȳj

for ϑ(t) ≤ j ≤ i and 1 ≤ l ≤ n,

with all other elements in the Hessian equal to zero.11 In the above, the derivatives required
are as follows:

∂L0µi
∂Yj

=
i

∑
g=ϑ(t)

∂µg

∂Yj

∂µi
∂Yg

+ µj
∂2µi

∂Y2
j
+

1
2

σ2
j

∂3µi

∂Y3
j

,

∂Lhµi
∂Yj

= σjρ̃jh
∂2µi

∂Y2
j

,

∂2L0µi

∂Y2
j

=
i

∑
g=ϑ(t)

∂µi
∂Yg

∂2µg

∂Y2
j
+ 2

∂µj

∂Yj

∂2µi

∂Y2
j
+ µj

∂3µi

∂Y3
j
+

1
2

σ2
j

∂4µi

∂Y4
j

,

∂2L0µi
∂Yj∂Yk

=
∂µk
∂Yj

∂2µi

∂Y2
k
+

∂µj

∂Yk

∂2µi

∂Y2
j

,

for ϑ(t) ≤ {j, k} ≤ i and k 6= j, where the derivatives on the left of each equation are given
in Appendix A.1.

Notes
1 Models of this type were first constructed by Miltersen et al. (1997); Musiela and Rutkowski (1997); Brace et al. (1997), and

Jamshidian (1997).
2 But not everywhere: In the Eurozone, there are currently no plans to discontinue EURIBOR, and in Australia, the Australian

version of this rate, the Bank Bill Swap Rate (BBSW), also remains in place.
3 In fact, there is considerable effort underway to adapt LMM-like models for markets based on overnight benchmarks, for example,

Lyashenko and Mercurio (2019).
4 LMM-type models can also (often rather tediously) be expressed in the HJM framework, see e.g., Miltersen et al. (1997).
5 The demand for modelling beyond the reach of current liquid financial markets is on the increase (see, e.g., Whittall 2016;

Abramowicz 2017 or Brody and Hughston 2018). This is also noted by Gouriéroux et al. (2022), who take an approach to
the problem of long-term rate extrapolation based on a sequence of short rate models (specifically, models of the type of
Cox et al. 1985).

6 An early version of the present paper appeared as a chapter in Van Appel (2021).
7 Note that for simplicity, one would model the price P(t, Tϑ(t)) of the zero coupon bond to the next date Tϑ(t) in the tenor structure

as a deterministic function of Fϑ(t)−1(Tϑ(t)), for example using “interpolation by daycount fractions” as in Schlögl (2002), but the
specific modelling choice of P(t, Tϑ(t)) is not material here.

8 Note that ΣF
ii(t) = ΣH

ii(t), since ai is constant for all i and t ≤ Ti.
9 The introduction of a regulatory UFR has been criticised by Balter et al. (1921) on empirical grounds. However, it is a regulatory

reality in important jurisdictions (especially in the Eurozone) and has already had a measurable impact on fixed-income markets:
See, for example Jansen (2021) for a study based on data from the Netherlands.

10 The third and fourth order derivatives are not yet needed, but are used in Appendix A.2.
11 The gradient and Hessian are an M-dimensional vector and square matrix, respectively.
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