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Abstract: We explore a multi-asset jump-diffusion pricing model, combining a systemic risk asset
with several conditionally independent ordinary assets. Our approach allows for analyzing and
modeling a portfolio that integrates high-activity security, such as an exchange trading fund (ETF)
tracking a major market index (e.g., S&P500), along with several low-activity securities infrequently
traded on financial markets. The model retains tractability even as the number of securities increases.
The proposed framework allows for constructing models with common and asset-specific jumps with
normally or exponentially distributed sizes. One of the main features of the model is the possibility of
estimating parameters for each asset price process individually. We present the conditional maximum
likelihood estimation (MLE) method for fitting asset price processes to empirical data. For the case
with common jumps only, we derive a closed-form solution to the conditional MLE method for
ordinary assets that works even if the data are incomplete and asynchronous. Alternatively, to find
risk-neutral parameters, the least-square method calibrates the model to option values. The number
of parameters grows linearly in the number of assets compared to the quadratic growth through the
correlation matrix, which is typical for many other multi-asset models. We delve into the properties
of the proposed model, its parameter estimation using the MLE method and least-squares technique,
the evaluation of VaR and CVaR metrics, the identification of optimal portfolios, and the pricing
of European-style basket options. We propose a Laplace-transform-based approach to computing
Value at Risk (VaR) and conditional VaR (also known as the expected shortfall) of portfolio returns.
Additionally, European-style basket options written on the extreme and average stock prices or
returns can be evaluated semi-analytically. For numerical demonstration, we examine a combination
of the SPDR S&P 500 ETF (as a systemic risk asset) with eight ordinary assets representing diverse
industries. Using historical assets and options prices, we estimate the real-world and risk-neutral
parameters of the model with common jumps, construct several optimal portfolios, and evaluate
various basket options with the eight assets. The results affirm the robustness and efficiency of
the estimation and evaluation methodologies. Computational results are compared with Monte
Carlo estimates.

Keywords: multi-asset pricing model; jump-diffusion process; maximum likelihood estimation;
systemic risk; Value at Risk; portfolio optimization; basket option pricing
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1. Introduction

A multi-asset price model with systemic risk was recently proposed by Chen and
Makarov (2017); Xu and Makarov (2021). We combined a common “systemic-risk” asset
with several conditionally independent “ordinary” assets. This approach allows for analyz-
ing and modeling a portfolio that integrates high-activity security, such as an Exchange
Trading Fund (ETF) tracking a major market index (e.g., S&P500), and several low-activity
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securities. The latter may have missing or asynchronous pricing data due to infrequent
trading on financial markets. Thus, one of the significant features of the proposed model
is the possibility of estimating parameters for each asset price process individually, even
if historical pricing data are incomplete. It can be achieved by employing the conditional
maximum likelihood estimation (MLE) method. First, we estimate real-world parameters
of the systemic-risk (high-activity) asset and then estimate parameters for each ordinary
(low-activity) asset by conditioning on the parameters of the systemic risk asset. The joint
likelihood function (LF) is a product of the marginal LF of the systemic risk asset and
conditional likelihood functions. That is, the solution to the joint MLE problem is found
by solving n + 1 MLE problems for individual assets, where n is the number of ordinary
assets. This method admits a closed-form solution when the conditional dynamics of each
ordinary asset follow a geometric Brownian motion (GBM).

We can also use option data for individual assets to calibrate the model under the
risk-neutral probability measure. Firstly, we calibrate the systemic risk asset. Secondly, we
calibrate ordinary assets using the least-squares method with a corresponding marginal
probability distribution where the systemic risk asset parameters are fixed. All we need
are market values of single-asset derivatives. Note that the number of parameters grows
linearly in the number of ordinary assets in contrast with the quadratic growth through the
correlation matrix, which is typical for a multivariate asset price model.

An essential property of the proposed model is that the asset price processes are con-
ditionally independent given the value of the systemic risk asset value. By conditioning on
the systemic risk asset, we can easily price European-style basket options and compute risk
measures such as the Value at Risk (VaR) and conditional Value at Risk (CVaR). The latter
can be achieved by using the result of Rockafellar and Uryasev (2000). The CVaR of loss L
at level α > 0 is computed as follows: CVaRα(L) = inf

{
z + 1

α · E[(L− z)+] : z ∈ R
}

.
The proposed framework allows for constructing several multivariate jump-diffusion

asset price models, including the following: (i) the model without jumps where all asset
price processes are GBMs, (ii) the model with only common jumps, (iii) the model with
both common and asset-specific (idiosyncratic) jumps, and (iv) the model with only asset-
specific jumps. Although we can employ the double exponential (as in the Kou model
Kou (2002)) probability distribution for jump sizes, this paper focuses on the case with
normally distributed jump amplitudes. So, the model considered here is a particular case
of the multivariate Merton jump-diffusion model Merton (1976).

The proposed method uses a two-factor linear representation of assets’ log returns.
This involves utilizing a linear combination of two jump-diffusion processes, where one
represents a systemic risk, and the other is for the idiosyncratic factor. The concept of
introducing correlation through a factor approach has historical roots dating back to Vasicek
(see Vasicek 1987; 2002), particularly in the context of Brownian motions. Similar ideas,
including the multivariate Brownian motion with a common subordinator Bianchi and
Tassinari (2020); Linders and Stassen (2016); Semeraro (2008) and factor copula approaches
Baxter (2007), have been explored in the literature (see also Ballotta and Bonfiglioli 2016;
Dimitroff et al. 2011; Luciano and Schoutens 2006).

The main distinction of our model is that the common factor represents a systemic risk
asset traded on the market. Thus, we can use historical data to estimate its parameters. If
the transition probability density is available in closed form, the Maximum likelihood esti-
mation (MLE) method can be employed to fit the model to the data. All model components
can be calibrated individually using conditional MLE and least-squares methods. Secondly,
the proposed framework allows for tuning the model complexity to meet the restrictions of
numerical algorithms and market requirements. The model with jumps performs better
under extreme market conditions. Also, pricing basket options on the geometric average
and the minimum/maximum value can be efficiently done for the most general model with
systemic (common) and idiosyncratic (ordinary-asset-specific) jumps. On the other hand,
our method of computing VaR and CVaR assumes that, by conditioning on the common
factor, we can represent the portfolio return as a sum of independent lognormal random
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variables. Therefore, to solve the portfolio optimization problem in closed form, we employ
the model with common jumps only. However, as discussed in Section 5, it is also possible
to apply our approach to the case of normally distributed asset-specific jumps.

Most papers on multivariate models of asset prices are primarily theoretical, with
practical implementation relying on simulation techniques when the number of underlying
assets is large. Non-simulation approaches are typically efficient when the number of
assets does not exceed 2 or 3 (e.g., see Dimitroff et al. 2011; Shirzadi et al. 2020). The
proposed model allows for pricing European-style basket options and computing VaR and
CVaR of static portfolios without using Monte Carlo methods, regardless of the number of
underlying assets. As demonstrated in Section 7, the computational methods are efficient
and robust.

We tested variants of the proposed model using several datasets, including asyn-
chronous and incomplete asset returns Chen and Makarov (2017) and high-frequency
trading data Xu and Makarov (2021). In Chen and Makarov (2017), two models without
jumps and with common jumps, respectively, were applied to a portfolio with ten low-
frequently trading Canadian ETFs. The S&P/TSX60 Composite Index was used as the
high-activity asset S0. The two jump-diffusion processes, namely, the Merton and Kou
models, were compared with the Gaussian case without jumps. The trading frequency for
low-activity assets varies from once a week to once a month. Our method was robust for
assets with various trading activities, and the results were consistent for all three models.

In Xu and Makarov (2021), we studied whether a systemic risk component in a multi-
asset price model could explain all jumps in the market dynamics. The S&P500 stock
index is commonly considered to be an indicator of the U.S. economy as a whole. Two
representative high-frequently trading assets with tickets AAPL (Apple, Inc., Cupertino,
CA, USA) and WMT (Walmart, Inc., Bentonville, AR, USA) were selected for our analysis.
The high-frequency intraday price data (at the millisecond level) were obtained from
Wharton Research Data Services (WRDS). All transactions for each trading day from
9:30 a.m. to 4:00 p.m. in 2018 were collected. Statistical tests Aït-Sahalia and Jacod (2009);
Jacod and Todorov (2009) were used to detect disjoint and common jumps in intraday time
series of asset prices.

The main contribution of this paper is two-fold. Firstly, we provide an overview of the
general model and its properties. We develop and present two techniques for estimating
the model parameters: the MLE method for real-world parameters using historical asset
returns and the least-squares method for risk-neutral parameters using market option
values. The numerical tests conducted for this study confirm the robustness of both
techniques. Secondly, we apply the model to two practical problems: portfolio optimization
and no-arbitrage pricing of basket options. We develop a new approach for computing
VaR and CVaR using the inverse Laplace transform. We then apply it to find minimum-Var
and minimum-CVaR portfolios for cases with many assets. The same technique can also be
applied to pricing basket options on a weighted average of stock prices.

The rest of the paper is organized as follows. Section 2 presents the general model with
common and asset-specific jumps. We compute correlations between log values and discuss
the structure of the correlation matrix of log returns. Furthermore, we find the marginal and
conditional distributions of asset values. Sections 3 and 4 discuss the estimation of asset
parameters using the conditional MLE method (under the real-world probability measure)
and the least-squares method (under the equivalent martingale measure). In Section 5, we
discuss the portfolio optimization problem and the computation of the expected exponential
utility, VaR, and CVaR using the inverse Laplace transform method. In Section 6, we
derive pricing formulae for European-style basket options with the geometric average,
the arithmetic average, and the minimum/maximum value. The no-arbitrage value of
a basket option with ordinary assets is computed by conditioning on the systemic-asset
value. The resulting semi-analytic formulae are written as a single or double integral. In
Section 7, we present numerical results. We found portfolios with minimum VaR and CVaR
on the efficient frontier, compared the actual cumulative distribution function (CDF) with
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its empirical counterpart for the geometric and arithmetic averages and the maximum
value of eight stock returns, calculated no-arbitrage values of three basket call options for
a portfolio with eight stocks, and compared them with Monte Carlo estimates. Section 8
concludes and discusses possible future developments.

2. Multi-Asset Model

Let all stochastic processes be defined on a filtered probability space (Ω,F ,P, {Ft}t≥0)
with a real-world probability measure P. Let S0 denote a systemic risk asset such as a
market index or an ETF tracking the index. This asset affects the dynamics of all other
underlying risky securities. Assume the value of S0 follows a jump-diffusion process.
Under the real-world probability measure, the stochastic differential equation (SDE) for
S0(t) is as follows:

dS0(t)
S0(t−)

= (µ0 − q0)dt + σ0dW0(t) + d

(
N0(t)

∑
`=1

(
eσ0Q(0)

` − 1
))

, t ≥ 0. (1)

Here, the constants µ0 and σ0 > 0 represent the drift rate and volatility of return of the
systemic risk asset, respectively; q0 ≥ 0 denotes the continuously compounded dividend
yield; {W0(t)}t≥0 is a standard Brownian Motion, {N0(t)}t≥0 is a Poisson process with
intensity λ0 > 0, and {Q(0)

` }`≥1 is a sequence of iid random jump sizes with mean a0 and
variance b2

0. Assume that these processes and random variables are jointly independent.
In this paper, we consider normally distributed jump sizes. However, the case with jump
amplitude having a double-exponential distribution can also be considered (see Chen and
Makarov 2017; Kou 2002).

In addition to the systemic risk asset S0, consider a portfolio of n ordinary assets
denoted S1, S2, . . . , Sn, whose prices are governed by the SDEs

dSi(t)
Si(t−)

= (µi − qi)dt + σi

(√
1− ρ2

i dWi(t) + ρidW0(t)
)

+ d

(
N0(t)

∑
`=1

(eσiρiQ
(0)
` − 1) +

Ni(t)

∑
k=1

(eσi
√

1−ρ2
i Q(i)

k − 1)

)
,

i = 1, 2, . . . , n,
t ≥ 0.

(2)

Here, µi and σi > 0 are, respectively, the drift rate and volatility of asset Si; qi ≥ 0 denotes
the continuously compounded dividend yield of Si; the coefficient ρi ∈ (−1, 1) defines
the correlation between ln S0(t) and ln Si(t) (see Lemma 2). The process {Wi(t)}t≥0 is a
standard Brownian Motion, {Ni(t)}t≥0 is a Poisson process with intensity λi > 0, and
{Q(i)

k }k≥1 is a sequence of iid random jump sizes with mean ai and variance b2
i . Again, all

processes and random variables are jointly independent.
The system of SDEs (1)–(2) admits the following strong solutions:

S0(t) = S0(0)× exp

{(
µ0 − q0 −

σ2
0
2

)
t + σ0 M0(t)

}
; (3)

Si(t) = Si(0)× exp

{(
µi − qi −

σ2
i
2

)
t + σi

√
1− ρ2

i Mi(t) + σiρi M0(t)

}
, i = 1, 2, . . . , n, (4)

where Mi(t) := Wi(t) + ∑
Ni(t)
k=1 Q(i)

k for i = 0, 1, 2, . . . , n. Due to the presence of the com-
mon component M0(t) in the solution, the asset-price processes S0(t), S1(t), . . . , Sn(t) are
dependent. However, conditional on S0(t) or M0(t), the processes S1(t), S2(t), . . . , Sn(t)
are independent.

The general model (1)–(4) includes several special cases:

1. The case without jumps when λi = 0 for all i = 0, 1, 2, . . . , n. In this case, the processes
in (3)–(4) are geometric Brownian motions (GBMs). It is a special case of a general
multi-asset model based on a multivariate Brownian motion.
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2. The case with only common jumps when λ0 6= 0 and λi = 0 for all i = 1, 2, . . . , n. This
model was introduced in Chen and Makarov (2017).

3. The case with both common and asset-specific (idiosyncratic) jumps when λ0 6= 0 and
λi 6= 0 for some i = 1, 2, . . . , n. This model was discussed by Xu and Makarov (2021).

4. The case with only asset-specific jumps when λ0 = 0 and λi 6= 0 for some i = 1, 2, . . . , n.

Following Cheang and Chiarella (2011); Cont and Tankov (2003); Runggaldier (2003),
we can find the Radon–Nikodym derivative for transforming from one probability measure
P (e.g., the real-world measure) to some equivalent measure P̂ (e.g., an equivalent martin-
gale measure). As is well known, the multi-asset jump-diffusion model (1)–(4) is incomplete
in the presence of jumps. It is complete only if all jump intensity rates λi are zero.

Lemma 1. Fix T > 0 and consider the filtered probability space (Ω,F ,P,F ≡ {Ft}0≤t≥T) so
that Brownian motions {Wi(t)}0≤t≤T and compound Poisson processes

{
∑

Ni(t)
j=1 Q(i)

j

}
0≤t≤T

for

i = 0, 1, . . . , n are adapted to the filtration F. Define

ρt =
n

∏
i=0

exp

(
−

γ2
i

2
t + γiWi(t)− λiκit +

Ni(t)

∑
j=1

(θiQ
(i)
j + νi)

)
, 0 ≤ t ≤ T, (5)

where κi := eνiMP,Q(i)(θi)− 1 withMP,Q(i)(u) := EP[euQ(i)
] denoting the moment-generating

function (MGF) of the jump size Q(i), i = 0, 1, 2, . . . , n and EP[ ] being the mathematical expecta-
tion under P. Then, ρt is a Radon–Nikodym derivative process parametrized by {γi, θi, νi}i=0,...,n.

It defines a probability measure P̂ equivalent to P, i.e., dP̂
dP

∣∣∣
T
= ρT . Furthermore, under the new

probability measure P̂, the process Ŵi(t) := Wi(t) − γit is a standard Brownian motion, the
Poisson process Ni(t) has the intensity rate λ̂i = λi(1 + κi), and the distribution of the jump sizes

Q(i)
j has the MGFMP̂,Q(i)(u) := EP̂[euQ(i)

] =
M

P,Q(i) (u+θi)

M
P,Q(i) (θi)

, for all i = 0, 1, . . . , n.

Let us find the risk-neutral dynamics of the multi-asset model (1)–(4) under the
equivalent martingale measure (EMM) P̃ with the risk-free bank account B(t) = ert used as
a numeraire asset. Assume that the risk-free interest rate r ≥ 0 is constant. The EMM P̃
is defined so that the discounted processes {eqitSi(t)/B(t)}t≥0 are P̃-martingales for all
i = 0, 1, 2, . . . , n. Computing the expectation of Si(t), i = 0, 1, . . . , n and equating it to
Si(0)e(r−qi)t gives us the following values of µ0, µ1, . . . , µn under P̃:

µ0 = r− λ0(MQ(0)(σ0)− 1), (6)

µi = r− λ0(MQ(0)(σiρi)− 1)− λi(MQ(i)(σi

√
1− ρ2

i )− 1), i = 1, 2, . . . , n. (7)

Assuming that jump amplitudes are normal random variables (withMQ(i)(u) = eaiu+b2
i u2/2),

we obtain the following formulae for drift rates:

µ0 = r− λ0(eσ0a0+(σ0b0)2/2 − 1) and (8)

µi = r− λ0(eρiσi a0+(ρiσib0)2/2 − 1)− λi(e
√

1−ρ2
i σi ai+(1−ρ2

i )(σibi)
2/2 − 1), i = 1, 2, . . . , n. (9)

2.1. Correlations between Log Prices

We introduce log values Xi(t) = ln Si(t) for i = 0, 1, 2, . . . , n. From the solutions
(3)–(4), we have

X0(t) = X0(0) +
(

µ0 − q0 −
σ2

0
2

)
t + σ0M0(t); (10)

Xi(t) =Xi(0) +
(

µi − qi −
σ2

i
2

)
t + σi

√
1− ρ2

i Mi(t) + σiρi M0(t), t ≥ 0. (11)
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The processes Mi, i = 0, 1, 2, . . . , n are independent jump-diffusion processes; each is a sum
of Brownian motion and a compound Poisson process. Thus,

E[Mi(t)] = aiλit, Var (Mi(t)) = t + (a2
i + b2

i )λit, Cov (Mi(t), Mj(t)) = 0 for i 6= j.

Using these properties, we find correlations between log values Xi(t).

Lemma 2. The correlation coefficients between X0(t), X1(t), . . . , Xn(t) are:

Corr (X0(t), Xi(t)) = βi ≡
ρi
|ρi|

√
ρ2

i (λ0(a2
0 + b2

0) + 1)
ρ2

i (λ0(a2
0 + b2

0) + 1) + (1− ρ2
i )(λi(a2

i + b2
i ) + 1)

, (12)

Corr (Xi(t), Xj(t)) = βiβ j, i, j = 1, 2, . . . , n and i 6= j, (13)

where 0 ≤ |βi| ≤ |ρi| and sign(βi) = sign(ρi).

The proof to Lemma 2 is provided in Appendix A.
According to Lemma 2, the n-by-n correlation matrix C for X1(t), X2(t), . . . , Xn(t)

(i.e., log values of all assets except for the systemic risk asset) and the (n + 1)-by-(n + 1)
correlation matrix C0 for the log values X0(t), X1(t), . . . , Xn(t) are as follows:

C =



1 β1β2 β1β3 · · · β1βn

β1β2 1 β2β3 · · · β2βn

β1β3 β2β3 1 · · · β3βn
...

...
...

. . .
...

β1βn β2βn β3βn · · · 1

 and C0 =



1 β1 β2 · · · βn

β1 1 β1β2 · · · β1βn

β2 β1β2 1 · · · β2βn
...

...
...

. . .
...

βn β1βn β2βn · · · 1

. (14)

Clearly, both C and C0 are symmetric matrices, and, as follows from Lemma 3, they are
positive-definite (see also Baba and Shibata 2006).

Lemma 3 (Makarov 2022). Let ρi ∈ (−1, 1) for all i = 1, 2, . . . , n. Then, C and C0 are positive-
definite matrices.

The fact that the correlation matrix C is positive definite for any choice of ρi ∈ (−1, 1),
i = 1, 2, . . . , n opens up the possibility to develop a new continuous-time stochastic model
for a correlation matrix of an arbitrary dimension by modeling ρi(t) ∈ (−1, 1), t ≥ 0 using,
for example, a Jacobi diffusion process (see Karlin and Taylor 1981). As a result, we can
develop a scalable multi-asset jump-diffusion asset price model with stochastic correlations.

For structured correlation matrices like the matrix C, we can also solve the problem
stated in the Perron–Frobenius theorem (see MacCluer 2000 and references cited therein).
The theorem asserts that a real square matrix with positive entries has a unique largest
real eigenvalue and that the corresponding eigenvector can be chosen to have strictly
positive components. If the coefficients ρi are all positive or all negative, then C satisfies
the conditions of the Perron–Frobenius theorem. Otherwise, we can show that finding a
dominant eigenvector with positive components is impossible.

2.2. Distribution of Log Returns

As follows from (10)–(11), the log returns Li(t) := Xi(t)− Xi(0) = ln(Si(t)/Si(0)),
with i = 1, 2, . . . , n and t > 0, are dependent via the common, systemic risk component
X0(t). Let us find the conditional distribution of Li(t) given the log return on the systemic
asset, L0(t) := X0(t)− X0(0). We can solve (10) for M0(t) to remove it from the equation
for Xi(t):(

Li(t) | L0(t)
)
= (µi − qi − σ2

i /2)t− σiρi
σ0

(µ0 − qi − σ2
0 /2)t +

σiρi
σ0

L0(t) + σi

√
1− ρ2

i Mi(t).
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We assume normally distributed jump sizes for all assets. That is, Q(i)
k , k ≥ 1 are iid

Norm(ai, b2
i ) for i = 0, 1, 2, . . . , n. Given that Ni(t) = k (i.e., asset Si has k jumps over [0, t]),

the conditional distribution of Mi(t) is Norm(kai, t + kb2
i ). Thus, the PDF of Mi(t) is

fMi(t)(x) =
∞

∑
k=0

(λit)k

k!
e−λit 1√

t + kb2
i

ϕ

 x− kai√
t + kb2

i

, (15)

where ϕ denotes the standard normal PDF. The conditional density of Li(t) given L0(t)
is then

fLi(t) | L0(t)(x | z) =
∞

∑
k=0

(λit)k

k!
e−λit

ϕ

(
x−
(
(µi−qi−σ2

i /2)t− σi ρi
σ0

(
(µ0−q0−σ2

0 /2)t−z
)
+kaiσi

√
1−ρ2

i

)
σi
√

1−ρ2
i

√
t+kb2

i

)
σi

√
1− ρ2

i

√
t + kb2

i

. (16)

Similarly, the unconditional PDF of L0(t) is given by

fL0(t)(z) =
∞

∑
`=0

(λ0t)`

`!
e−λ0t 1

σ0

√
t + `b2

0

ϕ

 z−
(
(µ0 − q0 − σ2

0 /2)t + `a0σ0
)

σ0

√
t + `b2

0

. (17)

To obtain the densities for the case without jumps, we only need to consider the first terms
(with k = 0 or ` = 0) in (16) and (17).

Equation (11) also allows us to find the marginal distribution of the log return Li(t).
Given that S0 and Si have ` and k jumps over [0, t], respectively (i.e., N0(t) = ` and
Ni(t) = k), the distribution of Li(t) is normal with the following mean and variance:

E[Li(t) | N0(t) = `, Ni(t) = k] ≡ µi(t, k, `) := (µi − qi − σ2
i /2)t + σi

(
`a0ρi + kai

√
1− ρ2

i

)
,

Var [Li(t) | N0(t) = `, Ni(t) = k] ≡ σ̃2
i (t, k, `) = σ2

i

(
t + `b2

0ρ2
i + kb2

i (1− ρ2
i )
)

.

The marginal PDF of Li(t) can be written as a double summation (w.r.t. ` and k) of normal
densities with Poisson weights:

fLi(t)(x) =
∞

∑
`=0

∞

∑
k=0

(λ0t)`(λit)k

`! k!
e−(λ0+λi)t 1

σ̃i(t, k, `)
ϕ

(
x− µi(t, k, `)

σ̃i(t, k, `)

)
. (18)

3. Estimation of Real-World Model Parameters

We consider two approaches: (1) the estimation of real-world parameters (under the
physical probability measure P) from historical asset prices; (2) the estimation of risk-
neutral parameters (under the equivalent martingale measure P̃) from historical option
prices. The latter is discussed in Section 4.

Maximum likelihood estimation (MLE) is a commonly used method to estimate the
parameters of asset price models. We maximize the likelihood function, defined as a joint
probability density function of asset values or their returns. Since the assets S1, S2, . . . , Sn
are conditionally independent given the values of the index S0, we first estimate the
parameters of S0 and then calibrate the other processes one by one using the conditional
MLE method.

For simplicity of the presentation, we assume that all dividend yields qi are zero, and
we work with dividend-adjusted asset prices. Suppose that the systemic risk asset S0 is an
high-activity security for which we have trading information for all time points t0, t1, . . . , tm
where tj = t0 + jh with h > 0, t0 ≥ 0, and j = 1, 2, . . . , m. On the other hand, the trading
data about ordinary assets Si, i ≥ 1 may be incomplete. Using the historical prices si(tj),
i = 1, 2, . . . , n, j = 0, 1, 2, . . . , m, we compute the log returns zj := ln

(
s0(tj)/s0(tj−1)

)
and

yi,j := ln
(
si(tj)/si(tj−1)

)
over [tj−1, tj].
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The joint likelihood function, L(Z, Y), for historical log returns Z = {zj} and
Yi = {yi,j}, i = 1, 2, . . . , n can be represented as a product of the marginal likelihood func-
tion L(Z) for S0 and conditional likelihood functions Li(Yi | Z) for Si with
i = 1, 2, . . . , n. Indeed, the joint PDF of one-period log returns Z = ln(S0(t + h)/S0(t)) and
Yi = ln(Si(t + h)/Si(t)) is

fZ,Y1,...,Yn(z, y1, . . . , yn) = fZ(z) ·
n

∏
i=1

fYi |Z(yi | z).

So, we have the following MLE problem:

L(Z, Y) :=
m

∏
j=1

fZ(zj)
n

∏
i=1

m

∏
j=1

fYi |Z(yi,j | zj) ≡ L(Z)
n

∏
i=1

Li(Yi | Z)→ max

=⇒ L(Z) :=
m

∏
j=1

fZ(zj)→ max, Li(Yi | Z) :=
m

∏
j=1

fYi |Z(yi,j | zj)→ max for i = 1, 2, . . . , n. (19)

That is, a sub-optimal solution to the joint MLE problem with the likelihood function
L(Z, Y) can be found by solving n + 1 MLE problems for individual assets.

3.1. Estimation of Parameters of the Systemic Risk Asset S0

If the process S0(t) has no jumps, its drift and diffusion parameters can be estimated
using well-known formulae (see, e.g., Remillard 2016):

µ̂ =
z̄
h
+

s2
z

2h
and σ̂ =

sz√
h

,

where z̄ :=
1
m

m

∑
j=1

zj and s2
z :=

1
m

m

∑
j=1

(zj − z̄)2.

For the model with jumps, we apply the MLE method to estimate µ0, σ0, λ0, as well as
the mean a0 and the variance b2

0 of the jump-amplitude distribution. Using (17), we obtain
the PDF of the one-period log return Z as follows:

fZ(z) =
∞

∑
`=0

(λ0h)`

`!
e−λ0h · 1

σ0

√
h + `b2

0

ϕ

 z−
(
(µ0 − σ2

0 /2)h + `a0σ0
)

σ0

√
h + `b2

0

, (20)

The parameters of the systemic risk asset S0 are found by maximizing the log
likelihood function:

ln L(Z)→ max w.r.t. µ0, σ0, λ0, a0, b0.

3.2. Estimation of Parameters of an Ordinary Asset

Select one ordinary asset with index i = 1, 2, . . . , n. Due to the low-frequency trading,
prices of S1, S2, . . . , Sn may only be available for selected times when assets had been traded.
Hence, we only have partial trading information for particular dates for each low-activity
asset, whereas data for the other time points are missing.

3.2.1. The Case with Common Jumps Only

Assume that for the low-activity asset Si we know m̂ + 1 historical values at times
t̂0, t̂1, . . . , t̂m̂. For simplicity, we omit the hat accent above t’s and m in what follows. Denote

Mj := M0(tj)−M0(tj−1) = (W0(tj)−W0(tj−1)) +

N0(tj)

∑
k=N0(tj−1)+1

Q(0)
k
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for j = 1, 2, . . . , m. Using the strong solutions in (10) and (11), we obtain

Zj := ln

(
S0(tj)

S0(tj−1)

)
=

(
µ0 −

σ2
0

2

)
hj + σ0Mj, (21)

Yj := ln

(
Si(tj)

Si(tj−1)

)
=

(
µi −

σ2
i

2

)
hj + σi

[
ρi Mj +

√
1− ρ2

i
(
Wi
(
tj
)
−Wi

(
tj−1

))]
, (22)

where hj := tj − tj−1. After solving (21) for Mj and plugging the results in (22), we have

Yj =

(
µi −

σ2
i

2

)
hj + σiρi

Zj −
(

µ0 −
σ2

0
2

)
hj

σ0
+ σi

√
1− ρ2

i
(
Wi
(
tj
)
−Wi

(
tj−1

))
. (23)

As we can see, Yj conditional on Zj follows a normal distribution, and there is no jump part
in the equation for Yj. The conditional PDF of Yj given Zj is

fYj |Zj
(y | z) = exp

− 1
2σ2

i
(
1− ρ2

i
)
hj

y−
(

µi −
σ2

i
2

)
hj −

σiρiz
σ0

+

σiρi

(
µ0 −

σ2
0
2

)
hj

σ0


2.

Thus, the conditional likelihood function for low-activity asset Si takes the following form:

Li(Yi | Z) = (2π)−
m
2 σ−m

i

(
1− ρ2

i

)−m
2

(
m

∏
j=1

hj

)− 1
2

exp

(
− 1

2σ2
i
(
1− ρ2

i
) m

∑
j=1

d2
j

hj

)
(24)

where dj := yj − (µi −
σ2

i
2 )hj −

σiρi
σ0

ẑj and ẑj := zj −
(

µ0 −
σ2

0
2

)
hj for j = 1, 2, . . . , m.

To maximize the log likelihood function ln Li(Yi | Z), we find zeros of its partial
derivatives w.r.t. the parameters µi, σi, and ρi. From Chen and Makarov (2017), we have
the following solution.

Lemma 4. The conditional likelihood function Li(Yi | Z) attains its maximum value for the
following parameters:

σ̂i =
√

u2 + σ2
0 v2, µ̂i = w +

u2 + σ2
0 v2

2
, and ρ̂i =

σ0v√
u2 + σ2

0 v2
,

where

u2 =
1
m ∑

(yj − whj − vẑj)
2

hj
, (25)

v =

(
∑ yj ẑj/hj

)
(∑ hj)− (∑ yj)(∑ ẑj)

(∑ hj)(∑ ẑ2
j /hj)− (∑ ẑj)2

, (26)

w =

(
∑ yj

)
(∑ ẑ2

j /hj)− (∑ yj ẑj/hj)(∑ ẑj)

(∑ hj)(∑ ẑ2
j /hj)− (∑ ẑj)2

, (27)

and each summation is for j = 1, 2, . . . , m.

The proof to Lemma 4 is provided in Appendix A.
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Note that Equations (25)–(27) can be simplified using the facts that

m

∑
j=1

hj = tm − t0,
m

∑
j=1

yj = ln
(

Si(tm)

Si(t0)

)
,

m

∑
j=1

ẑj = ln
(

S0(tm)

S0(t0)

)
−
(

µ0 −
σ2

0
2

)
(tm − t0).

If hj = h for all j = 1, 2, . . . , m, the Formulas (26) and (27) can be written in terms of

statistics ȳ = 1
m ∑m

j=1 yj, ¯̂z = 1
m ∑m

j=1 ẑj, s2
y =

1
m

m

∑
j=1

(yj − ȳ)2, s2
ẑ =

1
m

m

∑
j=1

(ẑj − ¯̂z)2, and

syẑ =
1
m

m

∑
j=1

(yj − ȳ)(ẑj − ¯̂z) as follows: v =
syẑ

s2
ẑ

and w =
s2

yȳ− syẑ ¯̂z

s2
ẑ

.

3.2.2. The Case with Asset-Specific Jumps

Now, we consider the case with asset-specific jumps. Reorganize and combine the
solutions in (10) and (11) to obtain:

Yj =
(

µi −
σi
2

)
hj + σiρi

Zj− (µ0 −
σ2

0
2 )hj

σ0


+ σi

√
1− ρ2

i

(
Wi(tj)−Wi(tj−1) +

Ni(tj)

∑
k=Ni(tj−1)+1

Q(i)
k

)
. (28)

The equation has an additional jump part, and the jump sizes for assets are normally
distributed. Assume at most one jump in each time interval [tj−1, tj]. In this case, the
conditional distribution of Yj given Zj is a mixture of two normal distributions:

fYj |Zj
(yj | zj) ≈

p0
p0 + p1

1√
2πσ2

i hj(1− ρ2
i )
× exp

−
[

yj−(µi−
σ2

i
2 )hj−

σi ρi
σ0

(
zj−(µ0−

σ2
0
2 )hj

)]2

2σ2
i (1−ρ2

i )hj


+

p1
p0 + p1

1√
2πσ2

i (hj + b2
i )(1− ρ2

i )
× exp

−
[

yj−(µi−
σ2

i
2 )hj−

σi ρi
σ0

(
zj−(µ0−

σ2
0
2 )hj

)
−σi
√

1−ρ2
i ai

]2

2σ2
i (1−ρ2

i )(hj+b2
i )

.

We use a numerical optimization method such as the Nelder–Mead simplex method to
maximize Li(Yi | Z) w.r.t. model parameters µi, σi, ρi, λi, ai, and bi. As with the systemic
risk asset S0, we can also employ the multinomial MLE method.

4. Estimation of Risk-Neutral Model Parameters

We can find the risk-neutral values of parameters by calibrating the model to no-
arbitrage market prices of some financial instruments. A usual approach is to minimize the
difference between the market and model prices using the least-squares method. A typical
application of the calibrated model is the risk-neutral pricing of derivatives such as options,
swaps, etc.

Let θ and Θ denote the set of model parameters and the space of all admissible sets,
respectively. Additionally, Cθ denotes the model price of some instrument for the parameter
set θ ∈ Θ. For example, it can be the no-arbitrage price of a European option with strike
K and maturity T. Furthermore, let C be the market price of the same instrument, and
H
(
C, Cθ

)
be some function applied to the discrepancy between the market and model

prices. For example, H can be the absolute value function or a power function:

H
(

C, Cθ
)
= w

∣∣∣C− Cθ
∣∣∣p or H

(
C, Cθ

)
= w

∣∣∣∣C− Cθ

C

∣∣∣∣p,
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where p ≥ 1 is an exponent (typically, p equals 1 or 2), and w > 0 is a weight. For example,
w can be inversely proportional to the square of the bid-ask spread Cask − Cbid, or all
weights can be the same.

Enumerate all instruments with available market prices and formulate the optimiza-
tion problem as follows:

∑
j

H
(

Cj, Cθ
j

)
→ min

θ
. (29)

For the least-squares formulate (p = 2), (29) takes the form ∑j wi

(
Cj − Cθ

j

)2
→ minθ . It is

often an ill-posed problem that can be improved by adding a penalty function (see, e.g.,
Cont and Tankov 2004; Hirsa 2013). This system of nonlinear equations can be solved using
an iterative method. Since multiple solutions may exist corresponding to different local
minima of the objective function, we may run the method several times with different
starting values of θ. Such seeds can be selected at random in Θ.

The structure of the proposed model allows for implementing a two-stage calibration
procedure. Firstly, we calibrate the systemic risk asset model using prices of derivatives
written on S0. Let θ0 denote the set of parameters for S0. For example, assuming the Merton
model for the jump-diffusion dynamic, we have that θ0 = {σ0, λ0, a0, b0}. Consider a
collection of derivative instruments written on the systemic risk asset with available market
prices, {C0,j}j≥1, along with their respective model prices, {Cθ0

0,j}j≥1. Solve the optimization

problem ∑j≥1 H
(

C0,j, Cθ0
0,j

)
→ minθ0 to find the optimal set of parameters, θ̂0. Secondly, we

calibrate each asset Si with i = 1, 2, . . . , n one by one using the set θ̂0 for S0. Let θi denote
the set of parameters for Si. Consider a collection of derivative instruments written on the
asset Si with available market prices, {Ci,j}j≥1, along with their respective model prices,

{Cθi |θ̂0
i,j }j≥1, conditional on θ̂0. Solve the optimization problem ∑j≥1 H

(
Ci,j, Cθi |θ̂0

i,j

)
→ minθi

to find the optimal set of parameters, θ̂i. After repeating the second step for each asset Si,
we obtain a fully calibrated model. The advantage of this approach is that we only use
single-asset derivatives such as regular European call and put options.

5. Portfolio Optimization

Consider a self-financing portfolio strategy comprising n assets S1, S2, . . . , Sn. Let
∆i(t) denote the number of shares of Si at time t ≥ 0. The wealth of the strategy is
Πt = ∑n

i=1 ∆i(t)Si(t). The return is then RΠ(t) = Πt
Π0

= ∑n
i=1 wi(t)Ri(t), where Ri(t) =

Si(t)
Si(0)

is the return on Si over [0, t], and wi(t) := ∆i(t)
Πt

, i = 1, 2, . . . , n are allocation weights so that
∑n

i=1 wi(t) = 1.
Let us fix the maturity T > 0 and assume that the trading strategy admits no short

selling and has constant allocation weights: wi(t) ≡ wi ≥ 0 for all t ∈ [0, T]. The portfolio
return at maturity T > 0 is RΠ(T) = w1R1(T) + w2R2(T) + · · ·+ wnRn(T) with w1 + w2 +
· · ·+ wn = 1. Additionally, we assume that the model has only common jumps (i.e., λi = 0
for all i ≥ 1).

The distribution of RΠ(T) can be found by conditioning on the common factor M0(T).
We have that

(Ri(T) | M0(T) = z) d
= exp(µ̂i(z) + σ̂iX) where X ∼ Norm(0, 1)

and, as follows from (11), µ̂i(z) = (µi − qi − σ2
i /2)T + σiρiy and σ̂i = σi

√
T(1− ρ2

i ). Thus,
conditional on M0(T), the return RΠ(T) is a sum of independent log normal random
variables. For simplicity of presentation, we assume that all dividend yields qi are zero.

In Furman et al. (2020), an efficient algorithm for approximating sums of independent
log normally distributed random variables has been proposed. The main idea of Furman
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et al. (2020) is that L ∼ LogNorm(0, σ2) can be approximated by a sum of m independent
gamma-distributed random variables:

L
d≈ ÛL :=

m

∑
k=1

Γk, (30)

where the gamma random variable Γk, k = 1, 2, . . . , m has rate βk > 0 and shape αk > 0.
For each m ≥ 1, it is possible to choose the parameters {αk}1≤k≤m and {βk}1≤k≤m such that
the Laplace transforms of ÛL converges exponentially fast to the Laplace transforms of L, as
m→ ∞. Let φX(u) := E[exp(−uX)], <(u) ≥ 0 denote the Laplace transform of a random
variable X. The approximation in (30) implies that

φL(u) ≈ φÛL(u) = m

∏
k=1

(1 + u/βk)
−αk for <(u) ≥ 0. (31)

Clearly, if φ(u) is the Laplace transform of L ∼ LogNorm(0, σ2), then φL(ueµ) is
the Laplace transform of eµL ∼ LogNorm(µ, σ2). Thus, a sum of n independent log
normal random variables, A = eµ1 L1 + eµ2 L2 + . . . + eµn Ln, with Li ∼ LogNorm(0, σ2

i )

can be approximated by the sum ÙA = eµ1ÛL1 + eµ2ÛL2 + . . . + eµnÛLn, where each ÛLi is an
approximation to the corresponding random variate Li. Therefore, the Laplace transform
of A is approximated as follows:

φA(u) =
n

∏
i=1

φLi (ueµi ) ≈ φÙA(u) = n

∏
i=1

φÛLi
(ueµi ) =

n

∏
i=1

m

∏
k=1

(1 + eµi u/βk,i)
−αk,i for <(u) ≥ 0, (32)

where {αi,k}1≤k≤m and {βi,k}1≤k≤m are parameters of the gamma random variables used
to construct the approximation ÛLi. Any quantity of interest can be found by inverting the
corresponding Laplace transform. For example, the CDF of ÙA is computed by means of the
Bromwich integral:

FÙA(x) = L−1

{
φÙA(u)

u

}
(x) =

1
2πi

∫ c+i∞

c−i∞
eux φÙA(u)

u
du

= =
(

1
π

∫ c+i∞

c
eux φÙA(u)

u
du

)
= =

(
aecx

π

∫ ∞

0
eavx φÙA(c + av)

c + av
dv

)
for x ≥ 0, (33)

where we use the fact that φÙA(u) = φÙA(u) and apply the change of variable u = c + av
as proposed by Furman et al. (2020). Here, L−1 denotes the inverse Laplace transform,
=(u) is the imaginary part of u ∈ C, c is a positive number, and a is a complex number
with arg(a) ∈ (π/2, π). Following Furman et al. (2020), we choose a and c so that −0.5 ≤
<(a) ≤ −0.1, =(a) = 1, and 0.25 ≤ c ≤ 5.

Equations (32) and (33) allow us to find the conditional Laplace transform and CDF of
the portfolio return R ≡ RΠ(T) given the common factor M ≡ M0(T):

φR|M(u | z) ≈
n

∏
i=1

m

∏
k=1

(1 + wieµ̂i(z)u/βk,i)
−αk,i , (34)

FR|M(x | z) = L−1

{
φR|M(u | z)

u

}
(x) = =

(
aecx

π

∫ ∞

0
eavx φR|M(c + av | z)

c + av
dv

)
(35)

for x ≥ 0, where {αi,k}1≤k≤m and {βi,k}1≤k≤m are parameters of the gamma random
variables used to construct the approximation for the distribution LogNorm(0, σ̂2

i ) with

σ̂i = σi

√
T(1− ρ2

i ), i = 1, 2, . . . , n.

To compute the parameters for the approximation ÛLi to Li ∼ LogNorm
(
0, σ2

i (1− ρ2
i )T
)
,

we use the algorithm outlined in Furman et al. (2020). As mentioned in the paper, the
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numerical procedure requires high-precision arithmetic. For example, we can use Maple
for calculating the α and β parameters (Maple is a trademark of Waterloo Maple Inc.).

The unconditional Laplace transform and CDF of the portfolio return are recovered by
the integration of the conditional counterparts w.r.t. the distribution of the common factor:

φR(u) = E[exp(−uR)] = E[φR|M(u | M)] and FR(x) =
∫ ∞

−∞
FR|M(x | z) fM(z)dz. (36)

These results allow us to find optimal efficient portfolios without short selling (and,
hence, the allocation weights are nonnegative) with the maximum utility or the minimum
risk metric. Consider the exponential utility function of the portfolio return R ≡ RΠ(T)
given by U(R) = −e−aR with a > 0. Clearly, the expected utility can be computed using
the Laplace transform: E[− exp(−aR)] = −φR(a). Thus, we can find an optimal portfolio
with weights w that maximizes the expected utility:

E[U(R)]→ max
w

s.t. ∑ wi = 1 and ∀i wi ≥ 0. (37)

Define the loss of a portfolio as the negative return: Loss = −R. The Value at Risk
(VaR) of the loss at confidence level α is given by VaRα = −qα(R) = − inf{x : α < FR(x)}.
The VaR values can be computed by inverting the CDF FR; hence, we can find the minimum
VaR portfolio:

VaRα → min
w

s.t. ∑ wi = 1 and ∀i wi ≥ 0. (38)

Similarly, we can find an optimal portfolio that minimizes the conditional Value at
Risk (CVaR), also known as the expected shortfall (ES). This can be achieved by using
the result of Rockafellar and Uryasev (2000). The CVaR of the loss at the confidence level
α > 0 is computed as follows: CVaRα = inf

{
κ + 1

α · E[(−R− κ)+] : κ ∈ R
}

. As usual,

(x)+ := max{x, 0} denotes the positive part of x. The evaluation of E[(−R− κ)+] is similar
to pricing a put option on the return R ≡ RΠ(T) with strike K := −κ and maturity T. For
each i = 1, 2, . . . , n, introduce the probability measure Pi equivalent to P and defined by
the Radon–Nikodym derivative

dPi
dP

∣∣∣∣
T
= exp

(
−

σ2
i
2

T +

(
σiρiW0(T) + σi

√
1− ρ2

i Wi(T)
)
− λ0ηiT + σiρi

N0(T)

∑
`=1

Q(0)
`

)
, (39)

where ηi =MP,Q(0)(σiρi)− 1. It is a special case of the general Radon–Nikodym derivative
in (5). After comparing (39) and (4), we obtain that

dPi
dP

∣∣∣∣
T
= e−(µi+λ0ηi)T Ri(T).

We can now use the change of numeraire approach combined with conditioning on M0(T)
as follows:

E[(K− RΠ(T))+] = EP
[
K1{RΠ(T)≤K}

]
−

n

∑
i=1

wiE
P
[

Ri(T)1{RΠ(T)≤K}

]
= KEP

[
1{RΠ(T)≤K}

]
−

n

∑
i=1

wie(µi+λ0ηi)T EPi
[
1{RΠ(T)≤K}

]
= KEP[P(RΠ(T) ≤ K | M0(T))]

−
n

∑
i=1

wie(µi+λ0ηi)T EPi[Pi(RΠ(T) ≤ K | M0(t))].
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As follows from Lemma 1, Ŵ0(t) := W0(t)− σiρit, Ŵi(t) := Wi(t)− σi

√
1− ρ2

i t, and

Ŵj(t) = Wj(t) for j = 1, 2, . . . , n and j 6= i are Pi-BM. Thus, under Pi, the asset return
process {Rj(t)}0≤t≤T , j = 1, 2, . . . , n, has the following strong solution:

Ri(t) = e
(

µi+
σ2

i
2

)
t+σi
√

1−ρ2
i Ŵi(t)+σiρi

(
Ŵ0(t)+∑

N0(t)
`=1 Q(0)

`

)
, if j = i,

Rj(t) = e
(

µj−
σ2

j
2 +σiσjρiρj

)
t+σj

√
1−ρ2

j Ŵj(t)+σjρj

(
Ŵ0(t)+∑

N0(t)
`=1 Q(0)

`

)
, if j 6= i.

Moreover, under the probability measure Pi, the intensity rate of N0(t) equals λ̂0 = λ0(1+ ηi),

and the MGF of jump sizes Q(0)
` isMPi ,Q(0)(u) =

MP,Q(0)(u + σiρi)

MP,Q(0)(σiρi)
. If the jump sizes have

a normal distribution, thenMPi ,Q(0)(u) = e(a0+b2
0σiρi)u+b2

0u2/2. That is, under Pi, we have

Q(0)
` ∼ Norm(a0 + b2

0σiρi, b2
0) for all ` = 1, 2, . . .. The PDF of M0(T) takes the form

fPi
M0(T)

(x) =
∞

∑
k=0

(λ̂0T)k

k!
e−λ̂0T 1√

T + kb2
0

ϕ

 x− kâ0√
T + kb2

0

, (40)

where â0 = a0 + b2
0σiρi and λ̂0 = λ0ea0σiρi+(b0σiρi)

2/2.
To compute P(RΠ(T) ≤ K | M0(T)) and Pi(RΠ(T) ≤ K | M0(T)) under the equiv-

alent probability measures P and Pi, we employ the inverse Laplace transform. The
probability distribution of RΠ(T) conditional on M0(T) is equivalent to a sum of inde-
pendent log normal random variables. Although we deal with n + 1 different probability
measures; the variance parameter of Si(T) conditional on M0(T) remains the same for
each i = 1, 2, . . . , n. So, we need to find the α and β parameters used to construct the
approximation for Li = (Si(T)|M0(T)) only once. The final valuation formula takes the
following form:

E[(K− RΠ(T))+] = K
∫ ∞

−∞
FP

RΠ(T)|M0(T)
(K | z) fPM0(T)

(z)dz

−
n

∑
i=1

wie(µi+λ0ηi)T
∫ ∞

−∞
FPi

RΠ(T)|M0(T)
(K | z) fPi

M0(T)
(z)dz.

Here, FQ
RΠ(T)|M0(T)

(K | z) with Q ∈ {P,P1, . . . ,Pn} denotes the conditional Q-CDF of the

portfolio return RΠ(T) given that M0(T) = z. It is calculated using (33). The PDF fQM0(T)
(z)

is also computed under Q. So, we need to evaluate n + 1 double integrals to compute
the expectation.

In this context, we assume the absence of asset-specific jumps to ensure the portfolio
return is expressed as a sum of independent log normal random variables conditioned on
the common factor. Consequently, the Laplace transform of the portfolio return is a product
of Laplace transforms of individual asset returns. Introducing asset-specific jumps with
normally distributed sizes results in the probability distribution of an ordinary asset return,
conditioned on the common factor, forming a mixture of log normal distributions with
Poisson weights. Thus, the Laplace transform of the asset return also constitutes a mixture
of Laplace transforms of log normal random variables. Therefore, we can continue to apply
the above approach by conditioning on the common factor and restricting the number of
jumps over the specified period.

Let us consider the ith asset return Ri(T). If the intensity rate λi is small, we can
truncate the series representation of the mixture so that there are at mostNi jumps to obtain
the following approximation:
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φRi(T)|M0(T)(u|z) ≈
Ni

∑
`=0

(λiT)`

`!
φLi,`(u) ≈

Ni

∑
`=0

(λiT)`

`!

m

∏
k=1

(
1 + eµ̂i,`(z)u/βk,i,`

)−αk,i,`
,

where the log normal random variable Li,` ∼ LogNorm(µ̂i,`(z), σ2
i,`) has the same condi-

tional distribution as Ri(T) given that Si(t) has ` jumps over [0, T] and M0(T) = z. To
implement the method, we need to compute the coefficients {αk,i,`, βk,i,`}1≤k≤m,1≤`≤Ni

for
each i = 1, 2, . . . , n.

6. Pricing Basket Options

Consider a portfolio of n ordinary assets S1, S2, . . . , Sn. The no-arbitrage initial price
V0 of a European-style option with payoff Λ(S1(T), S2(T), . . . , Sn(T)) can be calculated
using the general no-arbitrage pricing formula

V0 = e−rTẼ
[
Λ
(
S1(T), S2(T), . . . , Sn(T)

)]
,

where Ẽ[ ] denotes the expectation under the risk-neutral probability measure P̃.
In this section, we consider three examples where the option payoff is a function of the

geometric average, the arithmetic average, or the maximum/minimum value of the prices
S1(T), S2(T), . . . , Sn(T). Let CT := g(S1(T), . . . , Sn(T)) be the value of some nonnegative
function g of asset prices at time T. Consider a European-style basket option with payoff
Λ(CT) = (CT − K)+ for a call or Λ(CT) = (K− CT)

+ for a put.
Since the log price X0(T) = ln S0(T) is a linear function of the random factor M0(T),

we perform calculations by conditioning on M0(T). The initial no-arbitrage price of a
European-style basket option is given by

V0 = e−rTẼ[Λ(CT)] = e−rTẼ
[
Ẽ
[
Λ(CT) | M0(T)

]]
= e−rT

∫ ∞

−∞

∫ ∞

0
Λ(s) fCT |M0(T)(s | z) fM0(T)(z)dsdz,

with conditional PDF fCT |M0(T) of CT given M0(T) and marginal PDF fM0(T) of M0(T)

under P̃. Note that we may only know the characteristic function of CT conditional on
M0(T) (or the Laplace transform) and, hence, the internal integral is calculated using
the inverse Fourier (Laplace) transform. If all jump amplitudes {Q(0)

` }`≥1 have a normal
distribution, the PDF fM0(T) is a mixture of normal densities, as given in (15).

6.1. Options on a Geometric Average

Consider the geometric average GT :=
(
∏n

i=1 Swi
i (T)

)
where w1, w2, . . . , wn are pos-

itive weights. For example, we can assume equal weights: wi =
1
n for all i = 1, 2, . . . , n.

Using the strong solutions for the asset price processes in (4), we obtain the following
formula for the average GT :

GT =

(
n

∏
i=1

Swi
i (0)

)
exp

[
n

∑
i=1

wi(µi − σ2
i /2)T +

(
n

∑
i=1

wiσiρi

)
W0(T)

+
n

∑
i=1

wiσi

√
1− ρ2

i Wi(T) +

(
n

∑
i=1

wiσiρi

)
N0(T)

∑
`=1

Q(0)
` +

n

∑
i=1

wiσi

√
1− ρ2

i

Ni(T)

∑
j=1

Q(i)
j

]
,

where the drift rate µi is given in (9).
Using the fact that a linear combination of independent Brownian motions is a scaled

Brownian motion and that a sum of independent compound Poisson processes is another
compound Poisson process, we obtain the following representation:

GT
d
= G0eαT+βŴ(T)+∑

N̂(T)
j=1 Q̂j ,
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where

G0 =

(
n

∏
i=1

Swi
i (0)

)
, α =

n

∑
i=1

wi(µi − σ2
i /2), β =

√√√√( n

∑
i=1

wiσiρi

)2

+
n

∑
i=1

w2
i σ2

i (1− ρ2
i ),

{Ŵ(t)}t≥0 is a standard Brownian motion, {N̂(T)}t≥0 is a Poisson process with the rate
λ̂ = λ0 + λ1 + · · · + λn. Here, {Q̂j}j≥1 are i.i.d. random variables having a mixture
distribution with the CDF

FQ̂(x) =
n

∑
i=0

λi
λ0 + λ1 + · · ·+ λn

FQ(i)(x/ui)

where FQ(i) is the CDF of Q(i) for i = 0, 1, . . . , n and u0 = ∑n
i=1 wiσiρi, uk = wkσk

√
1− ρ2

k
with k = 1, 2, . . . , n. If there are only common jumps (i.e., λi = 0 for all i = 1, 2, . . . , n),
we have that λ̂ = λ0 and FQ̂(x) = FQ(0)(x/u0). As we see, the factor M0(T) is already
embedded in the formula for GT ; hence, we can find the probability distribution of the
average GT without conditioning on M0(T).

To calculate the expectation of the payoff Λ(GT), we can use the method of character-
istic functions. It is easy to find the characteristic function φ(u) := Ẽ[eiu ln(GT)] of log value

of the geometric average ln(GT)
d
= ln G0 + αT + βŴ(T) + ∑

N̂(T)
j=1 Q̂j, thanks to the mutual

conditional independence of all random factors. The expectation is then computed using
the inverse Fourier transform (e.g., see Carr and Madan 1999). For example, the price of
a call option on the geometric average can be calculated using the Carr–Madan method
Hirsa (2013):

V0 =
e−ακ

π

∫ ∞

0
<
[
e−iuκψ(u)

]
dv

where κ = ln K is the log strike, ψ(u) :=
e−rTφ(u− i(α + 1))
(α + iu)(α + 1 + iu)

is the Fourier transform of the

option price considered as a function of κ, <(z) denotes the real part of a complex-valued z,
and α > 0 is a dumping factor.

6.2. Options on a Maximum/Minimum Price

This section considers the case with a payoff that depends on the maximum price at
maturity, MT := max

1≤i≤n
Si(T). The case with the minimum price min

1≤i≤n
Si(T) is very similar,

hence omitted here.
Assume that there are no jumps specific for ordinary assets (i.e., λi = 0 for all

i = 1, 2, . . . , n). That is, Mi(t) = Wi(t) for i = 1, 2, . . . , n. In this case, the conditional
distribution of Xi(T) = ln Si(T) given M0(T) is normal, and we have

Ẽ[Xi(T) | M0(T)] = ln Si(0) + (µi − σ2
i /2)T + σiρi M0(T), (41)

Ṽar [Xi(T) | M0(T)] = σ2
i (1− ρ2

i )T. (42)

where µi = r− λ0
(
MQ(0)(σiρi)− 1

)
= r− λ0(eρiσia0+(ρiσib0)

2/2− 1), assuming that all jump
sizes are normally distributed. Since the log prices X1(T), . . . , Xn(T) are conditionally
independent, the risk-neutral conditional CDF of the max log price YT := max

1≤i≤n
Xi(T) given

the value of M0(T) is

FYT |M0(T)(x | z) =
n

∏
i=1
N

 x− ln Si(0)− (µi − σ2
i /2)T − σiρiz

σi

√
1− ρ2

i

√
T

. (43)
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Here, N denotes the standard normal CDF. The conditional PDF fYT |M0(T)(x | z) is readily
available by differentiation of the CDF F w.r.t. x:

fYT |M0(T)(x | z) =
d

dx
FYT |M0(T)(x | z)

=
n

∑
i=1

1

σi

√
1− ρ2

i

√
T

ϕ

 x− ln Si(0)− (µi − σ2
i /2)T − σiρiz

σi

√
1− ρ2

i

√
T


×

n

∏
j=1
j 6=i

N

 x− ln Sj(0)− (µj − σ2
j /2)T − σjρjz

σj

√
1− ρ2

j

√
T

.

The risk-neutral pricing formula for the call basket option is written as a double integral:

V0 = e−rTẼ

[(
max

1≤i≤n
Si(T)− K

)+]
= e−rTẼ

[
Ẽ
[(

eYT − K
)
1{YT≥ln K} | M0(T)

]]
= e−rT

∫ ∞

−∞

∫ ∞

ln K
(ex − K) fYT |M0(T)(x | z) fM0(T)(z)dxdz.

Note that in the presence of asset-specific jumps, the normal CDF in (43) is replaced by a
mixture of normal CDFs for every index i so that λi 6= 0.

6.3. Options on an Arithmetic Average

Consider the arithmetic average AT := (∑n
i=1 wiSi(T)), where w1, w2, . . . , wn are posi-

tive weights. For example, as in Section 6.1, we can assume equal weights: wi =
1
n for all

i = 1, 2, . . . , n. We use the Laplace transform method to price a European-style option on
the average AT .

Assume that there are no ordinary asset-specific jumps. As follows from (41) and (42),
the risk-neutral probability distribution of wiSi(T), wi > 0 conditional on M0(T) is
log normal:

(wiSi(T) | M0(T) = z) ∼ LogNorm
(

ln Si(0) + ln wi + (µi − σ2
i /2)T + σiρiz, σ2

i (1− ρ2
i )T
)

.

Since the random variables wiSi(T), i = 1, 2, . . . , n are conditionally independent, the
Laplace transform of the arithmetic average AT is approximated as given in (32).

To calculate the initial no-arbitrage price of a call option on the arithmetic average, we
use the change of numeraire approach combined with conditioning on M0(T) as follows:

V0 = e−rTẼ
[
(AT − K)+

]
=

n

∑
i=1

wie−rTẼ
[
Si(T)1{AT≥K}

]
− e−rTẼ

[
K1{AT≥K}

]
=

n

∑
i=1

wiSi(0)e−qiT EP̃i
[
1{AT≥K}

]
− e−rTKP̃(AT ≥ K)

=
n

∑
i=1

wiSi(0)e−qiT EP̃i
[
P̃i(AT ≥ K | M0(t))

]
− e−rTKẼ

[
P̃(AT ≥ K | M0(T))

]
.

The probability measure P̃i is an EMM relative to numeraire Si(t) for i = 1, 2, . . . , n. It

is defined by the Radon–Nikodym derivative
dP̃i

dP̃

∣∣∣∣
T
= eqi TSi(T)/Si(0)

B(T)/B(0) . Using the strong

solution, we can show that it is given by (39).
The final no-arbitrage pricing formula for the call option on AT with maturity T > 0

and strike K > 0 takes the form:
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V0 ≈
n

∑
i=1

wiSi(0)e−qiT
∫ ∞

−∞

(
1− FP̃iÙA|M0(T)

(K | z)
)

f P̃i
M0(T)

(z)dz

− e−rTK
∫ ∞

−∞

(
1− FP̃ÙA|M0(T)

(K | z)
)

f P̃M0(T)
(z)dz.

Here, FQ
Ã|M0(T)

(K | z) with Q ∈ {P̃, P̃1, . . . , P̃n} denotes the conditional Q-CDF of the sumÙA approximating AT = ∑n
i=1 wiSi(T) given that M0(T) = z. It is calculated using (33). The

PDF fQM0(T)
(z) is also computed under Q.

7. Numerical Results

This section provides numerical examples of portfolio optimization and pricing
European-style basket options. The Merton model for the systemic risk asset (with normally
distributed jump sizes) is used here. Additionally, we assume that there are no ordinary-
asset-specific jumps. That is, the conditional distribution of assets’ prices, S1(t), S2(t), . . . ,
Sn(t), is log normal.

The SPDR S&P 500 ETF Trust (SPY) was used as the systemic risk asset S0. We used
historical close prices for the two years from 26 April 2021 to 26 April 2023 to estimate
its real-world parameters. Additionally, we collected prices for eight stocks/ETFs (the
ordinary assets in our model) with the following tickers: AAPL (Apple, Inc.), AMZN
(Amazon.com, Inc., Seattle, WA, USA) BEKE (KE Holdings, Inc., Beijing, China), BRK.B
(Berkshire Hathaway, Inc., Omaha, NE, USA), MDGL (Madrigal Pharmaceuticals, Inc.,
Conshohocken, PA, USA), SQQQ (ProShares UltraPro Short QQQ), TQQQ (ProShares Ul-
traPro QQQ), and TSLA (Tesla, Inc., Austin, TX, USA). We selected companies representing
different industries among the top 10 S&P 500 Stocks by the index weight (AAPL, AMZN,
BRK.B, TSLA), as well as assets with a negative beta value (SQQQ, BEKE, MDGL). The
one-year interval from 26 April 2022 to 26 April 2023 was used to estimate the real-world
parameters.

To analyze if the model with estimated real-world parameters captures the correlations
Corr (X0, Xi) between the log returns X0 = ln(S0(T)/S0(0)) and Xi = ln(Si(T)/Si(0))
with i = 1, 2, . . . , n, we computed the correlations using (12) and compared them with
estimated values for the interval from 26 April 2022 to 26 April 2023. As we can see from
Table 1, the computed correlations are close to the estimated values.

Table 1. Correlations between the log returns of the systemic-risk and ordinary assets estimated
using historical asset values and computed using the model with real-world parameters.

AAPL AMZN BEKE BRK.B MDGL SQQQ TQQQ TSLA

Corr 1 0.8359 0.7451 0.2546 0.8374 0.1161 −0.9490 0.9517 0.5361
Corr 2 0.8714 0.7934 0.2936 0.8727 0.1351 −0.9618 0.9639 0.5954

Corr 1 is computed using (12); Corr 2 is estimated using data.

Additionally, to estimate risk-neutral parameters, we calibrated the asset price model
to historical European call option prices collected on 26 April 2023. All options expired on
19 May 2023, so they had 17 days to maturity. We used the risk-free rate, r = 4.83%. It was
the overnight federal funds rate as of 26 April 2023. The parameters of the systemic risk
asset model are reported in Table 2. The parameters of the eight ordinary assets are given
in Table 3.
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Table 2. The real-world (under P) and risk-neutral (under P̃) parameters of the systemic risk asset
estimated on 26 April 2023. The asset value is $404.34.

µ0 σ0 a0 b0 λ0

Under P 0.083103 0.038856 −0.003701 0.204861 580.128212
Under P̃ n/a 0.144113 −11.705081 0.062102 0.079810

Table 3. The real-world (under P) and risk-neutral (under P̃) parameters of the eight ordinary assets
as of 26 April 2023.

Under P Under P̃

Ticker Si(0) µi σi ρi σi ρi

AAPL 163.76 0.193202 0.174874 0.289491 0.256437 0.208691
AMZN 104.98 −0.070519 0.298736 0.216572 0.447525 0.168027
BEKE 15.56 0.497117 0.697579 0.052211 0.558043 0.117134
BRK.B 320.53 0.058974 0.111125 0.291072 0.153305 0.889206
MDGL 307.28 2.632111 1.462526 0.023199 0.720686 0.195389
SQQQ 32.15 −0.726205 0.281948 −0.513090 0.608131 −0.131818
TQQQ 25.62 0.012737 0.276098 0.524391 0.578548 0.547611
TSLA 153.75 −0.341801 0.535685 0.125142 0.495509 0.201019

To find optimal portfolios with the eight ordinary assets, we first compute the expected
returns and covariance between returns for the fixed maturity T = 0.25. The column vector

m = [E(Ri)]i=1,...,8 and square matrix Σ = [Cov (Ri, Rj)]i,j=1,...,8 with Ri ≡
Si(T)
Si(0)

are given

in (44):

m =



1.0294
0.9612
1.1149
1.0006
1.9028
0.9607
0.9894
0.8979


, Σ =



0.0249 0.0208 0.0135 0.0107 0.0214 −0.0449 0.0484 0.0201
0.0208 0.0452 0.0161 0.0128 0.0256 −0.0532 0.0582 0.0241
0.0135 0.0161 0.1722 0.0084 0.0167 −0.0352 0.0375 0.0156
0.0107 0.0128 0.0084 0.0095 0.0133 −0.0281 0.0298 0.0124
0.0214 0.0256 0.0167 0.0133 0.6033 −0.0561 0.0595 0.0248
−0.0449 −0.0532 −0.0352 −0.0281 −0.0561 0.1469 −0.01182 −0.0515

0.0484 0.0582 0.0375 0.0298 0.0595 −0.1182 0.1547 0.0564
0.0201 0.0241 0.0156 0.0124 0.0248 −0.0515 0.0564 0.0840


. (44)

Secondly, we find the efficient frontier for the case without short-selling by solving the
following quadratic optimization problem (see Best 2010):

w>Σw− pw>m→ min
w

s.t. ∑ wi = 1 and ∀i wi ≥ 0.

The no-short-selling efficient frontier is a piecewise-defined continuous function of
p ∈ [0, pmax], so that p = 0 and pmax respectively correspond to the minimum variance
portfolio and an asset with the largest expected return, which is MDGL with E[R5] = 1.9028.
The risk–reward plot of the efficient frontier is given in Figure 1. The search for optimal
portfolios is performed on the efficient frontier for simplicity. This approach allows for
reducing a multivariate optimization problem to a single-variable one. In particular, we
have found the minimum VaRα and minimum CVaRα portfolios for α = 5%. To compute
the risk metrics as discussed in Section 5, we found αk and βk, k = 1, 2, . . . , 10 for each
ordinary asset using their real-world values σi, i = 1, 2, . . . , 8. We used Maple, ver. 2021.2,
with a working precision of 500 digits. The plots of VaRα and CVaRα computed on the
efficient portfolio are given in Figure 2. The optimal portfolios are presented in Table 4.
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Figure 1. The risk–reward diagram of the efficient frontier.

Table 4. Optimal portfolios on the no-short-selling efficient frontier parametrized by p ≥ 0. To
compute the Value at Risk (VaR) and conditional VaR (CVaR), we used α = 5%.

Criterion p E[RΠ]
√

Var[RΠ] VaRα(−RΠ) CVaRα(−RΠ)

min Var(RΠ) 0 0.9955 0.0495 −0.9208 −0.9041
min VaRα(−RΠ) 0.05828 1.0247 0.0631 −0.9336 −0.9146
min CVaRα(−RΠ) 0.04795 1.0202 0.0592 −0.9334 −0.9149
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Figure 2. VaRα and CVaRα calculated on the efficient frontier.

Additionally, we calculated no-arbitrage prices of three call options on the geometric
average GT , the maximum price MT , and the arithmetic average AT written on the ordi-
nary assets. Since the initial values vary greatly from asset to asset, we used the returns

Ri(T) ≡
Si(T)
Si(0)

, i = 1, 2, . . . , 8 to compute payoffs of these basket options:

GT =

(
8

∏
i=1

R1/8
i (T)

)
, MT = max

1≤i≤8
Ri(T), AT =

1
8

(
8

∑
i=1

Ri(T)

)
.

The following parameters were used: r = 4.83%, T = 0.25, and qi = 0 for all
i = 1, 2, . . . , 8. The initial no-arbitrage prices V0 were approximated using Monte Carlo sim-
ulations with N = 108 samples and semi-analytic formulae from Section 6. All calculations
were done using MATLAB, ver. 9.14.0 (R2023a) (MATLAB is a trademark of MathWorks
Inc.). The α and β parameters (with approximation order m = 10) used for pricing basket
options on an arithmetic average were calculated using Maple. The results of our calcula-
tions are provided in Table 5. Here, V denotes the sample mean estimate, σV := S/

√
N is

the standard statistical error given by a ratio of the sample standard deviation S and the
square root of N.
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Table 5. Computational results with no-arbitrage prices of basket options for eight risky assets.

Option V ± σV V0

Call on the geometric average GT 0.03513637 ± 0.00000580 0.035132607
Call on the maximum price MT 0.45034907 ± 0.00003416 0.450344030
Call on the arithmetic average AT 0.05020844 ± 0.00000709 0.050204463

Additionally, we calculated values of the CDF using semi-analytical formulae and
the Monte Carlo method (with 105 realizations) for the arithmetic and geometric averages,
as well as for the maximum value. The plots are compared in Figure 3. We can see that
the true CDF, obtained using semi-analytical methods, coincides with the corresponding
empirical CDF obtained using simulations across the range for all three examples.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
(x

)

Geometric Average

Empirical CDF

True CDF

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
(x

)

Arithmetic Average

Empirical CDF

True CDF

0 2 4 6 8 10 12

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
(x

)

Maximum Value

Empirical CDF

True CDF

Figure 3. The empirical and true CDFs for geometric average GT , arithmetic average AT , and
maximum value MT . Calculations are performed for a portfolio with eight stocks under the EMM P̃.

8. Discussion and Conclusions

In this paper, we presented a multi-asset jump-diffusion pricing model that combines
a systemic risk asset with several ordinary assets. The proposed model has several advan-
tages in comparison with a model with fully correlated assets. Firstly, it remains tractable
for any number of ordinary assets. As demonstrated, the number of model parameters
grows linearly with the number of assets. Practitioners can adjust the model complexity
before applying it. The simplest scenario is a particular case of the multivariate GBM model,
whereas the unabridged model includes common and asset-specific jumps with possibly
different distributions of jump sizes.

Secondly, the model parameters can be estimated under real-world (physical) and
martingale (risk-neutral) probability measures. We only need historical asset prices or
market values of single-asset derivatives such as standard European options. We proposed
two-stage MLE and least-squares methods, where we first estimate systemic risk asset
parameters and then find parameters of each ordinary asset price process. As confirmed by
numerical tests, the two-stage approach is robust and can accommodate many assets.
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Thirdly, the model’s real-world parameters can be estimated even when the asset
prices are incomplete and asynchronous due to infrequent trading. We found an analytical
solution to the MLE problem with incomplete return values for the case with common
jumps only.

Fourthly, we derived closed-form formulas for pricing European-style basket options.
Three examples with the geometric average, maximum price, and arithmetic average were
considered. Additionally, we demonstrated how optimal portfolios with minimum VaR or
CVaR can be found without using simulations. We constructed an algorithm combining a
change of probability measure and Laplace transform inversion.

Although we focused here on the scenario with only common jumps having nor-
mally distributed sizes, all presented methods work well for other distributions of jump
amplitudes and the case with asset-specific jumps.

The clear disadvantage of the proposed model is that all pairwise correlations
ρij ≡ Corr(Xi(t), Xj(t)) between log returns have the multiplicative structure βiβ j. Al-
though both positive and negative correlations can be accommodated, this restriction limits
the model’s applicability to asset portfolios with a diverse correlation structure. A possible
remedy is the inclusion of another common factor (which can be observable or not) so that
the correlations ρij can be written in the form βiβ j + γiγj.

The proposed model allows for employing the double calibration framework in which
we jointly (1) estimate the model parameters on the multivariate time series of log returns
and (2) calibrate the implied volatility surface (see Tassinari and Bianchi (2014) for a detailed
description of the calibration approach). This approach can be amended by finding the
model parameters that also best fit the empirical correlation matrix.

Our future research will pursue two directions. First, we will enhance the model
by introducing stochastic volatility, a stochastic interest rate, and another common factor
while preserving the model’s tractability. Second, we will conduct a comprehensive em-
pirical study of the model and apply it to assets from different industries under diverse
market conditions.

Funding: This research was funded by the NSERC Discovery grant number 2020-04782.
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Appendix A

Proof of Lemma 2. To find the matrix of correlations between the log values Xi(t),
i = 0, 1, 2 . . . , n, we first compute the variances and covariances:

Var (X0(t)) = σ2
0
(
λ0(a2

0 + b2
0) + 1

)
t,

Var (Xi(t)) = σ2
i
(
λ0ρ2

i (a2
0 + b2

0) + λi(1− ρ2
i )(a2

i + b2
i ) + 1

)
t, i = 1, 2, . . . , n,

Cov (X0(t), Xi(t)) = σ0σiρi
(
λ0(a2

0 + b2
0) + 1

)
t,

Cov (Xi(t), Xj(t)) = σiσjρiρj
(
λ0(a2

0 + b2
0) + 1

)
t.

Now, we calculate the correction coefficients.

Proof of Lemma 4. We introduce the following notations:

u2 := σ2
i (1− ρi)

2, v :=
σiρi
σ0

, and w := µi − σ2
i /2.

The log likelihood function takes the form:

ln Li(Y | Z) = Const−m ln u− 1
2u2

m

∑
j=1

(yj − whj − vẑj)
2

hj
,
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where the Const term does not depend on u, v, or w. We equate the first-order derivatives
of ln Li w.r.t. v and w to zero and obtain the following system of linear equations:{

(∑ ẑ2
j /hj)v + (∑ ẑj)w = ∑ yj ẑj/hj,

(∑ ẑj)v + (∑ hj)w = ∑ yj.

The solution to the above system is given by (26) and (27). The denominator is positive thanks

to the Cauchy–Bunyakovsky inequality. Solving
∂ ln Li

∂u
= 0 for u gives us Formula (25).

Clearly, ln Li attains its maximum at the point (u, v, w) given by Equations (25)–(27). For any
fixed u > 0, the function ln Li is a quadratic function of v and w with a global maximum
at the point with coordinates given by (26) and (27). The function f (u) := −m ln(u)− s

2u2

with u > 0 has a global maximum at u =
√

s
m for any m > 0 and s > 0.
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