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Abstract: This work aims to develop a measure of how much credit risk is priced into equity options.
Such a measure appears particularly appealing when applied to a portfolio of equity options, as it
allows for the factoring in of firm-specific default dynamics, thus producing a comparable statistic
across different equities. As a matter of fact, comparing options written on different equities based on
their moneyness does offer much guidance in understanding which option offers a better hedging
against default. Our newly-introduced measure aims to fulfil this gap: it allows us to rank options
written on different names based on the amount of default risk they carry, incorporating firm-specific
characteristics such as leverage and asset risk. After having computed this measure using data from
the US market, several empirical tests confirm the economic intuition of puts being more sensitive
to changes in the default risk as well as a good integration of the CDS and option markets. We
further document cross-sectional sectorial differences based on the industry the companies operate
in. Moreover, we show that this newly-introduced measure displays forecasting power in explaining
future changes in the skew of long-term maturity options.

Keywords: defaultable options; credit risk; leverage effect; volatility skew

1. Introduction

Markets for both stock options and credit derivatives have experienced a significant
growth in the last decades. Along with the rapid growth, academics have started investigat-
ing a possible link between stock option implied volatilities and credit default swaps (CDS)
spreads: when a company experiences credit-rating downgrades, its equity inevitably drops
by a sizable amount and, therefore, the prices of the options written on the company’s
equity react as well. As a result, the possibility of default induces negative skewness in
the probability distribution of stock returns. This negative skewness is manifested in the
relative pricing of stock options across different strikes: when the Black and Scholes (1973)
implied volatility is plotted against moneyness at fixed maturities, the slope of the graph
is positively related to the risk-neutral skewness of the stock return distribution. This
phenomenon is commonly referred in the literature as the leverage effect.

Anecdotal evidence suggests that major investment bank are more and more focused on
issuing derivative contracts such as equity default swaps1 or more structured products2 for
covering downside risk. These derivatives are written on to the firm’s equity rather than the
firm’s debt, and their building blocks are mostly equity options (vanilla or barrier). The reason
for using equity rather than debt for such purposes lie in a larger liquidity and immediate
reaction in prices of equity prices rather than (traded and nontraded) debt instruments.

The relation between default risk and option prices is studied extensively in the
literature. Early research shows that the pricing of ordinary options differs from the
pricing of options with default risk (Johnson and Stulz 1987; Hull and White 1995; Jarrow
and Turnbull 1995). More recent studies look at the relation between credit spreads and
option prices (Cremers et al. 2008a; Carr and Wu 2010; Andreou 2015; Geske et al. 2016;
Culp et al. 2018).
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The aim of this work is to study the impact of credit risk on equity options. The
proposed framework also allows for the exploitation of the overlapping information on
the market risk and the credit risk of a company to provide better identification of the
dynamics of the stock return variance and default events, and how these impact equity
option prices. Ultimately, this allows not only to measure the impact of credit risk on equity
options and but also to light on the mechanism leading to future movements of the option
skew due to credit-related events.

The first works to point out a possible effect of leverage and credit risk on equity
option are Black (1976) and Christie (1982). They both argue that the possibility by the
company of defaulting on its obligations can induce negative skewness in the company’s
return distribution. This manifests when the implied volatility is plotted against a measure
of moneyness and exhibits a decreasing pattern for increasing strike prices (the so-called
negative volatility skew) rather than a flat line. The skew is often observed in the region
where the implied volatility is estimated using out-of-the-money put options, being the
latter intrinsically affected the most by credit risk. More recent empirical works, such as
Collin-Dufresne et al. (2001), Elton et al. (2001), Cremers et al. (2008a, 2008b), and Cao et al.
(2010), show that CDS and bond spreads are positively correlated with both stock option
implied volatility levels and the skew of the implied volatility plotted against moneyness.
Also, Campbell and Taksler (2003), and Ericsson et al. (2009) document a link between
bond spreads and equity historical volatility. At the aggregate level, similar results hold for
sovereign CDS spreads (Carr and Wu 2007), and credit default swap index (CDX) spreads
and synthetic collateralised debt obligations (CDOs) on the same index (Collin-Dufresne
et al. 2012).

The relative pricing of equity- and debt-related derivatives instruments has been
mainly explored using reduced-form models of default in the literature. Carr and Linetsky
(2006), Mendoza-Arriaga et al. (2010) and Carr and Wu (2010) develop joint frameworks of
valuation for credit-sensitive derivatives contracts and equity options. Their estimations
highlight the interaction between market risk (return variance) and credit risk (default
arrival) in pricing stock options and credit default swaps. They also point out the need
of developing future models that integrate both markets, rather than having separate
valuation models. This work tries to bridge this gap providing a unique structural valuation
framework where both the price of CDSs and options written on the same reference entity
are driven by a unique state variable, namely the firm’s asset value, which ultimately
determines the default event properties.

On the other side of the spectrum, the use of a structural model for jointly modelling
credit and equity derivative contracts has not been exhaustively explored. With the excep-
tion of Toft and Prucyk (1997), which built on the Leland (1994) model to document the
effect of leverage on the pricing of options, and Hull et al. (2004), which develop a new
calibration methodology based on options to implement the Merton (1974) model, there
have not been significant attempts to develop structural models of default able to transmit
the company’s credit risk to the pricing of equity options. In this work instead, the firm is
allowed to issue multiple bonds with different maturities, thus removing the restriction
on perpetual debt (as in Leland 1994) or a unique zero-coupon bond (as in Merton 1974).
The work of Geske et al. (2016) moves towards this direction whilst investigating capital
structure effects on the pricing of equity options. However, their work does not measure
the extent to which leverage and credit risk impact the pricing of options which is assessed
in this paper. Also, they focus on call options only, which intuitively should be affected by
credit risk the least, whilst here both call and put options are taken into consideration.

Regarding the selection of data to infer default probabilities, CDS spreads are used
rather than bond prices. This is motivated by the fact that CDS spreads constitute a more
direct and clean signal for the underlying default risk. In fact, CDS spreads provide
relatively pure pricing of the default event of the underlying entity as they are typically
traded on standardised terms: unlike bonds, CDSs have a constant maturity, the underlying
instrument is always par valued, they concentrate liquidity in one instrument, and are
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not affected by different taxation regimes. Moreover, many corporate bonds are bought
by investors who simply hold them to maturity, and the secondary market liquidity is
therefore often poor.3 CDS contracts instead allow investors to implement trading strategies
to hedge credit risk over a longer period of time at a known cost. In addition, as shown
by Blanco et al. (2005), CDS spreads tend to respond more quickly than bond spreads to
changes in credit conditions in the short run.

This work also connects with the findings in Carr and Wu (2011, 2017). More specif-
ically, Carr and Wu (2011) show that under suitable assumptions the price of equity put
options struck deepest out-of-the-money (DOOM) is entirely driven by the default possi-
bility of the reference entity. Also, they show that the contract values of credit-sensitive
instruments and put options share similar magnitudes and show strong co-movements.
On the other hand, Carr and Wu (2017) is a crucial piece of research in interpreting and
assessing the extent to which results on the volatility skew obtained herein could be driven
by factors other than the leverage effect. In their article, the authors identify three different
channels able to generate the negative volatility skew documented in equity options. They
show that the option skew can be driven, as expected, by increasing leverage, but also by
volatility feedback and self-exciting market disruptions.

In terms of the modelling of equity options, the theory employed here is based on
Merton (1974), Geske (1977), and Geske (1979) where the equity is considered as a contin-
gent claim on the firm’s value. Here, as the reference firm has issued more than one bond,
equity turns into a n-fold compound option (where n is the number of bonds outstanding).
To the best of our knowledge, this is the first work that uses the theory of n-fold compound
options for pricing vanilla equity options.

Based on the model predictions and using a novel calibration technique, a measure of
impact of credit risk is introduced. The effect of credit-related event is further investigated
in the relative pricing of call and put options, showing that indeed put options price the
credit risk implied by the credit spread. The ability of this new measure to forecast future
movement in the option skew is then tested. Finally, the model allows us to show how
the estimation of the implied volatility á la Black–Scholes tend to average out the effect
of credit risk over the moneyness space, leading to potential biases when applied for risk
management purposes.

The rest of the paper is structured as follows: Section 2 introduces the value of the
equity as a n-fold compound option and extend the pricing to equity options; Section 3
introduces the novel measure of impact of credit risk on option contracts; in Section 4 we
describe the dataset, the construction of the required variables and the calibration methodology
employed to estimate the unobservable asset value and volatility; Section 5 is devoted to
several empirical tests which assess the different impact of credit risk on calls and puts,
cross-sectional differences based on the sector the companies operate in, and the ability of our
measure to forecast future movements in the option skew. Finally, Section 6 concludes.

2. Firm’s Claims as Compound Options

The structural model of default used to price the price equity, debt and options written
on equity is the model introduced in Maglione (2022), which is an extension of Merton (1974)
and Geske (1977). Before discussing how to price option within the chosen compound
option model, we briefly review the main features of the structural model of default.

In terms of general assumptions, we take a reference firm financed with n bonds
and equity. Both liabilities receive of stream og cash flow in the form of coupons and
dividends which are paid at a continuous rate. According to the indenture of the bonds:
(1) the firm promises to repay each bond, with face value Fi, to the bondholders at known
times ti ∈ (t0, tn], i ∈ I := {1, . . . , n}; (2) in case of default, the bondholders immediately
take over the company and the shareholders receive nothing; (3) the firm cannot issue
any senior or equivalent rank claims on the firm nor do share repurchases before tn.
Usual assumptions in terms of transaction cost, taxes, bid/ask spreads, short-selling and
indivisibility of assets apply.4
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For convenience of notation, set t0 := 0 and denote the generic payoff at time ti
as Xti := Xi. Let V, S and D represent the firm’s assets, equity and debt respectively.
According to the structural approach and the Modigliani-Miller theorem, both equity and
debt are function of the firm’s assets and not vice versa (Merton 1977). Also, we fix a
filtered probability space (Ω,F ,F,P) and assume no-arbitrage conditions in the economy
and the existence of a equivalent martingale probability measure Q. Furthermore, since
we assume a flat term structure of the risk-free rate at r > 0, this equivalent martingale
measure coincides with the risk-neutral measure.

Below, we provide a sketch of the main features of the compound option model of de-
fault. For a more in-depth analysis of this model, more details are found in Maglione (2022)
in which the model was firstly introduced.

Default is defined as the first time the firm is unable to issue new equity to repay the
bond due at time ti, i.e.,

τ := inf
i∈I
{ti : S?

i (V) < Fi}, (1)

where S?
i (V) is the continuation value of equity.5 As equity is a function of the assets of

the firm, the same event can be defined in the asset value space6: for each value of equity
which triggers default corresponds only one value of the firm assets, namely V̄i at time ti,
which implies (1), that is

τ = inf
i∈I
{ti : Vi < V̄i}.

Within this framework, the present value of the equity can be obtained using risk-
neutral valuation as the Q-expectation of its terminal payoffs. Since the payoff of the firm’s
equity at ti ∈ [0, tn], can be expressed as

Sn(V) = Vn1τ>tn −
n

∑
k=i+1

er(tn−tk)Fk1τ>tk , (2)

and, assuming a geometric Brownian motion on the asset process

dVt = (r−v)Vt dt + σVVt dWQ
t , (3)

where v is the continuously compounded payout rate, σV the instantaneous volatility of the
assets, and WQ

t a Q-standard Brownian motion, the today’s equity price can be expressed
in terms of multivariate Gaussian integrals, i.e.,

S0(V) = e−vtn V0Φn
(
d1; Γn

)
−

n

∑
k=1

e−rtk FkΦk
(
d2,k; Γk

)
, (4)

where d1 := (d1,i)1≤i≤n and d2,k = (d1,i − σV
√

ti)1≤i≤k with

d1,i =
ln(V0/V̄i) +

(
r−v + σ2

V/2
)
ti

σV
√

ti
, Γk =



1
√

t1
t2

√
t1
t3

. . .
√

t1
tk

1
√

t2
t3

. . .
√

t2
tk

. . . . . . . . . . . . . . .

1
√

tk−1
tk

1


, (5)

and Φk
(
x; Γk

)
the multivariate CDF at x ∈ Rk of a standard normal random vector with

correlation matrix Γk. Notice that, if n = 1 and v = 0, the model coincides with the
Merton’s model.

Call and Put Equity Options as a (n + 1)–Fold Compound Options on Asset Value

Intuitively, as equity is an n–fold compound option, vanilla options are (n + 1)–fold
compound options on the firm’s assets. Consider an European option with maturity
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T ∈ (ti, ti+1), with 0 ≤ ti < ti+1 ≤ tn, and strike price K written on the firm’s equity. If the
company is allowed to default at any ti, the generic terminal payoff of the option is

P(ξ)
T = ξ

(
ST(V)1{τ>T} − K

)
1{ξST(V)≥ξK}, (6)

where ξ is a binary variable taking values +1 (respectively −1) in the case in which the
option is a call (respectively a put), 1{ξST(V)≥ξK} determines the condition for the option to
expire in-the-money, and 1{τ>T} ≡ 1{τ>ti} is the condition to accounts for the possibility
of the firm to defaulted before the maturity of the option (i.e., vulnerability). The possibility
for the company to default after the maturity of the option is already accounted in the value
of ST(V). In case the company defaults before the option maturity (that is the first indicator
function is zero) the firm’s equity drops to zero.7

Under risk-neutral valuation, the present value of the option is given by

P(ξ)
0 = e−rTEQ

(
P(ξ)

T

)
.

The event of the option expiring in-the-money, {ξST(V) ≥ ξK}, can be redefined as
the event {ξVT ≥ ξV̄K}, where V̄K is nothing but the value of the assets corresponding to
the equity value that makes the option expire in-the-money.

Defining the events Vi,k :=
⋂k

h=i+1{Vh ≥ V̄h} and V (ξ)T := {ξVT ≥ ξV̄K}, with
Vk ≡ V0,k, for k ∈ I, the value of the option can be written as

P0,ξ = ξe−rT
[
EQ
(

ST(V)1
Vi∩V

(ξ)
T

)
− KQ

(
V (ξ)T

)]
,

where, the value of the equity at the maturity of the option is given by

ST(V) = e−r(tn−T)EQ
T

(
Vn1Vi,n

)
−

n

∑
k=i+1

e−r(tk−T)FkEQ
T

(
1Vi,k

)
.

Being 1Vi∩V
ξ
T
FT-measurable, and applying the law of iterated expectations, it follows

P(ξ)
0 = ξ

[
e−rtnEQ

(
Vn1Vn∩V (ξ)T

)
−

n

∑
k=i+1

e−rtk FkQ
(
Vk ∩ V

(ξ)
T

)
− erTKQ

(
V (ξ)T

)]
.

Using (again) the result Geske (1977) on multivariate Gaussian integrals, the price of
the option can be expressed as

P(ξ)
0 = ξ

[
e−vtn V0Φn+1

(
d(ξ)

1 ; Γ
(ξ)
n+1

)
−

n

∑
k=i+1

e−rtk FkΦk+1
(
d(ξ)

2,k+1; Γ
(ξ)
k+1

)
− e−rTKΦ

(
ξd2,T

)]
(7)

with d(ξ)
1 =

(
(d1,i)

k
i=1, ξd1,T , (d1,i)

n
i=k+1

)
, d(ξ)

2,k+1 =
(

d(ξ)1,i − σV
√

ti

)
1≤i≤k+1

, defined as

in (5), and

d1,T =
ln(V0/V̄K) +

(
r−v + σ2

V/2
)
T

σV
√

T
, Γ

(ξ)
k+1 =



1
√

t1
t2

. . . ξ
√

t1
T . . .

√
t1
tk

1 . . . ξ
√

t2
T . . .

√
t2
tk

. . . . . . . . . . . . . . . . . .

1
√

tk−1
tk

1


,

with d2,T = d1,T − σV
√

T. For v = 0, n = 1 and t1 > T, the formula coincides with the
option price in Geske (1979).
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3. Information Content Ratios as Measure of Impact of Credit Risk

In this section, a new measure of impact of credit risk on options is first introduced. In
the empirical tests, we use the newly-introduced measure to asses whether call and put
options display different price impacts in terms of credit risk.

In the compound option model, the option price depends on the risk-neutral probabilities

Q(τ > ti ∩ ξST > ξK), i ∈ I, (8)

which compute the likelihood of the event of the firm not defaulting (up to ti) and the
option expiring in-the-money. Trivially, these probabilities can be factorised as

Q(τ > ti)︸ ︷︷ ︸
credit risk

Q(ξST > ξK|τ > ti)︸ ︷︷ ︸
market risk

, i ∈ I. (9)

The first factor is the probability of the firm surviving until ti, whilst the second is the
probability of the option expiring in-the-money conditional on the firm having not defaulted.
Therefore, this decomposition rigorously disentangles the source of credit and market risk
and how these reflect into option prices.

In order to turn the multiplicative functional into an additive one, instead of looking
at raw probabilities, their information content8 is instead considered. Thus, the Information
Content Ratio (ICR) for each probability is defined as

ICR(ξ)
i (K, T) =

logQ(τ > ti)

logQ(τ > ti ∩ ξST > ξK)
i ∈ I. (10)

This represents the percentage of credit risk over the whole event of the firm surviving
and the option expiring in-the-money, expressed in terms of the information content of
the two events. Notice that, given a set of K× T options, there are n× K× T Information
Content Ratios.

Once these ratios are computed for all the probabilities contributing to the price of
the option, they can be then aggregated in order to measure the impact of credit risk on
each option contract. The Average Information Content Ratio (AICR) is thus defined as a
weighted average of the information content ratios, that is

AICR(ξ)(K, T) =
∑i φi · ICR(ξ)

i (K, T)
∑i φi

. (11)

The weights φi are just the present values of the bond expiring in ti. Notice that if
τ > ti a.s. for all i ∈ I (i.e., almost sure survival), then AICRξ(K, T) = 0 (i.e., no impact of
credit risk on the option contract).

Interestingly, the proposed measure is linked to the entropy of the default time. In fact,
changing the base of the logarithm, Equation (10) can be written as

ICR(ξ)
i (K, T) = logbi

Q(τ > ti)

with bi = Q(τ > ti ∩ ξST > ξK). Therefore,

AICR(ξ)(K, T) = ∑
i

φ̃i · logbi
Q(τ > ti)

with φ̃i = φi/ ∑i φi. On the other hand, the risk-neutral entropy in base b ∈ (0, 1) of the
default time is defined as9

HQ
b (default) = ∑

i
Q(τ = ti) logb Q(τ = ti),

and similarly
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HQ
b (survival) = ∑

i
Q(τ > ti) logb Q(τ > ti).

As long as bi is approximately constant10 and the Q(τ > ti) ∝ φ̃i (i.e., survival
probabilities up to time ti are proportional to the fraction of debt at that time), then
AICR ∝ HQ

b (survival).
Such a measure of credit risk obtained from option quotes is particularly interesting when

considered in a portfolio framework. As a matter of fact, given a set of put options written
on a reference company (which hedge against downward movements of the underlying), we
could simply and trivially say that the more the put option is out-of-the-money, the more
the impact of credit risk on the contract. However, when considering portfolios of options
written on different equities, it would be particularly challenging to say that, say, put option
A on Company X is more affected by credit risk than put option B written on Company Y,
even if the two options have identical moneyness. In fact, the impact of credit risk on the
single option contract depends on the leverage of the company as well as the volatility of its
cash-flow, which are both company-specific. This measure standardise and factors in these
firm-specific effects and provides a comparable statistic to rank option contracts written on
different equities. Furthermore, as shown recently by Vasquez and Xiao (2023), delta-hedged
option portfolios on the companies with high default risk more attractive to investors seeking
to hedge default risk and, therefore, reduces its expected return. When the firm’s default risk
increases, the expected return of the delta-hedged option portfolio should decrease to reflect
the change in default risk, which is indeed what they document.

4. Data and Estimation Methodology
4.1. Dataset

The dataset under investigation is composed by US companies, constituents of the
S&P100 during the period January 2013–December 2017. The sample period considered
is due to data availability. Furthermore, we are not really focusing on picking some time-
specific pattern observed over the considered years; we rather consider a sample period
which does not include crises (such as the Global Financial Crisis and recent pandemic
crisis) which may well affect the extent to which equity options embeds credit risk.

Regarding the cross-section of companies, firms with either preferred equity or subject
to merges or acquisitions are excluded. Also, only companies for which both CDS spreads
and option quotes available are included. Moreover, we consider only those companies
which remained as constituents of the S&P100 during the sample period. These restrictions
reduce the final sample size to 66 companies. Nevertheless, previous studies investigating
the relative pricing of options and CDSs rely on much smaller samples (see for instance
Hull et al. 2004; Carr and Wu 2010, 2017), both in the time-series and the cross-section.
Table 1 displays the complete name list, alongside the SIC code of the companies.

Table 1. List of the selected companies and their SIC code.

Ticker SIC Division

AAPL 3663 Manufacturing
ABT 2834 Manufacturing
ACN 8742 Services
ALL 6331 Finance, Insurance and Real Estate
AMGN 2836 Manufacturing
AMZN 5961 Wholesale Trade
BA 3721 Manufacturing
BAC 6020 Finance, Insurance and Real Estate
BMY 2834 Manufacturing
C 6199 Finance, Insurance and Real Estate
CAT 3531 Manufacturing
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Table 1. Cont.

Ticker SIC Division

CL 2844 Manufacturing
CMCSA 4841 Transportation, Communications, Electric, Gas and Sanitary service
COF 6141 Finance, Insurance and Real Estate
COP 1311 Mining
COST 5399 Wholesale Trade
CSCO 3576 Manufacturing
CVS 5912 Retail Trade
CVX 2911 Manufacturing
DD 2821 Manufacturing
DIS 4888 Transportation, Communications, Electric, Gas and Sanitary service
EMR 3823 Manufacturing
EXC 4911 Transportation, Communications, Electric, Gas and Sanitary service
F 3711 Manufacturing
FDX 4513 Transportation, Communications, Electric, Gas and Sanitary service
GD 3721 Manufacturing
GE 4911 Transportation, Communications, Electric, Gas and Sanitary service
HAL 1389 Mining
HD 5211 Wholesale Trade
IBM 7370 Services
INTC 3674 Manufacturing
JNJ 2834 Manufacturing
JPM 6020 Finance, Insurance and Real Estate
KO 2086 Manufacturing
LLY 2834 Manufacturing
LOW 5211 Wholesale Trade
MCD 5812 Retail Trade
MDT 3845 Manufacturing
MMM 2670 Manufacturing
MO 2111 Manufacturing
MON 5169 Retail Trade
MRK 2834 Manufacturing
MS 6211 Finance, Insurance and Real Estate
MSFT 7372 Services
ORCL 7370 Services
OXY 1311 Mining
PEP 2080 Manufacturing
PFE 2834 Manufacturing
PG 2840 Manufacturing
PM 2111 Manufacturing
RTN 3812 Manufacturing
SLB 1389 Mining
SO 4911 Transportation, Communications, Electric, Gas and Sanitary service
SPG 6798 Finance, Insurance and Real Estate
T 4812 Transportation, Communications, Electric, Gas and Sanitary service
TGT 5331 Wholesale Trade
TWX 8748 Services
TXN 3674 Manufacturing
UNH 6324 Finance, Insurance and Real Estate
UNP 4011 Transportation, Communications, Electric, Gas and Sanitary service
USB 6020 Finance, Insurance and Real Estate
UTX 3724 Manufacturing
VZ 4812 Transportation, Communications, Electric, Gas and Sanitary service
WFC 6020 Finance, Insurance and Real Estate
WMT 5331 Retail Trade
XOM 1311 Mining
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In the same spirit of Carr and Wu (2017), the sample is further divided into four
categories based on the industry/type or business: (a) Financial companies; (b) Mining,
Energy and Utilities companies; (c) Manufacturing; (d) Retail, Wholesale and Services. See
Figure 1 for the relative frequencies of the different sectors. A sub-sample analysis based
on these groups is carried out in Section 5.1.

Financials Energy Manufacturing Sales & Services
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Figure 1. Industry/sector composition of the whole sample: Financial companies (15%); Mining,
Energy and Utilities companies (12%); Manufacturing (42%); Retail, Wholesales and Services (30%).

Data on stock prices, number of shares outstanding, dividends and the risk-free yield
curve are obtained from Bloomberg. Option quotes are collected from Optionmetrics. CDS
spreads are from Thompson Reuters Datastream. Information relative to the firms’ capital
structures and cost of debt is gathered from Compustat and the 10-K documents.

Option quotes, CDS spreads and equity prices are observed at daily frequency. The
data from Compustat on the firms’ debt is available only at quarterly frequency though.
Therefore, it is assumed that the capital structure remains fixed within quarters, having
only adjusted the time to maturity of the firm’s debt due to the passage of time. It appears
a reasonable assumption given the empirical evidence on how often US firms decide to
rebalance their capital structures (Strebulaev and Whited 2012).

Given the large amount of option data, only the most liquid OTM call and put options
traded every Wednesdays with time-to-maturity greater than six months are taken into
consideration. To determine the most liquid traded options, those prices whose moneyness
is outside the 5th to 95th percentile range are firstly removed. Secondly, only those options
with volume above their annual median are kept.

As one of the aims of this work is to study the interplay between market and credit
risk, and how this is reflected into the relative pricing of derivatives contracts (options and
CDSs) written on the same company, we opt for focusing on those option for which the
impact of credit risk is presumably not negligible. In fact, as the database is composed
by firms members of the S&P100—which should be considered as ‘safe’ companies in the
short-term—it seems very unlikely that options with maturities lesser than six months
would price any credit risk. This intuition is also confirmed by Cremers et al. (2008b).

The price of the option is defined as the average of the bid and ask price when both
are available; the observation is removed otherwise. Finally, options with zero trading
volume and negative bid-ask spread are also excluded. The final sample counts 92,879 valid
call and 112,347 put options observations over 259 weeks. Figure 2 shows the options’
distribution in terms of moneyness and maturity.
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(a) OTM Calls’ moneyness (b) OTM Puts’ moneyness

(c) OTM Calls’ maturity (d) OTM Puts’ maturity

Figure 2. Empirical distributions of moneyness (K/S) and maturity (T) of option data. Panel
(a) shows that most of the valid call option observations have moneyness in (1, 1.8), whilst for put
options, displayed in panel (b), the moneyness is in (0.6, 1). The distribution of put options is less
peaked than the one of calls. Panels (c,d) takes into account the maturities of the options which range
from 0.5 to 2.4 years form both call and put quotes, being the distributions very similar.

One of the main disadvantage of working with equity options is that they are usually
American-style. This is the case in the analysed dataset and, in order to test and implement
the model, European quotes should be used. Hence, the de-Americanization procedure
introduced by Carr and Wu (2010) and further tested in Burkovska et al. (2018) is applied.
The aim of the de-Americanization is to find the corresponding European price (the so-
called pseudo-European price) for a given American price: this is the price ought to be
observed if the contract would not allow for exercising the option before maturity. In a
nutshell, a binomial tree is used to price the American option. The volatility parameter,
such that the squared difference between the market price and the price generated by
the tree is minimised, is set as the option implied volatility. Once estimated, the pseudo-
European price is found by applying the Black–Scholes formula for European options using
as volatility parameter the implied volatility of the American option extracted from the tree.

In order to estimate the impact of credit risk on equity options, and verify whether
the option market participants price credit risk consistently with the credit default swap
market, a calibration based on equity prices, CDS spreads and option quotes is carried out.
In addition, the term-structure of the firm’s debt must be known or approximated somehow.
Given data availability from Compustat, we opt for clustering the firm’s debt at two points
in time (i.e., n = 2): short-term debt, maturing in one year’s time, and long-term debt,
due at year ten. These are proxied by Debt in Current Liabilities (DLCQ) and Long-Term
Debt–Total (DLTTQ).
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Finally, the payout ratio is calculated as the weighted average cost of capital for the
company. The cost of equity (i.e., dividend yield, say q) is estimated as the average dividend
yield over the previous year. These data are downloaded from Bloomberg. The cost of debt
is calculated as

c = min
{

∑n
i=1 ciFi

F
, ln
(

1 +
XINT

F

)}
,

where F = ∑n
i=1 Fi and ci the continuously compounded debt payout rate. XINT is the

Compustat variable Interest and Related Expense – Total. The individual rates ci are
observed at yearly frequency and manually collected from the 10-K documents. Eventually,
the payout rate is estimated every year as

v =
cF + qS
F + S

,

where S is the value of the equity at the beginning of the year and q the dividend yield
estimated as described above.

4.2. Estimation of the Model Parameters

It is well known in the literature on structural models of default that implementing
such models can be quite challenging as both asset volatility and value are unobservable.
However, having obtained the price of both equity and equity options as function of the
unobservable V0 and σV , allows us to built a simple estimation technique to obtain these
latent variables: for every option price, we solve a non-linear system of two equations (i.e.,
the price of equity in (4) and the option price in (7)), so to calibrate on observed market
price, i.e.,

Equity price = e−vtn V0Φn
(
d1(V0, σV); Γn

)
−∑n

k=1 e−rtk FkΦk
(
d2,k(V0, σV); Γk

)
Option price = ξ

[
e−vtn V0Φn+1

(
d(ξ)

1 (V0, σV); Γ
(ξ)
n+1

)
−∑n

k=i+1 e−rtk FkΦk+1
(
d(ξ)

2,k+1(V0, σV); Γ
(ξ)
k+1

)
−e−rTKΦ

(
ξd2,T

)]
.

This technique is very similar to the well-known estimation of the implied volatilities
à la Black–Scholes: the value of the asset volatility, σ?

V , and corresponding asset value, V?
0 ,

are found such that both the market price of equity and the option quote are matched.
The estimation of the asset volatility and value as in Section 4 allows us to compute

the probabilities in (8) as well as the risk neutral probabilities of survival in (9). Hence,
the probability of the option expiring in-the-money conditional upon surviving can be
computed as well.

Alternatively, the risk-neutral probabilities of survival can be directly estimated in
a model-free fashion using the CDSs spreads.11 The comparison of the latter with those
produced by the model allows for the investigation of the model’s ability to replicate the
observed term-structure of default probabilities and, indirectly, to test for the integration of
the option and CDS market in terms of the pricing of default risk. In fact, the closer the
probabilities obtained from option quotes are to only those estimated using CDSs, the more
similar and consistent the pricing of the two derivatives contracts by the economic agents
trading in the two markets are.

Finally, for each option contract the AICR measure is computed. Given that every day
several contracts are traded, the daily average AICR is then calculated over all valid option
prices. This allows us to construct a time series of a measure of the company’s credit risk
which is based on option quotes. Figure 3 shows that the daily average AICR calculated
over calls is substantially smaller than those computed using put quotes. Furthermore, the
graphs show a spike both in calls and puts at the end of 2015. This spike is likely to be
caused by the fact that in 2015 the U.S. economy was so slow that several historically reliable
indicators of an imminent recession were waiving red flags: Industrial Production was neg-
ative over 12 months, and retail sales growth was falling. Furthermore, the global economy
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was even weaker. It might well be the case that market participants, fearing an upcoming
recession, priced default probabilities to a greater extent. Thus, such a shift in default
outlooks has been reflected into option prices, which our measure consistently captures.
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(a) Financials.
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(b) Mining, energy and utilities.
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(c) Manufacturing.
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(d) Retail, wholesale, and services.

Figure 3. Comparison of daily average AICR calculated over call and put options for four companies
representing the four selected industries/sectors. As expected, AICR calculated using call (solid
lines) options is much smaller than those obtained from put (dashed lines) options. AICRs are
expressed in basis points. Sub-figures (a–d) display the AICR measure for companies operating in
different sectors.

The calculation of AICR can also be performed by using either the model-implied
survival probabilities or those extracted from the CDSs. As AICR is a linear functions of
information contents in (10), the discrepancies between the AICRs computed using the two
different sets of probabilities can shed light on the level of integration of the two markets.
The next section addresses the link between the two constructions as well as the difference
behaviour of put and call options in term of pricing of credit risk.

This section ends with a simple correlation analysis of the AICR measure with respect
to the option strike (K) and time-to-maturity (T). From Table 2, the AICR measure displays
a statistically significant negative correlation with the strike price both for calls and puts:
the lower the strike price, the higher the price of credit risk embedded in the option as
expected. In addition, AICRs is positively correlated with the maturity of the option
in the case of puts: given the probability of survival being a decreasing function of the
time horizon, long-maturity options display a larger impact of credit risk. For calls, the
correlation is actually negative and significant only if the AICR measure is constructed
using not only options, but also the probabilities of survival extracted from CDSs. These
sample correlations highlight a much stronger link between credit risk and put options.
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Table 2. Average sample correlation of AICR (calls and puts, with and without having used the CDS
to calibrate) with strike price (K) and maturity (T) of the options. As expected, for both calls and puts,
the AICR is negatively correlated with the strike price, as lower strikes proxies for default thresholds,
and positively correlated with the time-to-maturity of the option, as the probability of defaulting is
increasing with the time horizon. The estimates are carried out both having calculated the AICRs
with and without the extra calibration of the risk-neutral probabilities extracted from CDSs (and are
statistically equivalent). Significance levels: 10% (*), 5% (**), 1% (***).

Calls Puts
K T K T

Correlation (w/o CDS) −0.0307 −0.0053 −0.0897 0.1291
p-value 0.000 *** 0.155 0.000 *** 0.000 ***
Correlation (with CDS) −0.0723 −0.0857 −0.0751 0.1250
p-value 0.000 *** 0.000 *** 0.000 *** 0.000 ***

5. Empirical Tests
5.1. Cross Sectional Differences in Calls and Puts

Economic and financial intuition suggests that a different pricing behaviour of credit
risk should be observed between calls and puts. As default is an event which is priced
in the left tail of the equity distribution, put options as insurances against price falling
should be affected more by credit-related events than calls. As a matter of fact, Carr and
Wu (2011) show that, under a general class of stock price dynamics, a portfolio of two deep
out-of-the-money American-style equity put options can replicate a pure credit insurance
contract that pays off if and only if the company defaults prior to the option expiry.

A preliminary test is conducted on the relationship between the two measures of
impact of credit risk, either constructed using option quotes only (AICR) or based on the
option prices and CDS spreads (AICR′). As these measures are option-specific, the daily
average for the whole set of available call and put options is calculated each week (AICR
and AICR′, respectively). In order to estimate the risk-neutral probabilities from the CDSs,
a 50% loss given default is assumed. A 50% recovery rate is consistent with the median
value for senior unsecured bonds reported in Duffie and Singleton (1999) and Huang and
Huang (2012). Our results are consistent and remain statistically significant under different
values for the loss given default12.

The following set of unbalanced panel pooled regressions are estimated

AICR′j,t,ξ = α + βAICRj,t,ξ + ηj,t,ξ , (12)

with j ∈ J, being J the set of 66 US companies, t the weekly observation, and ξ the binary
variable that takes value ξ = 1 for calls and ξ = −1 for puts. Firstly, these regressions
serve as a sanity check of the co-movements of the two measures of impact of credit
risk. Secondly, the residuals ηj,t,ξ summarise the pricing information carried by CDS in
determining the AICRs which is not obtainable from option prices. Results are reported in
Table 3. As expected, the two measures strongly co-move and the loading coefficients have
the predicted sign.

The next step is assessing the different impact of credit risk on call and put options.
Different measures of leverage (book leverage, model-implied market leverage estimated
from options only, model-implied market leverage estimated using both options and CDSs)
can be used as proxies of credit risk. In the following tests, the selected measure of leverage
is the market leverage estimated using option. The final implications do not depend on
the specific measure of leverage chosen and empirical results based on the other leverage
measures are available upon request.
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Table 3. Estimation of regression (12). (a): Estimates of the pooled panel regression of average AICR
obtained from call options (ξ = 1) and CDS regressed onto average AICR obtained from call options
only. Number of observations: 15,476. F-stat: 25,623.33 (p-value: 0.0000). (b): Estimates of the pooled
panel regression of average AICR obtained from put options (ξ = −1) and CDS regressed onto
average AICR obtained from put options only. Number of observations: 14,895. F-stat: 3321.13
(p-value: 0.0000). A sandwich estimator for panel data is used to obtain robust standard errors.
Significance levels: 10% (*), 5% (**), 1% (***).

(a): AICR′ regressed onto AICR (both constructed on calls).
Regressand Adj-R2: 0.7416

AICR′1
Regressors Coefficient Robust Standard Error t-stat p-value

AICR1 0.7936 0.0050 160.07 0.000 ***
α1 0.0018 0.0001 29.42 0.000 ***

(b): AICR′ regressed onto AICR (both constructed on puts).
Regressand Adj-R2: 0.9054

AICR′−1

Regressors Coefficient Robust Standard Error t-stat p-value

AICR−1 0.8357 0.0145 57.63 0.000 ***
α−1 −0.0002 0.00004 −4.21 0.000 ***

The model implied market leverage LEV = (V − S)/S = D/S is then regressed onto
AICR and AICR′ of calls and puts for each set of weekly observations.13 By common
sense and the model predictions, a higher leverage should induce a larger impact of credit
risk on the company’s securities. Put options are expected to show statistically significant
positive loadings. More specifically, panel regressions are implemented with year- and
industry-fixed effects. These are

AICRj,t,ξ = αξ + µi,ξ + θy,ξ + βLEV j,t + ε j,t,i,y,ξ

AICR′j,t,ξ = α′ξ + µ′i,ξ + θ′y,ξ + β′LEV j,t + ε′j,t,i,y,ξ .
(13)

Year-fixed effects (θy,ξ and θ′y,ξ , with y = {2013, . . . , 2017}) should capture the time-
series variation in the volatility of the market, whilst the industry-fixed effects (µi,ξ and
µ′i,ξ , with i = {Financials; Mining, Energy and Utilities; Manufacturing; Retail, Wholesale
and Services}) account for possible cross-sectional heterogeneity due to the sector the
company operates.

The results are reported in Table 4. Remarkably, despite the two measures of credit
risk strongly co-move, in the case of call options, only AICR′—the measure obtained by
adding the information carried by CDSs—is able to capture the credit risk of the company.
Regardless, as the main effect of default on equity is to reduce its value by a sizeable
amount, it is understandable that credit risk does not affect much call options. Therefore,
the joint calibration on options and CDS carries extra information that, especially for call
options, is relevant for capturing default risk dynamics.

To stress this point further, the following regressions

ηj,t,ξ = αξ + µi,ξ + θy,ξ + βLEV j,t + εj,t,i,y,ξ , (14)

are estimated. Here, the left-hand side is constituted by the residuals obtained from
regression (12). These residuals indeed capture the extra information provided by the
calibration on CDSs which is not accounted for by the options. As shown in Table 5, the
residuals obtained from regression (13) are still strongly correlated with leverage in the case
of call options. Furthermore, the comparatively large adjusted R2 signals an undoubted
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explanatory power of leverage on those residuals. Therefore, we argue that CDS quotes
carry extra information regarding the credit risk of the companies when compared with
pricing information embedded in call options. The same conclusion does not hold for
equity put options which share most of the pricing information in terms of default with the
CDS written on the same reference entity.

Table 4. Estimation of regression (13). (a): Estimates of the fixed-effects panel regression of market
model-implied leverage LEV onto average AICR calculated over call options only. Number of
observations: 15,476. (b): Estimates of the fixed-effects panel regression of market model-implied
leverage LEV onto average AICR calculated over call options and CDSs. Number of observations:
15,476. (c): Estimates of the fixed-effects panel regression of market model-implied leverage LEV onto
average AICR calculated over put options only. Number of observations: 14,895. (d): Estimates of the
fixed-effects panel regression of market model-implied leverage LEV onto average AICR calculated
based on put options and CDSs. Number of observations: 14,895. Standard errors are adjusted for
four clusters based on industry. Significance levels: 10% (*), 5% (**), 1% (***).

(a): AICR (constructed on calls) regressed onto LEV.
Regressand Adj-R2: 0.0309

AICR1
Regressors Coefficient Robust Standard Error t-stat p-value

LEV 0.0002 0.0004 0.53 0.630
α1 0.0017 0.0006 2.74 0.071 *

Industry-FE X
Year-FE X

(b): AICR′ (constructed on calls and CDSs) regressed onto LEV.
Regressand Adj-R2: 0.1120

AICR′1
Regressors Coefficient Robust Standard Error t-stat p-value

LEV 0.0066 0.0013 5.16 0.014 **
α1 0.0029 0.0011 2.59 0.081 *

Industry-FE X
Year-FE X

(c): AICR (constructed on puts) regressed onto LEV.
Regressand Adj-R2: 0.4967

AICR−1
Regressors Coefficient Robust Standard Error t-stat p-value

LEV 0.0253 0.0015 16.72 0.000 ***
α−1 −0.0060 0.0020 −3.07 0.054 *

Industry-FE X
Year-FE X

(d): AICR′ (constructed on puts and CDSs) regressed onto LEV.
Regressand Adj-R2: 0.5326

AICR′−1
Regressors Coefficient Robust Standard Error t-stat p-value

LEV 0.0236 0.0019 12.41 0.001 ***
α−1 −0.0070 0.0023 −2.98 0.059 *

Industry-FE X
Year-FE X
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Table 5. Estimation of regression (14). (a): Estimates of the fixed-effects panel regression of market
model-implied leverage LEV onto the residuals obtain from regression (12) (calls). Number of
observations: 15,476. (b): Estimates of the fixed-effects panel regression of market model-implied
leverage LEV onto the residuals obtain from regression (12) (puts). Number of observations: 14,895.
Standard errors are adjusted for four clusters based on industry. Significance levels: 10% (*), 5% (**),
1% (***).

(a): Extra-information provided by CDSs when calls are used to infer credit risk.
Regressand Adj-R2: 0.3948

η1
Regressors Coefficient Robust Standard Error t-stat p-value

LEV 0.0064 0.0014 4.74 0.018 **
α1 −0.0002 0.0122 −0.17 0.875

Industry-FE X
Year-FE X

(b): Extra-information provided by CDSs when puts are used to infer credit risk.
Regressand Adj-R2: 0.0557

η−1
Regressors Coefficient Robust Standard Error t-stat p-value

LEV 0.0024 0.0008 2.98 0.058 *
α−1 −0.0018 0.0009 −1.90 0.153

Industry-FE X
Year-FE X

5.2. Sub-Samples Analysis Based on Sectors

In order to investigate further the link between options and credit risk, the same
regressions in (13) are re-estimated over the four sub-samples based on industry (therefore,
the industry-fixed effect is removed, whilst the year-fixed effect is kept). Based on the
findings in Carr and Wu (2017), a cross-sectional diversity should emerge. Only put options
are taken into consideration as the impact of default risk on call options was shown to be
insignificant. Results are reported in Table 6.

Table 6. Estimation of regression (13) over the four sub-samples. (a): Estimates of the year-fixed
effect panel regression of market model-implied leverage LEV onto average AICR calculated over
put options and CDSs of Financials. Number of observations: 1851 F-stat = 221.76 (p-value =
0.000). (b): Estimates of the year-fixed effect panel regression of market model-implied leverage
LEV onto average AICR calculated over put options and CDSs of Mining, Energy and Utilities.
Number of observations: 1900. F-stat = 63.75 (p-value = 0.000). (c): Estimates of the year-fixed effect
panel regression of market model-implied leverage LEV onto average AICR calculated over put
options and CDSs of Manufacturing. Number of observations: 6489. F-stat = 19.36 (p-value = 0.000).
(d): Estimates of the year-fixed effect panel regression of market model-implied leverage LEV onto
average AICR calculated over put options and CDSs of Retail, Wholesale and Services. Number of
observations: 4655. F-stat = 120.89 (p-value = 0.000). A sandwich estimator for panel data is used to
obtain robust standard errors. Significance levels: 10% (*), 5% (**), 1% (***).

(a): Financials
Regressand Adj-R2: 0.5205

AICR′−1
Regressors Coefficient Robust Standard Error t-stat p-value

LEV 0.0255 0.0008 32.20 0.000 ***
α−1 −0.0092 0.0012 −7.50 0.000 ***

Year-FE X
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Table 6. Cont.

(b): Mining, Energy and Utilities
Regressand Adj-R2: 0.3916

AICR′−1
Regressors Coefficient Robust Standard Error t-stat p-value

LEV 0.0200 0.0013 15.72 0.000 ***
α−1 −0.0013 0.0005 −2.69 0.007 ***

Year-FE X

(c): Manufacturing
Regressand Adj-R2: 0.3541

AICR′−1
Regressors Coefficient Robust Standard Error t-stat p-value

LEV 0.0249 0.0031 8.08 0.000 ***
α−1 −0.0040 0.0006 −6.87 0.000 ***

Year-FE X

(d): Retail, Wholesale and Services
Regressand Adj-R2: 0.1081

AICR′−1
Regressors Coefficient Robust Standard Error t-stat p-value

LEV 0.0009 0.0001 14.38 0.000 ***
α−1 0.0001 0.00002 4.91 0.000 ***

Year-FE X

Financial firms tend to actively manage their capital structures according to changes in
market conditions and to satisfy regulatory requirements. The results indeed capture the impact
of credit risk to be driven by financial leverage (highest adjusted R2 and significance). Similarly,
put prices of utility and energy companies seem to be influenced by credit risk as well. Operating
in regulated businesses and being strongly influenced by systemic factors as the state of the
economy, perhaps the regression fit could be enhanced accounting for macroeconomic factors.

As manufacturing companies usually invest in long-term assets, they tend to have the
same debt for a long period of time, without actively rebalancing their capital structure.
Therefore, their financial leverage varies passively with the stock price fluctuations. Also,
in addition to having a relatively small average AICR′−1 (see Table 7), they also have
the smallest mean leverage across the categories. This could explain the lower power of
leverage in driving the company credit risk (which is however small).

The same conclusion applies to companies operating in sales and services, despite to a
much weaker extent: given an average leverage comparable to manufacturing companies,
they also show relatively small AICR′−1. The regression adjusted R2 is almost a fifth of that
obtained from financial companies.

Unreported results available upon request show that these findings across the four
sub-samples still hold after having accounted for a firm-fixed effect.

Table 7. Sub-sample averages for leverage and AICR obtained from put options and CDSs.

Financials Energy and Utilities Manufacturing Sales and Services

LEV 1.3436 0.4478 0.2237 0.2286

AICR
′
−1 0.0265 0.0072 0.0008 0.0033

5.3. Explaining the Skew

Many attempts have been made in the literature in order to explain the shapes of the
implied volatilities obtained from options. It is well-known that inverting the Black–Scholes
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formula to determine the value of the volatility which matches the observed price produces
the so called volatility smile or smirk, instead of a flat line as predicted by the Black–Scholes
model. Furthermore, it has been extensively documented that equity volatilities display
more often a smirk rather than a smile: equity volatility is a decreasing and convex function
of the moneyness of the option. The negative slope of the implied volatility function is
referred to as negative skew.

The first works attempting to give a explanation for the observed skew are Black (1976)
and Christie (1982). Both attribute the negative slope to the possibility of the underlying to
default, the so-called leverage effect: if the underlying of the option can default, the left
tail of its distribution should be more sensitive to credit-related events which notoriously
make the value of the firm’s equity significantly drop. This increased probability of the
underlying falling due to default would be then reflected in the pricing of options. Also, as
put options protects the buyer against price falling, they should price both market- and
credit-related events. As shown in Section 5.1, put options indeed price credit risk (and
doubtlessly price market risk). However, some more recent works shed light on the drivers
of the volatility skew.

Carr and Wu (2017) show that the leverage effect can be generated by other sources
than leverage. As a matter of fact, the skew is also displayed by other assets, such as
commodities or indexes, which cannot default. In their work, they individuate three possi-
ble channels influencing volatility: (1) return volatility increases with financial leverage;
(2) positive shocks to systematic risk generate a negative correlation between the market’s
return and its volatility, regardless of the magnitude of financial leverage; (3) large negative
market disruptions show self-exciting behaviours.

Their estimations show that the volatility feedback effect (2) reveals itself mainly in the
variations of short-term options, the self-exciting behaviour (3) affects both short-term and
long-term option variations, and the financial leverage variation (1) has its largest impact on
long-dated options. Finally, when the model of Carr and Wu (2017) is applied to individual
companies, the three economic channels show up differently and to different degrees according
to the company’s specific business and capital structure. Therefore, their work constitutes a
valuable ruler in order to asses the compound option model predictions and results.

From a different perspective, the shape of the volatility smile/smirk provides an
insight on how the Black–Scholes model (mis)prices risk under the presence of both market
and credit risk, and how the estimation of the implied volatility is affected by them. Figure 4
suggests that the Black–Scholes implied volatility is an average of the implied volatility
estimated with a compound option model (which, instead, allows us to account for the
relative impact of credit and market risk separately).

Evidently, the Black–Scholes averages across the surface the impact of credit risk.
Analytically, the probabilities involved in the calculation of the option price à la Black–
Scholes are of the type

Q(ξST > ξK)

whilst those of the compound option model are of the type

Q(ξST > ξK|τ > ti).

By the law of total probability

Q(ξST > ξK) = EQ[Q(ξST > ξK|τ > ti)
]
,

thus showing that the probabilities involved in the Black–Scholes model are an average of
the probability of the option expiring in-the-money conditional upon the firm surviving at
the reimbursement dates. Therefore, the volatility smirk produced by Black–Scholes should
lie within the implied volatilities produced by the model. Figure 4 confirms this intuition.

Inspecting Figure 4, the averaging impacts mostly long-maturity options as the under-
lying probability of defaulting increases with the time horizon. Interestingly, for financial
companies, despite displaying a negative slope for both short and long-term maturity
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options, the skew is more likely to be associated with the leverage effect for long-maturity
options only (panel (b)). As a matter of fact, the compound option implied volatilities of
the short-term maturity options of financial companies (panel (a)), despite being highly
levered, replicate almost perfectly the Black–Scholes implied volatility which does not
accommodate for default risk explicitly.

More generally, the closer the two volatility smirks are, the lower the probability of
default and therefore the impact of credit risk (i.e., leverage effect) on the pricing of the
option. Also, a lower the probability of default should correspond to a flatter smirk.

Notice also that, if ∑i Fi ↓ 0, the compound option model coincides with Black and
Scholes (1973). Therefore, the larger the firm’s financial leverage the farther the Black–Scholes
implied volatilities surface should be with respect to those estimated via the compound option
model. However, if the two models reproduce very similar volatility skews even when the
company is highly levered (e.g., financials), it can be argued that ‘apparent’ leverage effect is
not driven by leverage and, therefore, financial leverage is not a good proxy for default risk,
at least in the short-term. This is exactly what Carr and Wu (2017) document.14

Moving to the explanation of the observed skew, which is the negative slope displayed
by the graph of the implied volatility plotted against moneyness, we adopt the definition
provided by Carr and Wu (2017), that is

Skew =
25∆PutσIV − 25∆CallσIV

50∆PutσIV
, (15)

where x∆PutσIV is the implied volatility of the put option whose delta is−x%, and y∆CallσIV
is the implied volatility of the call with delta equal to y%. The proposed measure of skewness
is more positive when the risk-neutral return distribution is more negatively skewed.

In order to investigate to what extent the displayed skew is driven by leverage, the
following panel regression are carried out

∆Skewj,t,T = αT + φj,T + θy,T + βAICRj,t−1,−1,T + ε j,t,y,T , (16)

where AICRj,t−1,T,−1 is the average AICR of put options having time to maturity equal
to T observed in the previous week. Rather than using industry-fixed effect, a firm-fixed
effect (φj) is estimated as, ultimately, we want to show the ability of this measure to forecast
future changes in the skew observed at the company level. If the skew is caused by the
leverage effect, a positive and statistically significant effect should be observed.

The variable ∆Skew is calculated based on (15). Call options are excluded, given the
results in Section 5.1. Also, ∆Skew is used rather than the contemporaneous level as the
time-series component of the latter is non-stationary for some companies (see Figure 5).

In particular, based on the previous findings, two sets of regression are estimated. As for
every day t, multiple maturities are observed, the skew of the shortest (minT : T < 1 year)
and longest (maxT : T > 1 year) maturity options is used in two separate sets of regressions.
Based on the different behaviour of the model for short and long term maturity options,
the skew should be driven by credit risk (here proxied as the AICR of out-of-the-money
put options) mostly for T > 1 rather than for T < 1.

The estimates are presented in Table 8. Consistently with economic intuition and the
empirical evidence in Carr and Wu (2011, 2017), only the changes in the skew of long-
maturity options are driven by the credit risk of the company. Also, the average AICR
of put options, is able, to some extent, to predict the future changes in the skew for those
options. The same variable is not able to explain the movements of the skew for options
with shorter maturities. Therefore, the high significance of the average AICR obtained
from put options, as well as the correct sign of its loading, points towards a connections
between the future changes of the negative skew and the today’s credit risk of the company.
However, the low fit is likely to be attributed either to the presence of other factors driving
the skew or to the highly non-linear link between the movements of the skew and the
impact of credit risk (or both).
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Figure 4. Volatility skews for different option maturities. The lines marked with circles are the
implied volatility estimates produced by the Black–Scholes model, whilst those marked with crosses
are the estimates produced by the compound option model. It is evident that the Black–Scholes
estimates of the implied volatility lie within the estimates produced by the model, thus suggesting
the aforementioned averaging effect. This effect is more pronounced for long-term maturity options
(panels (b,d,f,h)) than for options with shorter maturities (panels (a,c,e,g)), as the distance between
the two lines is larger for T > 1.
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Figure 5. Time-series of skew extracted from short-term maturity options (T < 1, panel (a)) and from
long-term maturity options (T > 1, panel (b)) for AAPL. Both panels show that the time series of the
levels of Skew (dotted-dashed line) is non-stationary whilst the increments (solid line) are stationary.

Table 8. Estimation of regression (16). (a): Predictive regression for short-term skew based on the
average ICR calculated over short-term put options and CDSs. Number of observations: 7746.
F-stat = 8.89 (p-value = 0.000). (b): Predictive regression for long-term skew based on the average
ICR calculated over long-term put options and CDSs. Number of observations: 6817. F-stat = 13.59
(p-value = 0.000). A sandwich estimator for panel data is used to obtain robust standard errors.
Significance levels: 10% (*), 5% (**), 1% (***).

(a): Predictive regression for short-term skew.

Regressand R2

(between):
0.0036

∆SkewT<1
R2

(within):
0.0004

Regressors Coefficient Robust Standard Error t-stat p-value

AICR′−1,T<1 −0.4308 0.9730 −0.44 0.659
αT<1 −0.0035 0.0009 −3.81 0.000 ***

firm-FE X
year-FE X

(b): Predictive regression for long-term skew.

Regressand R2

(between):
0.3096

∆SkewT>1
R2

(within):
0.0004

Regressors Coefficient Robust Standard Error t-stat p-value

AICR′−1,T>1 0.3360 0.0956 3.51 0.001 ***
αT>1 −0.0108 0.0017 −6.36 0.000 ***

firm-FE X
year-FE X

The fact that the R2-between is much larger than the R2-within (which is virtually
zero) shows a greater ability of (16) to describe the cross-sectional variation rather than the
time-series component of the changes in the skew.

6. Conclusions

To the best of our knowledge, this is the first work which explores and rigorously
assesses the impact of credit risk on equity calls and puts using a large sample of options
(both in the cross-section and the time-series dimension).
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In this paper, we investigate the effect of credit-related events on the pricing of equity
options. Given a firm which has issued n ≥ 1 defaultable coupon-bearing bonds, we
generalise the results in Merton (1974) and Geske (1977), and price the firm’s equity as
an n–fold compound option call option on the asset value struck at the face values of the
bonds outstanding. Further, we extend the pricing formula in Geske (1979) and show that
European vanilla options on the firm’s equity are (n + 1)-fold compound options written
on the value of the firm’s assets.

Given the functional form of the pricing equations of the compound option model, a
new measure of impact of credit risk based on option prices is constructed, thus allowing us
to rank the latter based on how much they are exposed to credit-related events. Consistent
with the economic intuition and the results in Carr and Wu (2011) (who, instead, opt for a
reduced-form approach to model default), call and put option prices are influenced very
differently by the possibility of the company defaulting. More specifically, as expected, call
options do not price credit risk as much as put options do. In fact, during normal times, the
proposed measure AICR is consistently larger for put options compared to calls. However,
we also showed that when the market factors the fear of an upcoming recession (such as
at the end of 2015) into option prices, both AICR measures on calls and puts spiked. This
suggests a timely reactiveness and economic soundness of the proposed measure.

Furthermore, we show that the pricing information in terms of default events carried
by CDSs and put options via their respective default probabilities are consistent with one
another. This may suggest a high degree of integration between the two markets, thus
ruling out possible arbitrage opportunities (i.e., if, say, the deep-out-the money 1-year put
is mispriced with respect to the CDS with identical tenor written on the same entity, one
could sell the more expensive and buy the cheapest to achieve an arbitrage profit in case
of default).

We finally attempt at predicting the future changes in the negative skew displayed
by equity options, and we show that the novel measure of credit risk constructed on put
prices is able to forecast the cross-sectional differences in the changes of the skew for long-
maturity equity options. Further work is however required to capture these movements
more precisely. Factors based on the channels described in Carr and Wu (2017) could be
constructed in order to improve the fit of the proposed regressions.

The implications of this study are multifaceted. Given the importance of default
risk for those assets which are more sensitive to events occurring in the left tail of equity
distribution (e.g., put options), risk-management implications for those instruments are
relevant, especially when the underlying is the equity of either highly levered or financially
distressed companies.

As a matter of fact, hedge funds often build highly levered positions in corporate
bonds while hedging away interest rate risk by going short on treasuries. Thus, their
hedged portfolios are mostly sensitive to changes in credit spreads rather than changes in
the level, slope and curvature of the yield curve. Give a the possibility of large negative
jumps in firm assets, then the appropriate hedging tool for corporate debt is not likely to be
the firm’s stock, but rather deep out-of-the-money puts written on the equity of the same
entity. In turn, the writer of these options will need to hedge its short position.

It is trivial to show that the Delta-hedge under the Black–Scholes model, which ignores
credit risk, is different than the hedge prescribed by a compound option model. In fact,
ignoring dividends for simplicity, the Delta-hedges under the Black–Scholes (BS) and a
compound option (CO) model differ as such:

∂PCO
ξ

∂S
=

∂PCO
ξ /∂V

∂S/∂V
6= ξΦ(ξd1) =

∂PBS
ξ

∂S
.

This inconsistency between the Black–Scholes and the compound option Greeks
applies to any other hedging strategy based on the option sensitivities as long as credit risk
is not accounted for, and these discrepancies become more and more severe for increasingly



Risks 2023, 11, 183 23 of 25

levered firms. A more in-depth analysis of this imperfect hedging when default risk is not
taken into account is though left for future research.

As every empirical analysis, our work is also subject to some limitations. In particular,
a plethora of models of default, both reduced-form and structural, have been proposed in
the literature and could be used to measure default probabilities. Focusing on the structural
models of default which the compound option model belongs to, we recognize that other
factors such as the inclusion of taxes (Leland 1994; Leland and Toft 1996), strategic default
(Anderson and Sundaresan 1996; Mella-Barral and Perraudin 1997), a default barrier (Black
and Cox 1976), or other frictions, might be relevant for a more accurate modelling of default
dynamics. The reason for working with a compound option model is due to the fact that it
easily allows us to separate short- versus long-term default, being also the corresponding
liabilities directly available from accounting data. It furthermore allows us to define the
proposed measure of credit risk on equity option based on the information content of
default events, and thus connecting it to the risk-neutral entropy of default probabilities.
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Notes
1 https://www.risk.net/derivatives/1505339/jp-morgan-chase-launches-equity-default-swaps (accessed on 11 October 2023).
2 https://www.bnpparibas.co.uk/en/aberdeen-standard-investments-and-bnp-paribas-global-risk-mitigation-index-delivers-st

rong-two-year-performance/ (accessed on 11 October 2023).
3 Shorting bonds is even more difficult in the cash market as the repo market for corporate bond is often illiquid, and the tenor of

the agreement is usually very short.
4 These are the assumptions in Merton (1974) and Geske (1977). Specifically: (A.1) there are no transactions costs, taxes, or problems

with indivisibilities of assets; (A.2) there are a sufficient number of investors with comparable wealth levels so that each investor
believes that he can buy and sell as much of an asset as he wants at the market price; (A.3) there exists an exchange market
for borrowing and lending at the same rate of interest; (A.4) short-sales of all assets, with full use of the proceeds, is allowed;
(A.5) trading in assets takes place continuously in time.

5 That is the value of equity before paying the bond. E.g., if the continuation value of the equity S? is 20 and the face value of debt
is 30, then equity is worthless (S = 0).

6 This is true as long as S and V are co-monotonic, that is there exist and increasing function f such that S = f (V). That is the case,
among others, in Merton (1974), Geske (1977, 1979) and here.

7 To be precise, the option’s payoff consistent with the compound option model of equity should be

P(ξ)
T = ξ

(
ST(V)1{τ>T} + S?

i 1{τ≤T} − K
)
1{ξST(V)≥ξK},

where S?
i is the value of the equity for which the firm defaulted at ti (which is the payment date before the maturity of the option).

Setting S?
i = 0 reads as option market participants estimating zero equity value at default (which might be consistent with

precautionary motives). Moreover, for the vast majority of the options in the sample, the option’s maturity is before the maturity
of the first debt (that is T < t1), thus implying (6) to be the exact payoff function.

8 In Information Theory, information content (or surprisal) of a signal is the amount of information gained when it is sampled. It is
defined as minus the log-probability of the event: the less likely the event, the greater is the “surprise” associated if it happens.
See Cover and Thomas (2006) for further details.

https://www.risk.net/derivatives/1505339/jp-morgan-chase-launches-equity-default-swaps
https://www.bnpparibas.co.uk/en/aberdeen-standard-investments-and-bnp-paribas-global-risk-mitigation-index-delivers-strong-two-year-performance/
https://www.bnpparibas.co.uk/en/aberdeen-standard-investments-and-bnp-paribas-global-risk-mitigation-index-delivers-strong-two-year-performance/
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9 Usually, the P-entropy of a discrete random variable X is defined as HP
b (X) = −∑i P(X = xi) logb P(X = xi) as the chosen base

is usually b = {2, e, 10}. Here, instead, having a base b ∈ (0, 1), the minus is not necessary as the logb function is already positive.
10 Unreported empirical tests show that bi are indeed approximately constant for the sample. By construction, bi is already bounded

in (0, 1); moreover it is the probability of the intersection of the option expiring ITM and the firm surviving up to ti. Therefore, as
the probability of the intersection is smaller of the probability of the single events, it should not surprise that bi is quite small
and stable.

11 This estimation technique is based on Brigo and Mercurio (2006) and is further discussed in Maglione (2022), Section 3.3. We refer
to these references for further details.

12 Other values of loss given default have been investigated as a robustness and results are available upon request.
13 More specifically, after estimating the asset volatility surface from options, the average value σ̄V is used to compute the asset

value such that (4) holds. Subsequently, the model implied market value of debt is obtained.
14 The compound option model of default used here is able to model default only by the mean of financial leverage: if at

reimbursement dates the equity of the firm is not large enough to repay the face value of the liability due, then the firm defaults.
It should be clear that real-world default may occur not only in case of excessive financial leverage. Indeed, other sources of
default are investigated in Carr and Wu (2017). What we refer as ‘apparent’ leverage effect is the possibility of observing a
sizeable and similar skew both in the Black–Scholes and compound option implied volatilities when a firm is highly levered:
since the compound options accounts for financial leverage, observing a large skew after having accounted for the latter may
suggest that put option price the possibility of a large fall in asset prices for reasons other than leverage.
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