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Abstract: Instantaneous volatility of logarithmic return in the lognormal fractional SABR model is
driven by the exponentiation of a correlated fractional Brownian motion. Due to the mixed nature
of driving Brownian and fractional Brownian motions, probability density for such a model is less
studied in the literature. We show in this paper a bridge representation for the joint density of the
lognormal fractional SABR model in a Fourier space. Evaluating the bridge representation along a
properly chosen deterministic path yields a small time asymptotic expansion to the leading order for
the probability density of the fractional SABR model. A direct generalization of the representation of
joint density often leads to a heuristic derivation of the large deviations principle for joint density
in a small time. Approximation of implied volatility is readily obtained by applying the Laplace
asymptotic formula to the call or put prices and comparing coefficients.

Keywords: asymptotic expansion; lognormal fractional SABR model; mixed fractional Brownian
motion; Malliavin calculus; bridge representation

1. Introduction

The celebrated Black and Black-Scholes-Merton models have been the benchmark for
European options on currency exchange, interest rates, and equities since the inauguration
of the trading on financial derivatives. However, empirical evidence has shown that the
main drawback of these models is the assumption of constant volatility; the key parameter
required in the calculation of option premia under such models. The volatility parameters
induced from market data are in fact nonconstant across markets; dubbed as volatility smile.

The Stochastic αβρ (SABR hereafter) model, suggested by Hagan, Lesniewski, and
Woodward in Hagan et al. (2015), is one of the models, such as local volatility models,
stochastic volatility models, and exponential Lévy type of models, etc, that attempts to
capture the volatility smile effect. Furthermore, as opposed to local volatility models, in the
SABR model the volatility smile moves in the same direction as the underlying with time,
see Hagan et al. (2002).

The SABR model is depicted by the following system of stochastic differential equa-
tions (SDEs):

dFt = αtF
β
t dWt, F0 = F, (1)

dαt = ναtdZt, α0 = α, (2)

with β ∈ [0, 1], where Ft denotes the forward price and αt the instantaneous volatility. Wt
and Zt are correlated Brownian motions with a constant correlation coefficient ρ. The SABR
model is at times referred to as lognormal SABR when β = 1. The SABR formula is an
asymptotic expansion for the implied volatilities of call options with various strikes with
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small expiry times. For the reader’s convenience, we reproduce the SABR formula in the
following. Let σBS(K, τ) be the implied volatility of a vanilla option struck at K and time to
expiry τ. The SABR formula states

σBS(K, τ) = ν
log(F/K)

D(ζ)
{1 + O(τ)} (3)

as the time to expiry τ approaches 0. The function D and the parameter ζ involved in (3)
are defined respectively as

D(ζ) = log

(√
1− 2ρζ + ζ2 + ζ − ρ

1− ρ

)

and

ζ =


ν
α

F1−β−K1−β

1−β if β 6= 1;

ν
α log

(
F
K

)
if β = 1.

Generally, the SABR formula is given one order higher, up to order τ. Here we present only
the zeroth order for our own purpose.

The geometry of the SABR model is isometrically diffeomorphic to the two-dimensional
hyperbolic space, also known as the Poincaré plane. This isometry leads to a derivation
of the SABR Formula (3) based on an expression of the heat kernel, known as the McK-
ean kernel, on Poincaré plane. In particular, the lowest order term in (3) has a geometric
interpretation. The function D is the geodesic distance from the spot value (F0, α0) to the
vertical line F = K in the upper half plane {(F, α) ∈ R2 : α ≥ 0}. Hence, the lowest order
term in (3) is indeed the ratio between the absolute value of logmoneyness, i.e., log(K/F0),
and the geodesic distance from (F0, α0) to the vertical line F = K in the upper half-plane.
We refer readers interested in this topic to Hagan et al. (2015) for more detailed discussions.
As expression for heat kernel on hyperbolic space is concerned, Ikeda and Matsumoto in
Ikeda and Matsumoto (1999) provided a probabilistic approach and obtained, among other
interesting results, a representation for the transition density of hyperbolic Brownian mo-
tion, i.e., the heat kernel over the Poincaré plane. See Theorem 2.1 in Ikeda and Matsumoto
(1999) for details.

The aforementioned nice isometry between the SABR model and Poincaré plane breaks
down if the volatility process, i.e., the αt process in (1), is driven by a fractional Brownian
motion such as the second equation in (6) considered in the paper. Moreover, due to the lack
of Markovianity of fractional Brownian motions, thus the nonexistence of the forward and
backward Kolmogorov equations, the classical asymptotic expansion approaches, such as
the heat kernel or WKB expansion, are no longer applicable. In this regard, the probabilistic
approach in Ikeda and Matsumoto (1999) is more applicable and tractable when dealing
with processes driven by fractional Brownian motions.

The volatility process is generally conceived as behaving “fractionally” in that the
driving noise is a fractional process, e.g., a fractional Brownian motion with a Hurst
exponent other than a half. For a far from an exhaustive list, models that attempt to
incorporate the fractional feature of volatility include: the ARFIMA model in Granger
and Joyeux (1980) and the FIGARCH model Baillie et al. (1996) for discrete-time models;
the long memory stochastic volatility model in Comte and Renault (1998) and the affine
fractional stochastic volatility model in Comte et al. (2012) for continuous time models.
Somewhat on the contrary, in a recent study in Gatheral et al. (2018), the Hurst exponent
H is estimated as being less than a half; thereby indicating antipersistency as opposed to
the persistency of the volatility process. For a more detailed and in-depth consideration of
this issue, we refer interested readers to the discussions in Cont and Das (2022) and Rogers
(2019). It is also worth mentioning that generalizations of the Heston model to the fractional
version have been considered in El Euch and Rosenbaum (2019) and Guennoun et al. (2018).
Heston-related models are usually dealt with via the characteristic or moment-generating
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functions. However, in this paper, we take the approach following closely the methodology
in Ikeda and Matsumoto (1999). As arbitrage in the modeling is concerned, we remark that,
in contrast with the models discussed in for instance Jarrow et al. (2009) and Mishura (2008)
within which the underlying prices were assumed driven by fractional Brownian motions,
the model considered in the paper is free of arbitrage opportunity since it is the volatility
process that is driven by a fractional Brownian motion while the underlying itself is still
driven by a (correlated) Brownian motion.

In order to embed the empirically observed fractional feature of the volatility process
into the classical SABR model, we suggest in this paper a fractional version of the SABR
model as in (6). Modulo a mean-reversion component, this model aligns with the model
statistically tested in Gatheral et al. (2018). The main observation in Gatheral et al. (2018)
is that in using the square root of the realized variance as a proxy for the instantaneous
volatility, the logarithm of the volatility process behaves like a fractional Brownian motion
in almost any time scale of frequency. The Hurst exponent H inferred from the time series
data is less than a half; indeed, H ≈ 0.1, see also Cont and Das (2022) and Rogers (2019).
This observation of a small Hurst exponent in the volatility process analyzes the model as
more technical and challenging from a stochastic analysis point of view. To our knowledge,
most of the small time asymptotic expansions for processes driven by fractional Brownian
motions have restrictions on the Hurst exponent H of the driving fractional Brownian
motion, mostly H ≥ 1

4 . One of the advantages of the approach undertaken in the current
paper is that it works without restriction on the Hurst exponent H. The key ingredient is a
representation in a Fourier space, which we call the bridge representation in Section 2, for
the joint density of log spot and volatility, see (9).

A small time asymptotic expansion of the joint density is readily obtained from the
bridge representation. The idea is to approximate the conditional expectation in the bridge
representation by a judiciously chosen deterministic path since, conditioned on the initial
and terminal points, at each point in time a Gaussian process will not wander too far away
from its expectation. As long as an asymptotic expansion for the density of the underlying
asset is available, obtaining an expansion for implied volatility is almost straightforward
by basically comparing the coefficients with a similar expansion obtained by using the
lognormal density on the Black or the Black-Scholes-Merton side.

The methodology of deriving the bridge representation (9) can be generalized directly
to obtain a bridge representation for the joint density multiple times; hence inducing a repre-
sentation for finite-dimensional distributions of the fractional SABR model, see Theorem 4.
Based on this bridge representation for finite-dimensional distributions, Section 5 is de-
voted to a heuristic yet appealing derivation of the large deviations principle for the joint
density of the fractional SABR model in small time. This large deviations principle in a
sense can be regarded as defining a “geodesic distance” over the fractional SABR plane
since, as we shall show in Section 5, it recovers the energy functional on the Poincaré plane
when H = 1

2 . We leave the rigorous proof of the large deviations principle in future work.
An immediate consequence of this large deviation principle is the fractional SABR formula
(to the lowest order) (26) which recovers the classical SABR formula when H = 1

2 . The
fractional SABR Formula (26) pertains to the guiding principle that the lowest order term
in the implied volatility expansion is given by the ratio between the absolute value of the
logmoneyness and the geodesic distance to the vertical line F = K.

The rest of the paper is organized as follows. The fractional SABR model is specified
and the bridge representation for joint density is shown in Section 2. Sections 3 and 4
provide small time asymptotic expansions of the joint density and of the implied volatilities
respectively. Section 5 presents the bridge representation for finite-dimensional distri-
butions and the large deviations principle. Finally, the paper concludes in Section 6
with discussions.
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2. Model Specification

Throughout the text, B = {Bt, t ≥ 0} and W = {Wt, t ≥ 0} denote two independent
standard Brownian motions defined on the filtered probability space (Ω,Ft,P) satisfying
the usual conditions. Let BH = {BH

t , t ≥ 0} be a fractional Brownian motion with Hurst
exponent H ∈ (0, 1) generated by B (see Decreusefond and Üstünel 1999), i.e.,

BH
t =

∫ t

0
KH(t, s)dBs,

where KH is the Molchan-Golosov kernel

KH(t, s) = cH(t− s)H− 1
2 F
(

H − 1
2

,
1
2
− H, H +

1
2

; 1− t
s

)
1[0,t](s), (4)

with cH =

[
2HΓ( 3

2−H)
Γ(2−2H)Γ(H+ 1

2 )

]1/2
and F is the Gauss hypergeometric function. Also, the au-

tocovariance function of a fractional Brownian motion is denoted by R(t, s) and defined as

R(t, s) = E(BH
t BH

s ) =
1
2

(
t2H + s2H − |t− s|2H

)
. (5)

Lastly, we assume that all random variables and stochastic processes are defined on (Ω,Ft,P).

2.1. The Model

We study the following lognormal fractional SABR (fSABR hereafter) model in risk-
neutral probability (for simplicity, interest and dividend rates are both assumed zero):

St = s0 +
∫ t

0 αrSr(ρdBr + ρ̄dWr),

αt = α0eνBH
t ,

(6)

where s0 and α0 are the given time zero (current observed) values for the processes S and α
respectively, ρ ∈ (−1, 1) and ρ̄ =

√
1− ρ2.

In other words, the underlying price St follows a stochastic volatility model with the
(instantaneous) volatility process αt, and αt is given by the exponentiation of a correlated
fractional Brownian motion. The main purpose of this section is to derive the bridge
representations (9) and (13) for the joint densities of (St, αt). The bridge representation is
the crucial starting line in obtaining expansions and approximations of the joint densities
to be discussed in Section 3.

By making a change in variables
Xt = ln St, Yt = αt,

the system (6) can be written more explicitly as
Xt = x0 + y0

∫ t
0 eνBH

s (ρdBs + ρ̄dWs)−
y2

0
2

∫ t
0 e2νBH

s ds,

Yt = y0eνBH
t ,

(7)

where x0 = ln s0 and y0 = α0.

2.2. Malliavin Calculus with Respect to Brownian Motion

We provide some preliminaries on Malliavin calculus with respect to the two Brownian
motions B and W in this subsection. We refer the reader to Hu (2017) and Nualart (2006)
for more details.

For any fixed T > 0, let H = L2([0, T]) be the separable Hilbert space of all square-
integrable real-valued functions on the interval [0, T] with scalar product denoted by
〈·, ·〉H. The norm of an element h ∈ H will be denoted by ‖h‖H. For any h ∈ H, we put
W(h) =

∫ T
0 h(t)dWt and B(h) =

∫ T
0 h(t)dBt.



Risks 2022, 10, 156 5 of 27

For any m, n ∈ N, denote by C∞
p (Rm+n) the set of all infinitely differentiable functions

g : Rm+n → R such that g and all of its partial derivatives have polynomial growth. We
make use of the notation ∂ig = ∂g

∂xi
whenever g ∈ C1(Rm+n).

Let S denote the class of smooth and cylindrical random variables such that a random
variable F ∈ S has the form

F = g(W(h1), . . . , W(hm), B(k1), . . . , B(kn)), (8)

where g belongs to C∞
p (Rm+n), h1, . . . , hm and k1, . . . , kn are in H, and m, n ∈ N.

For a smooth and cylindrical random variable F of the form (8), its Malliavin derivative
with respect to W is the H-valued random variable given by

D1
t F =

m

∑
i=1

∂ig(W(h1), . . . , W(hm), B(k1), . . . , B(kn))hi(t), t ∈ [0, T],

and respectively its Malliavin derivative with respect to B is given by

D2
t F =

n

∑
i=1

∂m+ig(W(h1), . . . , W(hm), B(k1), . . . , B(kn))ki(t), t ∈ [0, T].

For any p ≥ 1, we will denote the domain of D in Lp(Ω) by D1,p, meaning that D1,p is the
closure of the class of smooth and cylindrical random variables S with respect to the norm

‖F‖1,p =

(
E|F|p +E

(
‖D1F‖2

H + ‖D2F‖2
H

) p
2
) 1

p

.

We tailor Theorem 2.1.2 in Nualart (2006) to the following lemma which yields
a result on the absolute continuity of the law of a random vector with respect to the
Lebesgue measure.

Lemma 1. Let F = (F1, F2) be a random vector inD1,2. If the Malliavin matrix γ := (〈D1Fi, D1Fj〉H +

〈D2Fi, D2Fj〉H)1≤i,j≤2 of F is invertible a.s. Then the law of F is absolutely continuous with re-
spect to the Lebesgue measure on R2. Consequently, the joint density of the random variables
(F1, F2) exists.

2.3. Bridge Representation for the Joint Density

In this subsection, we show the existence of the joint density of (Xt, Yt) for any t > 0 by
using Malliavin calculus. We also give a bridge representation for the joint density by adapt-
ing the methodology introduced in Ikeda and Matsumoto Ikeda and Matsumoto (1999).

Theorem 1. For any t > 0, the law of (Xt, Yt) satisfying (7) is absolutely continuous with respect
to the Lebesgue measure on R2. Moreover, the joint probability density p(t; x, y) of (Xt, Yt) has the
following bridge representation

p(t; x, y)

=
1

y
√

2πν2t2H
e−

(ln (y/y0))
2

2ν2t2H ×

1
2π

∫
R
E

 e
i
(

x−x0−ρy0
∫ t

0 eνBH
s dBs+

y2
0vt
2

)
ξ
e−

ρ̄2y2
0vtξ2

2

∣∣∣∣∣∣BH
t =

ln (y/y0)

ν

dξ. (9)

where vt =
∫ t

0 e2νBH
s ds and i =

√
−1.

Remark 1. The bridge representation (9) can be regarded as a generalization of the well-known
McKean kernel, namely, the classical heat kernel over a 2-dimensional hyperbolic space. For reader’s
reference, the McKean kernel pH2(t; x, y) reads
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pH2(t; x, y) =
√

2e−t/8

(2πt)3/2

∫ ∞

d

ξe−ξ2/2t√
cosh ξ − cosh d

dξ,

where d = d(x, y; x0, y0) is the geodesic distance from (x, y) to (x0, y0). The geodesic distance

satisfies cosh d(x, y; x0, y0) =
(x−x0)

2+y2+y2
0

2yy0
. Note that the McKean kernel is a density with

respect to the Riemannian volume form 1
y2 dxdy. Indeed, in the case where H = 1

2 , ν = 1 and
ρ = 0, Ikeda-Matsumoto in Ikeda and Matsumoto (1999) showed how to recover the McKean kernel
from (9). See also Cheng and Wang (2018) for a different representation in terms of a Bessel bridge
for the hyperbolic heat kernel.

Proof. Notice that we can rewrite (7) as
Xt = x0 +

∫ t
0 Ys(ρdBs + ρ̄dWs)− 1

2

∫ t
0 Y2

s ds,

Yt = y0eνBH
t .

Now we fix any T ≥ t. Then according to Sections 2.2 and 5.2 in Nualart (2006), the
Malliavin derivatives of Xt and Yt are given as follows

D1
θYt = 0,

D2
θYt = y0νeνBH

t KH(t, θ)1[0,t](θ)

and

D1
θ Xt = ρ̄Yθ1[0,t](θ) = ρ̄y0eνBH

θ 1[0,t](θ),

D2
θ Xt =

(
ρYθ +

∫ t

θ
ρD2

θYsdBs +
∫ t

θ
ρ̄D2

θYsdWs −
∫ t

θ
YsD2

θYsds
)

1[0,t](θ)

=

(
ρy0eνBH

θ + ρy0ν
∫ t

θ
eνBH

s KH(s, θ)dBs + ρ̄y0ν
∫ t

θ
eνBH

s KH(s, θ)dWs

)
1[0,t](θ)

−y2
0ν
∫ t

θ
e2νBH

s KH(s, θ)ds 1[0,t](θ).

Thus, the Malliavin matrix γ of (Xt, Yt) is given by

γ =

(
γ11 γ12
γ21 γ22

)
,

where

γ11 =
∫ t

0
(D1

θ Xt)
2dθ +

∫ t

0
(D2

θ Xt)
2dθ

=
∫ t

0
ρ̄2y2

0e2νBH
θ dθ +

∫ t

0

(
ρy0eνBH

θ + ρy0ν
∫ t

θ
eνBH

s KH(s, θ)dBs

+ρ̄y0ν
∫ t

θ
eνBH

s KH(s, θ)dWs − y2
0ν
∫ t

θ
e2νBH

s KH(s, θ)ds
)2

dθ,

γ12 = γ21 =
∫ t

0
D1

θ XtD1
θYtdθ +

∫ t

0
D2

θ XtD2
θYtdθ

= y0νeνBH
t

∫ t

0
KH(t, θ)

(
ρy0eνBH

θ + ρy0ν
∫ t

θ
eνBH

s KH(s, θ)dBs

+ρ̄y0ν
∫ t

θ
eνBH

s KH(s, θ)dWs − y2
0ν
∫ t

θ
e2νBH

s KH(s, θ)ds
)

dθ,
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and

γ22 =
∫ t

0
(D1

θYt)
2dθ +

∫ t

0
(D2

θYt)
2dθ

= y2
0ν2e2νBH

t

∫ t

0
KH(t, θ)2dθ.

Then it follows from the Cauchy-Schwarz inequality that almost surely

γ2
12 < y2

0ν2e2νBH
t

∫ t

0
KH(t, θ)2dθ ×∫ t

0

(
ρy0eνBH

θ + ρy0ν
∫ t

θ
eνBH

s KH(s, θ)dBs

+ρ̄y0ν
∫ t

θ
eνBH

s KH(s, θ)dWs − y2
0ν
∫ t

θ
e2νBH

s KH(s, θ)ds
)2

dθ

≤ γ22 · γ11,

which implies that the Malliavin matrix γ is invertible a.s. Hence, by Lemma 1 the law of
(Xt, Yt) is absolutely continuous with respect to the Lebesgue measure on R2.

Next, we calculate the joint probability density p(t; x, y) of (Xt, Yt) as follows. For any
bounded and continuous function f defined on R2, we have

E[ f (Xt, Yt)]

= E
[

f

(
x0 + y0

∫ t

0
eνBH

s (ρdBs + ρ̄dWs)−
y2

0vt

2
, y0eνBH

t

)]
. (10)

Note that conditioned on FB
t , y0ρ̄

∫ t
0 eνBH

s dWs is normally distributed since W and BH are
independent. Moreover,

E
[

y0ρ̄
∫ t

0
eνBH

s dWs

∣∣∣∣F B
t

]
= 0,

E
[(

y0ρ̄
∫ t

0
eνBH

s dWs

)2
∣∣∣∣∣F B

t

]
= y2

0ρ̄2
∫ t

0
e2νBH

s ds = y2
0ρ̄2vt.

From (10), it follows by conditioning on F B
t that

E[ f (Xt, Yt)]

= E
[
E
[

f

(
x0 + y0ρ̄

∫ t

0
eνBH

s dWs + y0ρ
∫ t

0
eνBH

s dBs −
y2

0vt

2
, y0eνBH

t

)∣∣∣∣∣FB
t

]]

= E

∫
 f

(
x0 + ξ + y0ρ

∫ t

0
eνBH

s dBs −
y2

0vt

2
, y0eνBH

t

)
e
− ξ2

2y2
0 ρ̄2vt√

2πy2
0ρ̄2vt

dξ



= E


∫


1√
2πy2

0ρ̄2vt

f
(

x, y0eνBH
t
)

e
−

(
x−x0−y0ρ

∫ t
0 eνBH

s dBs+
y2

0vt
2

)2

2y2
0 ρ̄2vt

dx



=
∫
R2

f (x, y)E

 1√
2πy2

0ρ̄2vt

e
−

(
x−x0−y0ρ

∫ t
0 eνBH

s dBs+
y2

0vt
2

)2

2y2
0 ρ̄2vt

∣∣∣∣∣∣∣∣∣B
H
t =

ln (y/y0)

ν


× 1

y
√

2πν2t2H
e−

(ln y−ln y0)
2

2ν2t2H dx dy. (11)
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By using the identity

e
− u2

2y2
0 ρ̄2vt =

√
y2

0ρ̄2vt

2π

∫
R

eiuξe−
y2

0 ρ̄2vtξ2

2 dξ

and letting u = x− x0 − ρy0
∫ t

0 eνBH
s dBs +

y2
0vt
2 , we have

1√
2πy2

0ρ̄2vt

e
− 1

2y2
0 ρ̄2vt

(
x−x0−y0ρ

∫ t
0 eνBH

s dBs+
y2

0vt
2

)2

=
1

2π

∫
e

i
(

x−x0−ρy0
∫ t

0 eνBH
s dBs+

y2
0vt
2

)
ξ
e−

y2
0 ρ̄2vtξ2

2 dξ. (12)

Plugging (12) into the right-hand side of (11), we get

E[ f (Xt, Yt)]

=
1

y
√

2πν2t2H

1
2π

∫
R2

f (x, y)e−
(ln (y/y0))

2

2ν2t2H ×

∫
R
E

 e
i
(

x−x0−ρy0
∫ t

0 eνBH
s dBs+

y2
0vt
2

)
ξ
e−

y2
0 ρ̄2vtξ2

2

∣∣∣∣∣∣BH
t =

ln (y/y0)

ν

dξ dx dy.

Finally, we end up with the following bridge representation of the density (9).

By transforming back to the original variables (s, a) = (ex, y), we obtain a bridge
representation for the joint density q(t; s, a) of (St, αt) in (6).

Corollary 1. The joint density q(t; s, a) of the lognormal fractional SABR model (6) has the
following bridge representation

q(t; s, a) =
e−

(ln(a/a0))
2

2ν2t2H

a
√

2πν2t2H

1
2πs

(13)

×
∫
R

(
s
s0

)iξ
E

 e
i
(
−ρ
∫ t

0 a0eνBH
s dBs+

a2
0vt
2

)
ξ
e−

ρ̄2a2
0vt

2 ξ2

∣∣∣∣∣∣BH
t =

ln(a/a0)

ν

dξ.

3. Expansion Around Deterministic Path

To gain more intuition and, in particular, a more practical form for applications in
obtaining approximations of implied volatility, this section is devoted to deriving an ex-
pansion to the lowest order of the bridge representation (9) around a properly chosen
deterministic path. The expansion will be shown useful in deriving a small time approxi-
mation for implied volatility in Section 4.

Recall that the joint density p of (Xt, Yt) has the representation given in (9) as

p(t; x, y)

=
1

y
√

2πν2t2H
e−

(ln (y/y0))
2

2ν2t2H ×

1
2π

∫
R
E

 e
i
(

x−x0−ρy0
∫ t

0 eνBH
s dBs+

y2
0vt
2

)
ξ
e−

ρ̄2y2
0vtξ2

2

∣∣∣∣∣∣BH
t =

ln (y/y0)

ν

dξ.
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Let us start with a few naïve calculations, as follows. We expand the above conditional
expectation around the deterministic path ms, for 0 ≤ s ≤ t, that is determined by the
conditional expectation of BH

s given its terminal point BH
t = ln(y/y0)

ν . Precisely,

ms := E
[

BH
s

∣∣∣∣BH
t =

ln (y/y0)

ν

]
= R

(
1,

s
t

) ln (y/y0)

ν
,

where R is defined in (5). By Taylor’s expansion, we have, for n ≥ 0,

e−iρξ
∫ t

0 y0eνBH
s dBs e−

1
2 (ρ̄

2ξ−i)ξ
∫ t

0 y2
0e2νBH

s ds

≈ e−iρξ
∫ t

0 y0eνms dBs e−
1
2 (ρ̄

2ξ−i)ξ
∫ t

0 y2
0e2νms ds ×

n

∑
k,`=0

(−iρξ)k

k!

{∫ t

0
y0

(
eνBH

s − eνms
)

dBs

}k
×

1
`!

{
−1

2
(ρ̄2ξ − i)ξ

∫ t

0
y2

0

(
e2νBH

s − e2νms
)

ds
}`

.

Thus, even for obtaining a naïve expansion, we shall need a systematic way of computing
the conditional expectations of the form, for either k ≥ 1 or ` ≥ 1,

E
[

e−iρξ
∫ t

0 y0eνms dBs

{∫ t

0

(
eνBH

s − eνms
)

dBs

}k{∫ t

0

(
e2νBH

s − e2νms
)

ds
}`
∣∣∣∣∣BH

t =
ln (y/y0)

ν

]
,

which is pretty complicated if not impossible. Nevertheless, as far as the leading order is
concerned, small-time expansion of the joint density p to the lowest order (i.e., k = ` = 0)
is still manageable. The result is summarized in the following theorem.

In the following sequel, for simplification of the notation, we use E η
ν
[·] to denote

E
[
·|BH

t = η
ν

]
, where η = ln(y/y0). A function g is denoted by g(t) = O(ta) as t → 0+ if

it satisfies

lim sup
t→0+

|g(t)|
ta < ∞.

Theorem 2. The joint probability density p of the process (Xt, Yt) satisfying (7) has the following
asymptotic to the lowest order

p(t; x, y) (14)

=
1

2π

1

y
√

ν2t2H
e−

η2

2ν2t2H
1

y0
√

tψ(η)
e
− 1

2y2
0ψ(η)

(
x−x0√

t
+

y2
0
√

t
2 CeR(η)−ρy0t−HCRK(η)

η
ν

)2(
1 + O

(√
t
))

,

where

CRK(η) :=
∫ 1

0
eR(1,u) η

ν KH(1, u)du,

CeR(η) :=
∫ 1

0
e2R(1,u) η

ν du,

ψ(η) := CeR(η)− ρ2C2
RK(η).

Proof. To the lowest order, p is given by

p(t; x, y)

=
e−

η2

2ν2t2H

y
√

2πν2t2H

1
2π

∫
R

ei(x−x0)ξ e−
1
2 (ρ̄

2ξ−i)ξ
∫ t

0 y2
0e2νms dsE η

ν

[
e−iρξ

∫ t
0 y0eνms dBs

]
dξ. (15)
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We consider the conditional expectation in the above expression. Note that
∫ t

0 eνms dBs

and BH
t are jointly Gaussian. We apply the following identity to evaluate the conditional

expectation: if X and Y are jointly normal with mean 0, we can decompose X as

X =
cov(X, Y)

V(Y)
Y +

√
V(X)V(Y)− cov(X, Y)2

V(Y)
Z,

where Y and Z are independent and Z is standard normal. Hence,

E[ f (X)|Y = y] = E
[

f

(
cov(X, Y)

V(Y)
y +

√
V(X)V(Y)− cov(X, Y)2

V(Y)
Z

)]
.

In our case, X =
∫ t

0 eνms dBs and Y = BH
t , hence

V(X) =
∫ t

0
e2νms ds = t

∫ 1

0
e2R(1,u)ηdu = CeR(η) t,

V(Y) = t2H ,

cov(X, Y) =
∫ t

0
eνms KH(t, s)ds = tH+ 1

2

∫ 1

0
eR(1,u)ηKH(1, u)du = CRK(η) tH+ 1

2 .

Therefore,

E η
ν

[
e−iρξ

∫ t
0 y0eνms dBs

]
= e−iρξy0t

1
2−H CRK(η)

η
ν E
[

e−iρξy0

{√
t
√

CeR(η)−C2
RK(η)

}
Z
]

= exp

[
−iρξy0t

1
2−HCRK(η)

η

ν
−

ρ2ξ2y2
0t

2

{
CeR(η)− C2

RK(η)
}]

.

Thus, by substituting the above expression into (15), we obtain

p(t; x, y)

=
1

2π

1

y
√

ν2t2H
e−

η2

2ν2t2H ×

1√
2π

∫
R

ei(x−x0)ξe−
1
2 (ρ̄

2ξ−i)ξty2
0CeR(η) e−iρξy0t

1
2−HCRK(η)

η
ν−

ρ2ξ2y2
0t

2 {CeR(η)−C2
RK(η)} dξ

=
1

2π

1

y
√

ν2t2H
e−

η2

2ν2t2H ×

1√
2π

∫
R

e
i
(

x−x0+
y2

0t
2 CeR(η)−ρy0t

1
2−HCRK(η)

η
ν

)
ξ

e−
ξ2y2

0t
2 {CeR(η)−ρ2C2

RK(η)} dξ

=
1

2π

1

y
√

ν2t2H
e−

η2

2ν2t2H
1

y0
√

tψ(η)
e
− 1

2y2
0ψ(η)

(
x−x0√

t
+

y2
0
√

t
2 CeR(η)−ρy0t−HCRK(η)

η
ν

)2

. (16)

We postpone the detailed error analysis to Appendix A.1 in the Appendix A.

Remark 2. We remark that in the logarithmic scale, (14) can be expressed in a more concise form as

ln p(t; x, y)

= − 1
2t2H

η2

ν2 +
1

y2
0ψ(η)

(
x− x0

t
1
2−H

+
y2

0tH+ 1
2

2
CeR(η)− ρy0CRK(η)

η

ν

)2
+ O(ln t).
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Remark 3. In the case that ν = 1, ρ = 0, and H = 1
2 , we have

CeR(η) =
∫ 1

0
e2R(1,u)ηdu =

∫ 1

0
e2uηdu =

1
2η

(e2η − 1) =
y2 − y2

0
2ηy2

0
.

Then (14) reduces to

1
2π
× 1

y
√

t
e−

η2
2t × 1

y0
√

CeR(η)t
e
− 1

2y2
0CeR(η)t

(
x−x0+

y2
0t
2 CeR(η)

)2

=
1

2π

1
y
√

t
e−

η2
2t

1
y0
√

CeR(η)t
e
− (x−x0)

2

2y2
0CeR(η)t e−

x−x0
2 (1 + O(t))

=
1

2πt
e
− 1

2t

[
η2+

2η(x−x0)
2

y2−y2
0

]
e−

x−x0
2

yy0
√

CeR(η)
(1 + O(t)). (17)

Notice that in this case (Xt, Yt) represents the Brownian motion in the hyperbolic plane whose
transition density pH (with respect to the Riemannian area measure) has the leading term in small
time asymptotic as

pH(t; x, y) =
1

2πt
e−

d2(x,y;x0,y0)
2t (1 + O(t)),

where d denotes the geodesic distance between (x, y) and (x0, y0) in the hyperbolic plane. For
reader’s reference, the hyperbolic cosine of the geodesic distance d(x, y; x0, y0) has the closed
form expression

cosh d(x, y; x0, y0) =
(x− x0)

2 + y2
0 + y2

2y0y
.

Thus, in a sense the following function in (17)

d̃(x, y; x0, y0) :=

√
η2 +

2η

y2 − y2
0
(x− x0)2

can be regarded as an approximation of the hyperbolic geodesic distance. The complete recovery of
the hyperbolic geodesic distance is demonstrated in Section 5 below.

4. Small Time Approximation of Option Price and Implied Volatility

We derive in this section the small-time asymptotics of the premium of a call option and
its associated implied volatility by applying the small-time asymptotics for the probability
density obtained in Section 3 when H ≤ 1

2 . It is documented, for example, in Ekström
and Lu (2015), that if the underlying asset is governed by an exponential Lévy model,
the induced implied volatilities of non-ATM options may explode if jumps exist and the
underlying process jumps towards the strike. As we shall see in the following, when
H < 1

2 , the small time approximation of implied volatility also explodes; creating a jump-
like behavior in the underlying process.

Let k = ln K be the logmoneyness, t the time to expiry, and recall that St = eXt . Though
equivalently, we shall be primarily working with the (Xt, Yt) process as in (7) rather than
the (St, αt) process in (6) hereafter. We write the price C of a call as a function of k and t as

C(k, t) := E
[
(St − K)+

]
= E

[
(eXt − ek)+

]
=

∫∫
(ex − ek)+p(t; x, y)dx dy.

To evaluate the last integral, we approximate the joint density p by the small time asymp-
totics obtained in Theorem 2, then, as t → 0+, apply Laplace asymptotic formula to the
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resulting integral. For the reader’s convenience, we provide proof in Appenidx A.2 a
variation of the Laplace asymptotic formula that is tailored for our own use.

Lemma 2. Let H ≤ 1
2 . For out-of-money call options, i.e., k > x0, the call price C(k, t) has the

following asymptotic as t→ 0

ln C(k, t) ≈ − 1
2t2H

{
η2
∗

ν2 +
1

y2
0ψ(η∗)

(
k− x0

t
1
2−H

− ρy0CRK(η∗)
η∗
ν

)2
}

, (18)

where η∗ is the minimizer

η∗ = argmin

{
η ∈ R :

η2

ν2 +
1

y2
0ψ(η)

(
k− x0

t
1
2−H

− ρy0CRK(η)
η

ν

)2
}

.

Proof. The proof is a straightforward application of the Laplace asymptotic Formula (A12)
in Lemma A1. Let C = {(x, η) : x ≥ k} ⊆ R2 and α = 1

2 − H ≥ 0. By using the asymptotic
density (14), consider

C(k, t) =
∫ ∞

0

∫ ∞

k
(ex − ek)p(t; x, y)dxdy

=
1

2π

∫ ∞

0

∫ ∞

k

(
ex − ek

){ 1

y
√

ν2t2H
e−

η2

2ν2t2H
1

y0
√

tψ(η)
×

e
− 1

2y2
0tψ(η)

(
x−x0−ρy0CRK(η)

η
ν t

1
2−H

)2

e−
x−x0
2ψ(η)

CeR(η)
(

1 + O
(√

t
))dxdy

=
1

2πνy0tH+ 1
2

∫∫
C

(
ex − ek√

ψ(η)

)
e−

x−x0
2ψ(η)

CeR(η) ×

e
− 1

2t

{
η2

ν2 t2α+ 1
y2

0ψ(η)
(x−x0−ρy0CRK(η)

η
ν tα)

2
} (

1 + O
(√

t
))

dxdη.

Applying the Laplace asymptotic Formula (A12) to the lowest order term in the last expres-
sion yields

− ln C(k, t) ≈ 1
2t

{
η2
∗

ν2 t2α +
1

y2
0ψ(η∗)

(
x∗ − x0 − ρy0CRK(η∗)

η∗
ν

tα
)2
}

=
1

2t2H

{
η2
∗

ν2 +
1

y2
0ψ(η∗)

(
x∗ − x0

tα
− ρy0CRK(η∗)

η∗
ν

)2
}

,

where, for fixed t, (x∗, η∗) is the minimizer of the function

(x∗, η∗) = argmin

{
(x, η) ∈ C :

η2

ν2 t2α +
1

y2
0ψ(η)

(
x− x0 − ρy0CRK(η)

η

ν
tα
)2
}

= argmin

{
(x, η) ∈ C :

η2

ν2 +
1

y2
0ψ(η)

(
x− x0

tα
− ρy0CRK(η)

η

ν

)2
}

.

Since the objective function is continuous in (x, η) ∈ C and it is a quadratic function in x, it
follows that x∗ = k when t is small enough, thereby

η∗ = argmin

{
η :

η2

ν2 +
1

y2
0ψ(η)

(
k− x0

tα
− ρy0CRK(η)

η

ν

)2
}

.
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Remark 4. The plots in Figure 1 shows graphically the uniqueness of the minimal point η∗ for
H = 1

4 and H = 3
4 . In these particular examples, the contours are convex in the half plane x > k,

which corresponds to the out-of-money calls. For out-of-money puts, x < k, though the contours are
not convex, the uniqueness of η∗ sustains.

Contour plot for H = 0.25

x

η

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−1
.5

−1
.0

−0
.5

0.
0

0.
5

1.
0

1.
5

Contour plot for H = 0.75

x

η
−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−1
.5

−1
.0

−0
.5

0.
0

0.
5

1.
0

1.
5

Figure 1. The contour plots. Parameters ρ = −0.7, ν = 1, y0 = 1, t = 0.5. H = 0.75 on the right;
H = 0.25, on the left.

So long as we establish an asymptotic for the log price ln C(k, t) for k > x0, by using
the following small time asymptotic for implied volatility in Gao and Lee (2014) or Roper
and Rutkowski (2009)

σBS(k, t) =
|k− x0|√

2t| ln C(k, t)|
+ O

(
ln | ln C(k, t)|√
t| ln C(k, t)|3/2

)
, (19)

an asymptotic formula for implied volatility follows immediately. We summarize the result
in the following theorem but omitting its proof.

Theorem 3. Let H ≤ 1
2 and let k = ln K be the log moneyness and α = 1

2 − H. The implied
volatility σBS(k, t) for out-of-money calls (k > x0) has the following asymptotic in small time
to expiry

σ2
BS(k, t) = σ2

BS

(
k
tα

)
≈ (k− x0)

2

t2α

{
η2
∗

ν2 +
1

y2
0ψ(η∗)

(
k− x0

tα
− ρy2

0CRK(η∗)
η∗
ν

)2
}−1

. (20)

The minimal point η∗ is given Lemma in 2.

Remark 5. Note that (20) does not recover the SABR formula when H = 1
2 . The derivation of the

SABR formula relies heavily on the geometry and symmetry of the underlying SABR plane which is
isometric to the Poincaré plane. Figure 2 shows the comparison between the two formulas with time
to expiry t = 1. Parameters are chosen so as to reproduce the figures in Hagan et al. (2002). In this
set of parameters, the maximal difference between the two approximate implied volatility curves is
about 1% for logmoneyness k ∈ [−1, 1].
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Figure 2. The plot on the left shows the approximate implied volatility curves versus logmoneyness
with time to expiry t = 1 produced by (20) (in blue) the SABR Formula (3) (in red). Parameters are
set as ρ = −0.06867, ν = 0.5778, a0 = 0.13927. The plot on the right shows the difference between the
two curves.

We conclude the section by remarking that, as time to expiry t approaches zero,
the approximate implied volatility σBS(k, t) flattens out with H > 1

2 ; whereas the whole
surface σBS(k, t) explodes with H < 1

2 except for the at-the-money option k = x0. Figure 3
shows the plots of approximate implied volatilities σ given in (20) versus logmoneyness
k for time to expiry t = 0.01 and t = 1 respectively, and various Hurst exponents H.
As in Figure 2, parameters are chosen as a0 = 0.13927, ν = 0.5778, and ρ = −0.06867.
The numerical determination of the η∗’s is relatively efficient since it is basically a one-
dimensional optimization problem.
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fSABR implied volatility, t =  0.01
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fSABR implied volatility, t =  1
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Figure 3. The implied volatility curves for t = 0.01 on the left, t = 1 on the right. Parameters are
set as ρ = −0.06867, ν = 0.5778, a0 = 0.13927. H = 0.1 in red, H = 0.3 in orange, H = 1

2 in green,
H = 0.7 in blue, H = 0.9 in purple.
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5. A Heuristic Large Deviation Principle

In this section, we provide a heuristic derivation of the sample path large deviation
principle for (Xt, Yt) in small time by bootstrapping the bridge representation to multi-
period. For simplicity, we introduce the following vector notations.

t = (t1, . . . , tn), xt = (xt1 , . . . , xtn), yt = (yt1 , . . . , ytn),

BH
t = (BH

t1
, . . . , BH

tn ), Xt = (Xt1 , . . . , Xtn), Y t = (Yt1 , . . . , Ytn),

ξt = (ξt1 , . . . , ξtn), ηt = (ηt1 , . . . , ηtn), ζt = (ζt1 , . . . , ζtn).

Theorem 4. The multiperiod joint density p of (Xt, Yt)

p(x1, y1, . . . , xn, yn) := P[(Xt1 , Yt1) = (x1, y1), . . . , (Xtn , Ytn) = (xn, yn)]

has the following bridge representation

p(x1, y1, . . . , xn, yn) (21)

= E

 n

∏
k=1

1√
2πy2

0ρ̄2∆vtk

e
− 1

2y2
0 ρ̄2∆vtk

(
∆xtk−y0ρ

∫ tk
tk−1

eνBH
s dBs+

y2
0
2 ∆vtk

)2
∣∣∣∣∣∣∣νBH

t = ηt

×
P
[
y0eνBH

t = yt

]
,

where ηt = log yt − log y0, ∆xtk = xtk − xtk−1 , and ∆vtk = vtk − vtk−1 for k = 1, . . . , n. Recall
that vt =

∫ t
0 eνBH

s ds.

Proof. For any bounded measurable function f : Rn ×Rn → R, consider the expectation∫∫
f (xt, yt)p(xt, yt)dxtdyt

= E[ f (Xt, Y t)]

= E
[
E
[

f (Xt, Y t)|F B
tn

]]
.

Let ξti =
∫ ti

0 eνBH
s dWs, ζti =

∫ ti
0 eνBH

s dBs and thus accordingly ∆ξti = ξti − ξti−1 =∫ ti
ti−1

eνBH
s dWs, ∆ζti = ζti − ζti−1 =

∫ ti
ti−1

eνBH
s dBs. Note that, conditioned on FB

tn
, the random

variables ∆ξti ’s are independent normal with mean 0 and variance ∆vti . We calculate the
conditional expectation as follows.

E
[

f (Xt, Y t)|F B
tn

]
= E

[
f

(
x0 + ρy0ζt −

y2
0

2
vt + ρ̄y0ξt, y0eνBH

t

)∣∣∣∣∣FB
tn

]

=
∫

f

(
x0 + ρy0ζt −

y2
0

2
vt + ρ̄y0ξt, y0eνBH

t

)
n

∏
k=1

1√
2π∆vtk

e
−

(∆ξtk
)2

2∆vtk d∆ξt. (22)

By applying the change of variables

xtk = x0 + ρy0ζtk −
y2

0
2

vtk + ρ̄y0ξtk ,

thus

∆ξtk =
1

ρ̄y0

(
∆xtk − ∆ζtk −

y2
0

2
∆vtk

)
.
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The integral (22) becomes

∫
f
(

xt, y0eνBH
t
) n

∏
k=1

1√
2π∆vtk

e
−

(∆ξtk
)2

2∆vtk d∆ξt

=
∫

f
(

xt, y0eνBH
t
) n

∏
k=1

1√
2πρ̄2y2

0∆vtk

e
− 1

2ρ̄y0∆vtk

(
∆xtk−ρy0

∫ tk
tk−1

eνBH
s dBs−

y2
0
2 ∆vtk

)2

d∆xt

=
∫

f
(

xt, y0eνBH
t
) n

∏
k=1

1√
2πρ̄2y2

0∆vtk

e
− 1

2ρ̄y0∆vtk

(
∆xtk−ρy0

∫ tk
tk−1

eνBH
s dBs−

y2
0
2 ∆vtk

)2

dxt

since the Jacobian between d∆xt and dxt 1. It follows that∫∫
f (xt, yt)p(xt, yt)dxtdyt

= E
[
E[ f (Xt, Y t)|F B

t

]]
= E

∫ f
(

xt, y0eνBH
t
) n

∏
k=1

1√
2πρ̄2y2

0∆vtk

e
− 1

2ρ̄y0∆vtk

(
∆xtk−ρy0

∫ tk
tk−1

eνBH
s dBs−

y2
0
2 ∆vtk

)2

dxt


=

∫∫
dxtdyt f (xt, yt)×

E

 n

∏
k=1

1√
2πρ̄2y2

0∆vtk

e
− 1

2ρ̄y0∆vtk

(
∆xtk−ρy0

∫ tk
tk−1

eνBH
s dBs−

y2
0
2 ∆vtk

)2 ∣∣∣∣∣∣νBH
t = ηt

×
P
[
y0eνBH

t = yt

]
.

This completes the proof of bridge representation (21) since f is arbitrary.

To move onto a heuristic derivation of the sample path large deviation principle for
(Xt, Yt) in small time, we take logarithm on both sides of (21) and obtain

log p(xt1 , yt1 , . . . , xtn , ytn)

= logE

 n

∏
k=1

1√
2πy2

0ρ̄2∆vtk

e
− 1

2y2
0 ρ̄2∆vtk

(
∆xtk−y0ρ

∫ tk
tk−1

eνBH
s dBs+

y2
0
2 ∆vtk

)2
∣∣∣∣∣∣∣νBH

t = η


+ logP

[
νBH

t = ηt

]
−∑ log yti . (23)

In the following, we ignore the last term on the right-hand side of (23) and intuitively
calculate the limits as n→ ∞ of the first two terms. Note that to the leading order we have

logP
[
νBH

t = ηt

]
≈ − 1

2ν2 η′R−1η,

where R = [R(ti, tj)] is the covariance matrix of BH
t . We further discretize the autovariance

R of fractional Brownian motion as

R(ti, tj) = E
[

BH
ti

BH
ti

]
=
∫ ti∧tj

0
KH(ti, s)KH(tj, s)ds

≈
i∧j

∑
k=0

KH(ti, tk)KH(tj, tk)∆t = K′K∆t,
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where K denotes the upper triangular matrix

Kij =


KH(ti, tj), if i ≥ j;

0, otherwise.

Thereby, R−1 = 1
∆t K−1(K′)−1. Let b = (bt1 , . . . btn) be the solution to the linear system

η

ν
= Kb∆t.

It follows that

1
2ν2 η′R−1η =

1
2

∆tb′K′R−1Kb∆t

=
1
2

b′b∆t =
1
2

n

∑
k=1

b2
tk

∆t

−→ 1
2

∫ T

0
b2

t dt as n→ ∞.

Also in the limit as n→ ∞, we obtain ηt = ν
∫ t

0 KH(t, s)bsds.
On the other hand, for the first term on the right-hand side of (23), we have

logE

 n

∏
k=1

1√
2πy2

0ρ̄2∆vtk

e
− 1

2y2
0 ρ̄2∆vtk

(
∆xtk−y0ρ

∫ tk
tk−1

eνBH
s dBs+

y2
0
2 ∆vtk

)2
∣∣∣∣∣∣∣νBH = η


≈

n

∑
k=1

E
[
− 1

2y2
0ρ̄2∆vtk

(
∆xtk − y0ρ

∫ tk

tk−1

eνBH
s dBs

)2
∣∣∣∣∣νBH = η

]
.

Note that conditioned on νBH = η, we have

∆vtk =
∫ tk

tk−1

e2νBH
s ds ≈ e2ηtk−1 ∆t = e2ν ∑k−1

j=0 KH(tk−1,tj)btj ∆t
∆t

as well as

∆xtk − y0ρ
∫ tk

tk−1

eνBH
s dBs ≈ ∆xtk − y0ρeηtk−1 btk−1 ∆t

=

(
∆xtk

∆t
− y0ρeν ∑k−1

j=0 KH(tk−1,tj)btj ∆tbtk−1

)
∆t.

It follows that the first term in (23) has the limit

n

∑
k=1

E
[
− 1

2y2
0ρ̄2∆vtk

(
∆xtk − y0ρ

∫ tk

tk−1

eνBH
s dBs

)2
∣∣∣∣∣νBH = η

]

≈ −
n

∑
k=0

1

2y2
0ρ̄2e2ν ∑k−1

j=0 KH(tk−1,tj)btj ∆t

(
∆xtk

∆t
− y0ρeν ∑k−1

j=0 KH(tk−1,tj)btj ∆tbtk−1

)2
∆t

−→ −1
2

∫ T

0

1

y2
0ρ̄2e2ν

∫ t
0 KH(t,s)bsds

(
ẋt − y0ρeν

∫ t
0 KH(t,s)bsdsbt

)2
dt

as n→ ∞.
Putting the two limits together, we obtain heuristically for T ≈ 0 that
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− logP[Xt = xt, Yt = yt, for t ∈ [0, T]]

≈ 1
2

∫ T

0

1

y2
0ρ̄2e2ν

∫ t
0 KH(t,s)bsds

(
ẋt − y0ρeν

∫ t
0 KH(t,s)bsdsbt

)2
dt +

1
2

∫ T

0
b2

t dt

=
1
2

∫ T

0

1
ρ̄2y2

t
(ẋt − ρytbt)

2dt +
1
2

∫ T

0
b2

t dt

=
1
2

∫ T

0

1
ρ̄2

(
ẋt

yt
− ρbt

)2
dt +

1
2

∫ T

0
b2

t dt, (24)

where b ∈ L2[0, T] satisfies the integral equation

log yt − log y0 = ν
∫ t

0
KH(t, s)bsds

for all t ∈ [0, T]. We remark that (24) should serve as the rate function for the sample path
large deviation principle in small time for (Xt, Yt). Moreover, one may define the “geodesic”
from the initial point (x0, y0) to the terminal point (xT , yT) in the fSABR plane as the path
(x∗t , y∗t ) which minimizes the functional (24), i.e.,

(x∗t , y∗t ) := argmin
t 7→(xt ,yt)

1
2

∫ T

0

1
ρ̄2

(
ẋt

yt
− ρbt

)2
dt +

1
2

∫ T

0
b2

t dt,

where again bt is determined by solving the integral equation

log yt − log y0 = ν
∫ t

0
KH(t, s)bsds. (25)

Also, the minimizer can be regarded as the “geodesic” connecting (x0, y0) and (xT , yT).

Remark 6. Note that bt is indeed determined by the inverse operator K−1
H applied to log yt

y0
. In

particular, with H = 1
2 this inverse operator reduces to the usual derivative. Thus, with H = 1

2 ,

bt =
d
dt

(
log

yt

y0

)
=

ẏt

yt
.

The functional (24) becomes

1
2

∫ T

0

1
ρ̄2

(
ẋt

yt
− ρbt

)2
dt +

1
2

∫ T

0
b2

t dt

=
1
2

∫ T

0

1
ρ̄2

(
ẋt

yt
− ρ

ẏt

yt

)2
dt +

1
2

∫ T

0

ẏ2
t

y2
t

dt

=
1
2

∫ T

0

1
ρ̄2y2

t

(
ẋ2

t − 2ρẋtẏt + ẏ2
t

)
dt.

The last expression is the energy functional (up to the constant factor 1
2 ) associated with the

Riemann metric ds2 = 1
ρ̄2y2 (dx2 − 2ρdxdy + dy2). The diffusion process associated with this

Riemann metric is governed by the SDEs

dXt = YtdWt,

dYt = YtdZt,

where Wt and Zt are correlated Brownian motion with constant correlation ρ, which up to a linear
transformation is the upper plane model of the Poincaré space. In other words, with H = 1

2 , the
functional (24) recovers the energy functional for the classical Poincaré space, which is isometric to
the SABR plane.
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Lastly, with the aid of the sample path large deviation principle (24), it is nearly a
common practice, say by applying the Laplace asymptotic formula, to conclude that the
log premium of an out-of-money call in small time has the asymptotic as t→ 0

− log C(k, t) ≈ − logP[Xt ≥ k] ≈ 1
2

∫ T

0

1
ρ̄2

(
ẋ∗t
y∗t
− ρb∗t

)2
dt +

1
2

∫ T

0
b∗t

2dt,

where (x∗t , y∗t , b∗t ) denotes the optimal path that minimizes the functional (24) subject to
the constraint x∗t = k and y∗t , b∗t satisfy the integral Equation (25). Thus, by applying (19),
an approximation of implied volatility in small time is readily obtained. We summarize
the result in the following proposition which, with H = 1

2 , recovers the SABR Formula (3).
However, for H 6= 1

2 , the numerical implementation of (26) is more involved than that
of (20) since, as opposed to a one dimensional optimization problem, it is subject to solving
a two-dimensional constrained variational problem.

Proposition 1 (fSABR formula). Let k = log
(

K
s0

)
be the log moneyness. The implied volatility

σBS(k, t) in a small time to expiry has the asymptotics

σ2
BS ≈

k2

T

(∫ T

0

{
1

ρ̄2y∗t
2 (ẋ∗t − ρy∗t b∗t )

2 + b∗t
2

}
dt

)−1

, (26)

where (x∗t , b∗) is the minimizer of the variational problem

(x∗, b∗) = argmin
{

ẋ, b ∈ L2[0, T] :
∫ T

0

(
1

ρ̄2y2
t
(ẋt − ρytbt)

2 + b2
t

)
dt
}

with xT = k and y∗t satisfying

log y∗t − log y0 = ν
∫ t

0
KH(t, s)b∗s ds

for t ∈ [0, T]. Notice that (26) recovers the SABR Formula (3) with H = 1
2 .

6. Conclusions and Discussion

We showed in this paper a bridge representation in Fourier space and a small time
asymptotic for the joint probability of lognormal fractional SABR model for general
ρ ∈ (−1, 1). An application of the asymptotics of the joint density is an approximation
of the implied volatility in a short time. Due to the different nature of methodologies,
the newly obtained approximation of implied volatilities in small time does not recover
the celebrated SABR formula for implied volatility (to the zeroth order) when the Hurst
exponent H equals a half. To recover the SABR formula, we presented a heuristic derivation
of the sample path large deviation principle for the lognormal fractional SABR model by
bootstrapping via the multiperiod joint density. We emphasize once again that the same
trick is applicable to general fractional SABR models, i.e., to include a local volatility com-
ponent in the process St for an underlying asset. We leave the rigorous proof of the sample
path large deviation principle for fractional SABR models in future work. Lastly, the bridge
representation methodology is also applicable to the case in which the volatility process
is governed by an exponential fractional Ornstein-Uhlenbeck process since a fractional
Ornstein-Uhlenbeck process is Gaussian as well. However, as the time to expiry approaches
zero, the mean reversion part does not really play a role in the large deviation regime.
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Appendix A. Technical Proofs

In the appendix, we provide a detailed error analysis of the asymptotic expansion
for (14) and a version of Laplace’s asymptotic formula that is readily applicable to our case.

Appendix A.1. Error Analysis

Let C∞
0 (R2) be the space of smooth functions defined on R2 with compact support.

For a given f ∈ C∞
0 (R2), recalling η = ln (y/y0), from (9) we have

E[ f (Xt, Yt)] =
∫∫

f (x, y)p(t; x, y)dx dy

=
1

2π

∫∫∫
f (x, y)

e−
η2

2ν2t2H

y
√

2πν2t2H
ei(x−x0)ξE η

ν

e
i
(
−ρ
∫ t

0 y0eνBH
s dBs+

y2
0vt
2

)
ξ
e−

ρ̄2y2
0vtξ2

2

dξdxdy

=
1

2π

∫∫
e−ix0ξ f̂ (ξ, y)

e−
η2

2ν2t2H

y
√

2πν2t2H
E η

ν

e
i
(
−ρ
∫ t

0 y0eνBH
s dBs+

y2
0vt
2

)
ξ
e−

ρ̄2y2
0vtξ2

2

dydξ

=
1

2π

∫
e−ix0ξE

 f̂ (ξ, Yt)e
i
(
−ρ
∫ t

0 y0eνBH
s dBs+

y2
0vt
2

)
ξ
e−

ρ̄2y2
0vtξ2

2

dξ, (A1)

where
f̂ (ξ, y) =

∫
eiξx f (x, y)dx

is the Fourier transform of f with respect to x.
Note that the right-hand side of (14) equals the right-hand side of (15). We compare (A1)

with the following expression obtained by using the approximate joint density in (14)
and obtain

1
2π

∫∫∫
f (x, y)

e−
η2

2ν2t2H

y
√

2πν2t2H

×ei(x−x0)ξ e−
1
2 (ρ̄

2ξ−i)ξ
∫ t

0 y2
0e2νms dsE η

ν

[
e−iρξ

∫ t
0 y0eνms dBs

]
dξdxdy

=
1

2π

∫∫
e−ix0ξ f̂ (ξ, y)

e−
η2

2ν2t2H

y
√

2πν2t2H

×E η
ν

e
i
(
−ρ
∫ t

0 y0eνms dBs+
y2

0
2
∫ t

0 e2νms ds
)

ξ
e−

ρ̄2y2
0ξ2

2
∫ t

0 e2νms ds

 dξdxdy

=
1

2π

∫
e−ix0ξE

 f̂ (ξ, Yt)e
i
(
−ρ
∫ t

0 y0eνms dBs+
y2

0
2
∫ t

0 e2νms ds
)

ξ
e−

ρ̄2y2
0ξ2

2
∫ t

0 e2νms ds

dξ. (A2)
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For simplification, denote

λ1(t) = e
i
(
−ρ
∫ t

0 y0eνBH
s dBs+

y2
0vt
2

)
ξ
e−

ρ̄2y2
0vt

2 ξ2

and

λ2(t) = e
i
(
−ρ
∫ t

0 y0eνms dBs+
y2

0
2
∫ t

0 e2νms ds
)

ξ
e−

ρ̄2y2
0ξ2

2
∫ t

0 e2νms ds.

Then the modulus of the difference between (A1) and (A2) is equal to∣∣∣∣ 1
2π

∫
e−ix0ξE

[
f̂ (ξ, Yt)(λ1(t)− λ2(t))

]
dξ

∣∣∣∣. (A3)

The goal is to show that (A3) converges to zero in the order of t
1
2 as t → 0, for every

f ∈ C∞
0 (R2).

By applying the following inequality, for any z, w ∈ C,

|ez − ew| ≤
(

e<(z) + e<(w)
)
|z− w|,

where <(z) denotes the real part of z, we have

|λ1(t)− λ2(t)|

≤
(

e−
ρ̄2y2

0vtξ2

2 + e−
ρ̄2y2

0ξ2

2
∫ t

0 e2νms ds
)
×∣∣∣∣∣i

(
−ρ

∫ t

0
y0eνBH

s dBs +
y2

0vt

2

)
ξ −

ρ̄2y2
0vtξ

2

2

−i

(
−ρ

∫ t

0
y0eνms dBs +

y2
0

2

∫ t

0
e2νms ds

)
ξ +

ρ̄2y2
0ξ2

2

∫ t

0
e2νms ds

∣∣∣∣∣
≤ 2|Rt + iIt| (A4)

since e−
ρ̄2y2

0vt
2 ξ2

+ e−
ρ̄2y2

0ξ2

2
∫ t

0 e2νms ds ≤ 2 for all t and ξ. Apparently,Rt and It are given by

Rt =

[
−vt +

∫ t

0
e2νms ds

]
ρ̄2y2

0ξ2

2
,

It =

(
−ρ

∫ t

0
y0eνBH

s dBs +
y2

0vt

2
+ ρ

∫ t

0
y0eνms dBs −

y2
0

2

∫ t

0
e2νms ds

)
ξ.

In the following, K denotes a generic constant whose value may vary in different
contexts. Then, by (A3) and (A4) and Hölder’s inequality, we have∣∣∣∣ 1

2π

∫
e−ix0ξE

[
f̂ (ξ, Yt)(λ1(t)− λ2(t))

]
dξ

∣∣∣∣
≤ 2

∫
E
[
| f̂ (ξ, Yt)||Rt + iIt|

]
dξ

≤ 2
(
E
∫
| f̂ (ξ, Yt)|(1−ε)pdξ

) 1
p
(∫

E
[
| f̂ (ξ, Yt)|εq|Rt + iIt|q

]
dξ

) 1
q

≤ K
(
E
∫
| f̂ (ξ, Yt)|(1−ε)pdξ

) 1
p
(∫

E
[
| f̂ (ξ, Yt)|εq(|Rt|q + |It|q)

]
dξ

) 1
q
, (A5)

for some ε ∈ (0, 1) and 1
p + 1

q = 1, p, q > 0.

Since f ∈ C∞
0 (R2), it is easy to show the following properties of f̂ :
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(i) for any r ≥ 0, sup
(ξ,y)∈R2

∣∣∣ξr f̂ (ξ, y)
∣∣∣ < ∞;

(ii) for any r ≥ 0 and p > 0,
∫
|ξ|r sup

y∈R
| f̂ (ξ, y)|pdξ < ∞.

Note that property (ii) can be easily obtained by property (i).
By the above property (ii), we can show that

lim sup
t→0+

E
∫
| f̂ (ξ, Yt)|(1−ε)pdξ < ∞. (A6)

We compute the second term in (A5) separately as follows. By changing variables, we get∫
E
[
| f̂ (ξ, Yt)|εq|Rt|q

]
dξ

≤ Kρ̄2qy2q
0

∫
E
[
| f̂ (ξ, Yt)|εq

(
vq

t +

(∫ t

0
e2νms ds

)q)]
ξ2qdξ

= Kρ̄2qy2q
0 tq

∫
E
[
| f̂ (ξ, Yt)|εq

((∫ 1

0
e2νBH

tu du
)q

+

(∫ t

0
e2R(1,u)ηdu

)q)]
ξ2qdξ

= Kρ̄2qy2q
0 tq(L1 + L2), (A7)

where

L1 :=
∫

ξ2qE
[
| f̂ (ξ, Yt)|εq

(∫ 1

0
e2νBH

tu du
)q]

dξ,

L2 :=
∫

ξ2qE
[
| f̂ (ξ, Yt)|εq

(∫ 1

0
e2R(1,u)ηdu

)q]
dξ.

By property (ii) of f̂ , it is easy to see that

lim sup
t→0+

L2 ≤
(∫ 1

0
e2R(1,u)ηdu

)q ∫
ξ2qE

[
| f̂ (ξ, Yt)|εq

]
dξ < ∞. (A8)

For L1, by Jensen’s inequality and Hölder’s inequality, we have

L1 ≤
∫

ξ2qE
[
| f̂ (ξ, Yt)|εq

∫ 1

0
e2qνBH

tu du
]

dξ

≤
∫

ξ2q
{
E
[
| f̂ (ξ, Yt)|εqp1

]} 1
p1

{
E
[(∫ 1

0
e2qνBH

tu du
)q1
]} 1

q1
dξ

≤
∫

ξ2q
{
E
[
| f̂ (ξ, Yt)|εqp1

]} 1
p1

{∫ 1

0
E
[
e2qq1νBH

tu
]
du
} 1

q1
dξ

=
∫

ξ2q
{
E
[
| f̂ (ξ, Yt)|εqp1

]} 1
p1

{∫ 1

0
e2(qq1ν)2(tu)2H

du
} 1

q1
dξ.

where 1
p1

+ 1
q1

= 1 with p1, q1 > 0. Therefore, using property (ii) again, we can easily show

lim sup
t→0+

L1 ≤ lim sup
t→0+

∫
ξ2q
{
E
[
| f̂ (ξ, Yt)|εqp1

]} 1
p1 dξ

{∫ 1

0
e2(qq1ν)2(u)2H

du
} 1

q1
< ∞. (A9)

Thus, it implies from (A7)–(A9) that∫
E
[
| f̂ (ξ, Yt)|εq|Rt|q

]
dξ = O(tq), (A10)

for any q > 1, as t→ 0+.
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Similarly, we can write∫
E
[
| f̂ (ξ, Yt)|εq|It|q

]
dξ

≤ K
∫
|ξ|qE

[
| f̂ (ξ, Yt)|εq×{∣∣∣∣ρ ∫ t

0
y0eνBH

s dBs

∣∣∣∣q +
∣∣∣∣∣y2

0vt

2

∣∣∣∣∣
q

+

∣∣∣∣ρ ∫ t

0
y0eνms dBs

∣∣∣∣q +
∣∣∣∣∣y2

0
2

∫ t

0
e2νms ds

∣∣∣∣∣
q}]

dξ

= K(J1 + J2 + J3 + J4),

where

J1 := |ρ|q
∫
|ξ|qE

[
| f̂ (ξ, Yt)|εq

∣∣∣∣∫ t

0
y0eνBH

s dBs

∣∣∣∣q]dξ,

J2 :=
∫
|ξ|qE

[
| f̂ (ξ, Yt)|εq

∣∣∣∣∣y2
0vt

2

∣∣∣∣∣
q]

dξ,

J3 :=
∫
|ξ|qE

[
| f̂ (ξ, Yt)|εq

∣∣∣∣ρ ∫ t

0
y0eνms dBs

∣∣∣∣q]dξ,

J4 :=
∫
|ξ|qE

[
| f̂ (ξ, Yt)|εq

∣∣∣∣∣y2
0

2

∫ t

0
e2νms ds

∣∣∣∣∣
q]

dξ.

We estimate J1 through J4 separately as follows.

• J1: Choosing p1 > 0 such that qq1
2 > 1, by Hölder’s inequality, the Burkholder-Davis-

Gundy inequality, Jensen’s inequality and a change of variables, we obtain Notice that

J1 ≤ |ρ|qyq
0

∫
|ξ|q
{
E
[
| f̂ (ξ, Yt)|εqp1

]} 1
p1

{
E
[∣∣∣∣∫ t

0
eνBH

s dBs

∣∣∣∣qq1
]} 1

q1
dξ

≤ |ρ|qyq
0

∫
|ξ|q
{
E
[
| f̂ (ξ, Yt)|εqp1

]} 1
p1

{
E
[∣∣∣∣∫ t

0
e2νBH

s ds
∣∣∣∣

qq1
2
]} 1

q1

dξ

= |ρ|qyq
0t

q
2

∫
|ξ|q
{
E
[
| f̂ (ξ, Yt)|εqp1

]} 1
p1

E

∣∣∣∣∫ 1

0
e2νBH

tu du
∣∣∣∣

qq1
2


1

q1

dξ

≤ |ρ|qyq
0t

q
2

∫
|ξ|q
{
E
[
| f̂ (ξ, Yt)|εqp1

]} 1
p1

{∫ 1

0
E
[
eqq1νBH

tu
]
du
} 1

q1
dξ

= |ρ|qyq
0t

q
2

∫
|ξ|q
{
E
[
| f̂ (ξ, Yt)|εqp1

]} 1
p1

{∫ 1

0
e
(qq1ν)2

2 (tu)2H
du
} 1

q1
dξ.

By property (ii) we have

lim sup
t→0+

∫
|ξ|q
{
E
[
| f̂ (ξ, Yt)|εqp1

]} 1
p1

{∫ 1

0
e
(qq1ν)2

2 (tu)2H
du
} 1

q1
dξ

≤ lim sup
t→0+

∫
ξ2q
{
E
[
| f̂ (ξ, Yt)|εqp1

]} 1
p1 dξ

{∫ 1

0
e2(qq1ν)2(u)2H

du
} 1

q1
< ∞.

Thus, we can see that J1 = O(t
q
2 ) as t→ 0+.

• J2 and J4: The asymptotic behavior of J2 and J4 is the same as that of tqL1, and hence,
J2, J4 = O(tq) as t→ 0+.

• J3: By using the same technique to J1, we have
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J3 ≤ |ρ|qyq
0t

q
2

∫
|ξ|q
{
E
[
| f̂ (ξ, Yt)|εqp1

]} 1
p1

E

∣∣∣∣∫ 1

0
e2R(1,u)ηdu

∣∣∣∣
qq1

2


1

q1

dξ

and J3 = O(t
q
2 ) as t→ 0+.

Thus, putting all the estimates for the Ji’s together we get∫
E
[
| f̂ (ξ, Yt)|εq|It|q

]
dξ = O(t

q
2 ), (A11)

for any q > 1, as t→ 0+.
Therefore, it implies from (A5), (A6), (A10) and (A11) that∣∣∣∣ 1

2π

∫
e−ix0ξE

[
f̂ (ξ, Yt)(λ1(t)− λ2(t))

]
dξ

∣∣∣∣ = O(t
1
2 ),

that is, (A3) converges to zero in the order of t
1
2 as t→ 0, for every f ∈ C∞

0 (R2).

Appendix A.2. Laplace Asymptotic Formula

We prove the following form of the Laplace asymptotic formula required in the
derivation of the small time asymptotic of the price of an out-of-money call.

Lemma A1 (Laplace asymptotic formula). Let C be a closed and convex set in R2 with a
nonempty and smooth boundary ∂C. Suppose that θ(t, x) := θ0(x) + tαθ1(x) + t2αθ2(x), with
0 ≤ 2α < 1, has continuous second-order partial derivatives in x ∈ C, and, for every t sufficiently
small, the function θ(t, x) is locally convex in C and attains its minimum uniquely at x∗(t) ∈ ∂C.
Moreover, there is ε0 > 0 such that for any 0 < ε < ε0, there exist t0 and δ > 0 for which

θ(t, x) ≥ θ(t, x∗(t)) + δ, ∀(t, x) ∈ [0, t0]× (C \ Bε(x∗(t))),

where Bε(x∗(t)) = {x : |x− x∗(t)| < ε} is the open ball of radius ε centered at x∗(t).
Assume that f has continuous second-order partial derivatives in C, is integrable over C (i.e.,∫

C | f (x)|dx < ∞) and that f vanishes identically in Cc and on the boundary ∂C but the inward
normal directional derivative of f at x∗(t) is nonzero.

Then, we have the asymptotic expansion, as t→ 0+,∫
C

e−
θ(x,t)

t f (x)dx

=

√
2π t

5
2 e−

θ(t,x∗(t))
t√

∂2
tanθ(t, x∗(t))|∇θ(t, x∗(t))|

[
∇ f (x∗(t)) · ∇θ(t, x∗(t))

|∇θ(t, x∗(t))|2 +
1
2

∂2
tan f (x∗(t))

∂2
tanθ(t, x∗(t))

+ o(1)
]

, (A12)

where ∂2
tan f (x∗) and ∂2

tanθ(t, x∗) are the second derivatives of f and θ respectively in the tangential
direction to C at x∗.

Proof. For any 0 < ε < ε0, we split the integral on the left side of (A12) into two parts as∫
C

e−
θ(t,x)

t f (x)dx =
∫
C ⋂ Bε(x∗(t))

e−
θ(t,x)

t f (x)dx +
∫
C\Bε(x∗(t))

e−
θ(t,x)

t f (x)dx. (A13)

We treat the two terms on the right-hand side of (A13) individually. For the first term,
since the integration region is restricted to a subset of the small ball Bε(x∗(t)), it can be
reparametrized by y = (y1, y2) so that in the y-coordinates the set {y : y2 = 0} corresponds
to ∂C and the vectors {∂y1 , ∂y2} form a local orthonormal frame around x∗(t). For simplicity,
we further assume that in the y-coordinates x∗(t) is located at the origin. Note that in the
y-coordinates the vector ∂y2 is parallel to ∇θ(x∗(t)) as well as the inward normal vector of
C at x∗(t).
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We shall use the convention that repeated indices are summed up over their respective
ranges. Denote partial derivatives by subindices, we have for y ∈ Bε(x∗(t))

θ(t, y) = θ(t, 0) + θ2(t, 0)y2 +
1
2

θij(t, 0)yiyj + o(|y|2),

f (y) = fi(0)yi +
1
2

fij(0)yiyj + o(|y|2)

since θ1(0) = 0 for θ attains its minimum at the boundary point x∗(t).
Thus, in the y-coordinates the first integral on the right-hand side of (A13) reads∫

C ⋂ Bε(x∗(t))
e−

θ(t,x)
t f (x)dx

≈
∫ ε

0

∫ ε

−ε
e−

1
t (θ(t,0)+θ2(t,0)y2+ 1

2 θij(t,0)yiyj)
[

fi(0)yi +
1
2

fij(0)yiyj
]

dy1dy2. (A14)

Now, by a change of variables

y1 =
√

tz1, y2 = tz2,

we can write the above integral on the right-hand side of (A14) as

e−
θ(t,0)

t t
3
2

∫ ε
t

0

∫ ε√
t

− ε√
t

e−(θ2(t,0)z2+ 1
2 θ11(t,0)(z1)2+θ12(t,0)z1z2√t+ 1

2 θ22(t,0)(z2)2t) ×[
f1(0)z1

√
t + f2(0)z2t +

1
2

f11(0)(z1)2t + f12(0)z1z2t
3
2 +

1
2

f22(0)(z2)2t2
]

dz1dz2. (A15)

Note that, for any real numbers a1, . . . , a5, by dominated convergence theorem, we have

lim
t→0

∫ ε
t

0

∫ ε√
t

− ε√
t

e−(θ2(t,0)z2+ 1
2 θ11(t,0)(z1)2+θ12(t,0)z1z2√t+ 1

2 θ22(t,0)(z2)2t) ×[
a1z1 + a2z2 + a3(z1)2 + a4(z2)2 + a5z1z2

]
dz1dz2

=
∫ ∞

0

∫ ∞

−∞
e−(θ2(0,0)z2+ 1

2 θ11(0,0)(z1)2) ×[
a1z1 + a2z2 + a3(z1)2 + a4(z2)2 + a5z1z2

]
dz1dz2 ∈ (−∞, ∞).

Thus, the quantity in (A15) equals

e−
θ(t,0)

t t
3
2

{∫ ε
t

0

∫ ε√
t

− ε√
t

e−(θ2(t,0)z2+ 1
2 θ11(t,0)(z1)2)×[

f1(0)z1
√

t + f2(0)z2t +
1
2

f11(0)(z1)2t
]

dz1dz2 + O
(

t
1
2

)}
= e−

θ(t,0)
t t

3
2

[√
t · I + t · I I + t · I I I + O

(
t

1
2

)]
, (A16)

where

I =
∫ ε

t

0

∫ ε√
t

− ε√
t

e−(θ2(t,0)z2+ 1
2 θ11(t,0)(z1)2) f1(0)z1dz1dz2,

II =
∫ ε

t

0

∫ ε√
t

− ε√
t

e−(θ2(t,0)z2+ 1
2 θ11(t,0)(z1)2) f2(0)z2dz1dz2,

III =
1
2

∫ ε
t

0

∫ ε√
t

− ε√
t

e−(θ2(t,0)z2+ 1
2 θ11(t,0)(z1)2) f11(0)(z1)2dz1dz2.



Risks 2022, 10, 156 26 of 27

As t→ 0+, we calculate each integral individually as follows. For I, since the function in z1

is an odd function and the integral interval for z1 is symmetric about the origin, we obtain

I = f1(0)
∫ ε

t

0
e−θ2(t,0)z2

dz2 ×
∫ ε√

t

− ε√
t

e−(
1
2 θ11(t,0)(z1)2)z1dz1

= 0. (A17)

For II and III, notice that θ2(t, 0) > 0 and θ11(t, 0) > 0, and hence, we obtain

II = f2(0)
∫ ε

t

0
e−θ2(t,0)z2

z2dz2 ×
∫ ε√

t

− ε√
t

e−(
1
2 θ11(t,0)(z1)2)dz1

≈ f2(0)
∫ ∞

0
e−θ2(t,0)z2

z2dz2 ×
∫ ∞

−∞
e−

1
2 θ11(t,0)(z1)2

dz1

=
f2(0)

θ2
2(t, 0)

×
√

2π

θ11(t, 0)
, (A18)

and

III =
f11(0)

2

∫ ε
t

0
e−θ2(t,0)z2

dz2 ×
∫ ε√

t

− ε√
t

e−(
1
2 θ11(t,0)(z1)2)(z1)2dz1

≈ f11(0)
2

∫ ∞

0
e−θ2(t,0)z2

dz2 ×
∫ ∞

−∞
e−

1
2 θ11(t,0)(z1)2

(z1)2dz1

=
f11(0)

2θ2(t, 0)
×
√

2π

θ3
11(t, 0)

. (A19)

Therefore, it implies from (A14)–(A19) that, in the y-coordinates,∫
C ⋂ Bε(x∗(t))

e−
θ(t,x)

t f (x)dx ≈ e−
θ(t,0)

t t
5
2

√
2π

θ11(t, 0)

[
f2(0)

θ2
2(t, 0)

+
f11(0)

2θ2(t, 0)θ11(t, 0)
+ o(1)

]
. (A20)

For the second term on the right-hand side of (A13), we get∣∣∣∣∫C\Bε(x∗)
e−

θ(t,x)
t f (x)dx

∣∣∣∣ ≤ ∫C\Bε(x∗)
e−

θ(t,x∗)+δ
t | f (x)|dx ≤ e−

δ
t e−

θ(t,x∗)
t

∫
C
| f (x)|dx. (A21)

As a result, the second term is exponentially small (at the rate δ) as t → 0+ compared
to the expansion (A12) obtained for the first term, hence it does not contribute to the
asymptotic expansion.

Finally, by (A13), (A20) and (A21) we obtain the Laplace expansion (A12) by rewriting
the expressions for the right-hand side of (A20) in the x-coordinates.

References
Baillie, Richard T., Tim Bollerslev, and Hans Ole Mikkelsen. 1996. Fractionally integrated generalized autoregressive conditional

heteroskedasticity. Journal of Econometrics 74: 3–30. [CrossRef]
Cheng, Xue, and Tai-Ho Wang. 2018. Bessel bridge representation for heat kernel in hyperbolic space. Proceedings of the American

Mathematical Society 146: 1781–92. [CrossRef]
Comte, Fabienne, and Eric Renault. 1998. Long memory in continuous-time stochastic volatility models. Mathematical Finance 8:

291–323. [CrossRef]
Comte, Fabienne, Laure Coutin, and Eric Renault. 2012. Affine fractional stochastic volatility models. Annals of Finance 8: 337–78.

[CrossRef]
Cont, Rama, and Purba Das. 2022. Rough Volatility: Fact or Artifact? arXiv arXiv:2203.13820.
Decreusefond, Laurent, and A. Suleyman Üstünel. 1999. Stochastic analysis of the fractional Brownian motion. Potential Analysis 10:

177–214. [CrossRef]
Ekström, Erik, and Bing Lu. 2015. Short-time implied volatility in exponential Lévy models. International Journal of Theoretical and

Applied Finance 18: 1550025. [CrossRef]

http://doi.org/10.1016/S0304-4076(95)01749-6
http://dx.doi.org/10.1090/proc/13952
http://dx.doi.org/10.1111/1467-9965.00057
http://dx.doi.org/10.1007/s10436-010-0165-3
http://dx.doi.org/10.1023/A:1008634027843
http://dx.doi.org/10.1142/S0219024915500259


Risks 2022, 10, 156 27 of 27

El Euch, Omar, and Mathieu Rosenbaum. 2019. The characteristic function of rough Heston models. Mathematical Finance 29: 3–38.
[CrossRef]

Gao, Kun, and Roger Lee. 2014. Asymptotics of implied volatility to arbitrary order. Finance and Stochastics 18: 349–92. [CrossRef]
Gatheral, Jim, Thibault Jaisson, and Mathieu Rosenbaum. 2018. Volatility is rough. Quantitative Finance 18: 933–49. [CrossRef]
Granger, Clive W. J., and Roselyne Joyeux. 1980. An introduction to long memory time series models and fractional differencing.

Journal of Time Series Analysis 1: 15–39. [CrossRef]
Guennoun, Hamza, Antoine Jaquier, Patrick Roome, and Fangwei Shi. 2018. Asymptotic behavior of the fractional Heston model.

SIAM Journal on Financial Mathematics 9: 337–78. [CrossRef]
Hagan, Patrick, Deep Kumar, Andrew Lesniewski, and Diana Woodward. 2002. Managing smile risk. Wilmott Magazine 1: 84–108.
Hagan, Patrick, Andrew Lesniewski, and Diana Woodward. 2015. Probability distribution in the SABR Model of stochastic volatility.

In Large Deviations and Asymptotic Methods in Finance. Springer Proceedings in Mathematics & Statistics. Cham: Springer, vol. 110,
pp. 1–35.

Hu, Yaozhong. 2017. Analysis on Gaussian Space. Singapore: World Scientific.
Ikeda, Nobuyuki, and Hiroyuki Matsumoto. 1999. Brownian Motion on the Hyperbolic Plane and Selberg Trace Formula. Journal of

Functional Analysis 163: 63–100. [CrossRef]
Jarrow, Robert A., Philip Protter, and Hasanjan Sayit. 2009. No arbitrage without semimartingales. The Annals of Applied Probability 19:

596–616. [CrossRef]
Mishura, Yuliya. 2008. Stochastic Calculus for Fractional Brownian Motion and Related Processes. Lecture Notes in Mathematics. Berlin and

Heidelberg: Springer Science & Business Media, vol. 1929.
Nualart, David. 2006. The Malliavin Calculus and Related Topics, 2nd ed. Berlin and Heidelberg: Springer.
Rogers, Chris. 2019. Things We Think We Know. Available online: https://www.skokholm.co.uk/wp-content/uploads/2019/11/

TWTWKpaper.pdf (accessed on 1 June 2022).
Roper, Michael, and Marek Rutkowski. 2009. A note on the behaviour of the Black-Scholes implied volatility close to expiry. International

Journal of Theoretical and Applied Finance 12: 427–41. [CrossRef]

http://dx.doi.org/10.1111/mafi.12173
http://dx.doi.org/10.1007/s00780-013-0223-6
http://dx.doi.org/10.1080/14697688.2017.1393551
http://dx.doi.org/10.1111/j.1467-9892.1980.tb00297.x
http://dx.doi.org/10.1137/17M1142892
http://dx.doi.org/10.1006/jfan.1998.3382
http://dx.doi.org/10.1214/08-AAP554
https://www.skokholm.co.uk/wp-content/uploads/2019/11/TWTWKpaper.pdf 
https://www.skokholm.co.uk/wp-content/uploads/2019/11/TWTWKpaper.pdf 
http://dx.doi.org/10.1142/S0219024909005336

	Introduction
	Model Specification
	The Model
	Malliavin Calculus with Respect to Brownian Motion
	Bridge Representation for the Joint Density

	Expansion Around Deterministic Path
	Small Time Approximation of Option Price and Implied Volatility
	A Heuristic Large Deviation Principle
	Conclusions and Discussion
	Appendix A
	Error Analysis
	Laplace Asymptotic Formula

	References

