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Abstract: In this paper, we present extensions of the Hatzopoulos–Sagianou (2020) (HS) multiple-
component stochastic mortality model. Our aim is to thoroughly evaluate and stress test the HS
model by deploying various link functions, using generalised linear models, and diverse distributions
in the model’s estimation method. In this work, we differentiate the HS approach by modelling
the number of deaths using the Binomial model commonly employed in the literature of mortality
modelling. Given this, new HS extensions are derived using the off-the-shelf link functions, namely
the complementary log–log, logit and probit, while we also reform the model by introducing a
new form of link functions with a particular focus on the use of heavy-tailed distributions. The
above-mentioned enhancements conclude to a new methodology for the HS model, and we prove
that it is more suitable than those used in the literature to model the mortality dynamics. In this
regard, our work offers an extensive experimental testbed to scrutinise the efficiency, explainability
and capacity of the HS model extensions using both the off-the-shelf and the newly introduced
form of link functions over datasets with different characteristics. The introduced HS extensions
bring an improvement by approximately 16% to the model’s goodness-of-fit, while they uncover
more fine-grained age clusters. In addition, we compare the performance of the HS extensions
against other well-known mortality models, both under fitting and forecast modes. The results
reflect the advantageous features of the HS extensions to deliver a highly informative structure and
enable the attribution of an identified mortality trend to a unique age cluster. The above-mentioned
improvements enable mortality analysts to perform an in-depth and more detailed investigation of
mortality trends for specific age clusters and can contribute to the attempts of academia and industry
to tackle the uncertainties and risks introduced by the increasing life expectancy.

Keywords: mortality modelling; generalised linear models; link functions; heavy-tailed distributions;
longevity risk; solvency II

1. Introduction

The continuous increase in life expectancy observed in recent years, especially in
developed countries, as well as the actuarial risks raised due to the aging population
have triggered scientists and actuaries to develop appropriate models in order to model
and project mortality rates. Although the increase in life expectancy is a bright sign of
social, medical and scientific progress, it poses challenges to governments, private pension
plans and life insurers, as it significantly affects the cost of pensions. To this end, the
problem of predicting the future mortality rates has been a subject of great interest for both
governments and the scientific community.

The analysis of the historical evolution of mortality rates is performed using stochastic
mortality models. In this context, several research endeavours were committed to deliver a
number of age–period–cohort models (Cairns et al. 2009; Currie 2006; Hatzopoulos and
Sagianou 2020; Hatzopoulos and Haberman 2011; Lee and Carter 1992; Plat 2009; Renshaw
and Haberman 2006). Consequently, several attempts have been made to document the
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similarities among these models (Hunt and Blake 2021), as well as to compare and present
their disadvantages and advantages (Booth and Tickle 2008; Cairns et al. 2009; Renshaw
and Haberman 2006). Hunt and Blake (2021) focused on the structure of mortality models
and provided a generalised age–period–cohort model structure which reflects most of
the mortality models. Moreover, for the ease of use of these models, several software
implementations and packages have been developed and made available to model the
mortality in the R environment. For instance, and as reported in (Millossovich et al. 2018),
the demography package (Hyndman et al. 2015) capitalises on the (Lee and Carter 1992)
model and its variants presented in (Booth et al. 2002; Hyndman and Ullah 2007; Lee
and Miller 2001). The ilc package (Butt et al. 2014) offers the Renshaw and Haberman
model and the Lee–Carter model under a Poisson regression framework. The LifeMetrics
R functions (Coughlan et al. 2007) consider the Cairns–Blake–Dowd (CBD) models and
their extensions introduced in (Cairns et al. 2009), the Lee–Carter model (using Poisson
maximum likelihood), the age–period–cohort model (Currie 2006; Osmond 1985) and the
Renshaw and Haberman model.

Regardless of the peculiarities of each implementation, mortality models aim to analyse
mortality by decomposing the mortality rates in the dimensions of age, period and cohort
(or year of birth). The aforementioned dimensions enable the analysis of mortality rates of
individuals as they age, aid to the understanding of medical and social progress and act as
enablers to shed light on the lifelong mortality effects. In fact, according to a recent study
by Buxbaum et al. (2020), 44% of the improvement in life expectancy was attributable to
public health, while pharmaceuticals were the second-leading cause of gain in life years
at 35%. Mortality improvements pose a threat to the solvency of financial institutions.
In this direction, mortality models can be used to support the analysis, modelling and
management of the inherent market risks for the sake of safeguarding the solvency of
organisations.

According to the literature, a generic formula (see Equation (1)) is defined and can rep-
resent the majority of stochastic mortality models in line with the principles of generalised
linear models (GLMs) (Currie 2016; Hunt and Blake 2021; Millossovich et al. 2018), as it will
be explained in detail in Sections 2.1 and 2.2. The complete documentation of the principles,
the theory and application of GLMs can be found in (McCullagh and Nelder 1989). In short,
in the context of GLMs, the results of the dependent variables are considered to originate
from certain distributions belonging to the exponential family. This is a wide range of
probability distributions, such as the Binomial, Poisson, Gamma and Normal distributions.
The GLMs are a generalisation of the classical linear models. More specifically, the GLMs
generalise linear regression by allowing the linear model to connect to the response variable
using a link function. Thus, the latter enables the connection of the linear predictor and the
mean of the distribution function. In general, various link functions can be used, but as
is the case in the GLM literature, the so-called canonical link functions are the prominent
ones used in the mortality literature by stochastic mortality models. The canonical link
functions are the log and the logit for the Poisson and Binomial distributions, respectively.
Despite the canonical ones, the complementary log–log and probit link functions have also
been used for the Binomial distribution.

In the context of GLMs, some requirements must be taken into account in order to
select the proper link function. The same applies for mortality models. Early attempts in
the mortality modelling field consider as a requirement that the data should be transformed
in order to obtain an approximately linear predictor structure (Hunt and Blake 2021).
To achieve this, one has a wide range of options of link functions to utilise. Notably,
there are several studies in the wild that use and experiment on various link functions in
order to more accurately model either mortality rates or death probabilities and even to
extend already known or introduce new flavours of stochastic mortality models (Currie
2016; Haberman and Renshaw 1996). In this line of thought, StMoMo, a well-established
mortality modelling R package, gives the ability to parameterise the models’ estimation
process. However, it limits the choices only to the use of the canonical link functions, while
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GLM-based estimation could be performed under various link function options and there
is no a priori reason why other links should not work well. Motivated by this fact, our
work aims to explore and expand the range of choices of link functions used in the context
of mortality modelling. To do so, we conduct our investigation using the (Hatzopoulos
and Sagianou 2020) (hereafter called HS) multiple-component mortality model, and we
introduce a new form of link functions that extend the model and its capacity by offering
new HS flavours.

In view of the above, this work extends the stochastic mortality model of the HS, which
was firstly introduced using central mortality rates, mt,x, under the Poisson distribution
and log link function, by formulating it in terms of conditional probabilities of death, qt,x,
and the Binomial distribution using a wide set of link functions. In fact, the extension of the
HS model is twofold. On the one hand, we adapt the HS to be modelled using off-the-shelf,
i.e., well-known, link functions in the literature, namely the logit, complementary log–log
and probit. This approach is in line with the rationale used in tools such as StMoMo
for ratifying models both in the Poisson and the Binomial cases, while it calls forth the
HS model to prove its capacity on a new experimental testbed. On the other hand, we
introduce a new form of link functions in an effort to further improve the goodness-of-fit
and the explainability of the model, and we evaluate their applicability in the context of
mortality through the HS extensions. A particular focus is given to the use of heavy-tailed
distributions. From a modelling perspective, heavy-tailed distributions are important when
extreme events must be part of the model. For example, although the probability of shock
cases, such as mortality during World War II or the COVID-19 pandemic, is small, the
magnitude of the impact is so large that these events are vital in capturing the mortality
dynamics in an accurate manner, i.e., to ensure that the high variability due to the extreme
events (e.g., κ3

t in Figure A1) can be explained by the model.
To the best of our knowledge, it is the first time that those link functions are tested in

the mortality domain. Therefore, we build a multidimensional testbed, and we showcase
that the HS retains its robust characteristics, i.e., (i) the identification of the significant incor-
porated period and cohort effects, (ii) the identification of distinct stochastic components
and (iii) the attribution of an identified mortality trend to a unique age cluster. We assess
the capabilities of the HS extensions using the data of males from England and Wales and
also Greece provided by the (Human-Mortality-Database n.d.).

In short, the contributions of this work are summarised in the following points:

• We extend the stochastic mortality model HS formulated in terms of qt,x, using gener-
alised linear models and by adopting various link functions. We illustrate through
experimental results that the HS model remains robust and consistent under all mod-
elling variations.

• We introduce a new set of link functions, with a particular focus on heavy-tailed dis-
tributions, and we evaluate their applicability in the context of mortality through the
HS extensions. This approach leads to the definition of a new estimation methodology
for the HS model. To the best of our knowledge, it is the first time that those link
functions are evaluated in the mortality modelling domain.

• We compare the efficiency of the new model extensions versus the established mortal-
ity models in fitting and forecasting modes. For the latter case, we use an out-of-sample
approach to assess the prediction ability of each model by using the Random Walk with
Drift (RWD) model and optimum Arima models based on the Bayesian Information
Criterion (BIC) test.

• We highlight the lessons learnt to inform the community about the adoption of the var-
ious link functions in the models’ estimation methods having witnessed the beneficial
impact of this approach to our model’s efficacy.

The rest of this paper is organised as follows: In Section 2, we introduce the notation
and we provide background information for the GLM framework and the HS mortality
model, with a particular focus on the original estimation methodology used. In Section 3,
we present the newly introduced methodology and the updated estimation method for the
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HS extensions using the off-the-shelf and the new form of link functions. Section 4 outlines
the evaluation approach and the performance results of the HS extensions. Section 5
provides an overall discussion on the findings and concludes.

2. Preliminaries

In this section, we elaborate on the notation, we provide an overview of the GLM
framework and we briefly present the Hatzopoulos–Sagianou (HS) multiple-component
stochastic mortality model which will be used throughout this work. More specifically,
we outline some background information about the HS model and its estimation method
to ease the reader in following the extensions described later in Section 3. The notation
and data used in the HS model are aligned with the common practices in the mortality
domain. What differentiates its structure is the consideration of multiple age–period and
age–cohort components which enables the model to capture the mortality trend of multiple
and distinct age clusters. The HS model uses a semiparametric estimation method based on
two methodologies, namely generalised linear models (GLMs) and a sparse principal com-
ponent analysis (SPCA). An additional methodology, driven by the unexplained variance
metric, contributes to the definition of the optimal model structure for including the most
important age–period and age–cohort components. The aforementioned methodologies
are summarised in the following sections before we proceed to the documentation of the
necessary adaptations of the model in order to introduce a new form of link functions
and test their applicability to the HS in Section 3. Note that the following sections of-
fer a synopsis of the estimation method of the model. We prompt the reader to refer to
(Hatzopoulos and Sagianou 2020) to discover the mathematical details behind the formula-
tion of the model.

2.1. Data and Notation

Throughout this work, the data include the number of deaths, Dt,x, the central ex-
posures to risk, Ec

t,x, and the corresponding initial exposures to risk, E0
t,x, at age x last

birthday during calendar year t. The data take the form of a rectangular structure (t, x)
over a unit range of individual calendar years t (t1, . . . , tn) and individual ages, x, last
birthday (x1, . . . , xa). That is, the probability that a person at age x and calendar year t
will die within one year is defined as qt,x = Dt,x/E0

t,x. The crude central mortality rate for
any age x and calendar year t is defined as mt,x = Dt,x/Ec

t,x. Ec
t,x is often derived based

on an approximation of the number of those aged x years old during their last birthday
half way through year t, or based on an estimation of the average of said population at the
beginning and end of that year. The E0

t,x is defined as the population size on 1 January, at
age x in calendar year t. We treat Dt,x as independent Poisson or Binomial realisations, i.e.,
Dt,x follows the Poisson distribution with mean Ec

t,x ×mt,x, or the Binomial distribution
with mean E0

t,x × qt,x.

Dt,x ∼ Poisson(Ec
t,x ×mt,x)

or
Dt,x ∼ Binomial(E0

t,x, qt,x)

An age–period–cohort stochastic mortality model can take the form suggested by the
following generic formula (Hunt and Blake 2021), reflecting the methodology of generalised
linear models (McCullagh and Nelder 1989):

ηt,x = αx +
p

∑
i=1

β
(i)
x κ

(i)
t +

q

∑
j=1

β
c(j)
x γ

(j)
c (1)

ηt,x = g(E(Dt,x/Et,x)) is the link function used to transform the response variable
(which is a measure of mortality rates) at age x and for year t into a form suitable for
modelling and link it to the proposed predictor structure (Millossovich et al. 2018). The
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term αx represents the main age profile of mortality by age. βx reflects the age effect for
each period component, while βc

x is the age effect for each cohort component. The term
κt refers to the period-related effects and corresponds to the mortality trend. The term γc
reflects the cohort-related effects, where c = t− x. p(> 1) and q(> 0) are indexes referring
to the period and cohort components included in the model structure.

2.2. GLM Framework

In a generalised linear model (see, e.g., (McCullagh and Nelder 1989)), each outcome
of a random variable Y, whose components are independently distributed with means µ,
is considered to originate from certain distributions belonging to the exponential family.
This is a wide range of probability distributions, such as the Binomial, Poisson, Gamma
and Normal distributions. The explanatory variables, X, define the mean, µ, of the distribu-
tion via:

E(Y) = µ = g−1(Xβ)

where E(Y) is the expected value of Y, where Y is a vector of response variables. Xβ is the
linear predictor, a linear combination of parameters β whose values are usually unknown
and have to be estimated from the data. X is a matrix of explanatory variables, and β is a
vector of parameters. g is the link function.

The model’s independent variables are incorporated through the linear predictor
(η). The link function relates it to the expected value of the data and it is expressed as a
linear combination of the unknown parameters β. The matrix of independent variables X
represents coefficients of the linear combination.

The linear predictor and the mean of the distribution function are related via the
link function. A number of considerations need to be taken into account when choosing
the most appropriate link function. The exponential of the response’s density function
determines a well-defined canonical link function. Although, for algorithmic purposes, in
some cases, it makes sense to use a non-canonical link function.

Therefore, there are three components to any GLM (McCullagh and Nelder 1989):

• The random component—refers to the probability distribution of the response variable
(Y). The components of Y have generated from an exponential family of probability
distributions.

• The systematic component—specifies the explanatory variables (X) in the model produc-
ing the so-called linear predictor η = Xβ.

• The link function, g—specifies the connection between the random and systematic
components. Specifically, it denotes how the expected value of the response relates to
the linear predictor of explanatory variables, e.g., η = g(µ).

Hence, as is the case for the generalised linear models, the same applies to the stochas-
tic mortality models. The corresponding four components in a stochastic mortality model
are (Millossovich et al. 2018):

1. The random component: the numbers of deaths Dt,x follow the Poisson distribution
with mean Ec

t,x ×mt,x, or the Binomial distribution with mean E0
t,x × qt,x, so that

Dt,x ∼ Poisson(Ec
t,x ×mt,x)

or
Dt,x ∼ Binomial(E0

t,x, qt,x)

2. The systematic component: the effects of age x, calendar year t and cohort c = t− x are
captured through a predictor ηt,x given by:

ηt,x = αx +
p

∑
i=1

β
(i)
x κ

(i)
t +

q

∑
j=1

β
c(j)
x γ

(j)
c
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3. The link function g associating the random component and the systematic component,
so that

g
(
E
(

Dt,x

Et,x

))
= ηt,x

There are several link functions that can be used as suggested by (Currie 2016; Haberman
and Renshaw 1996) for the context of mortality models, and (McCullagh and Nelder
1989) in the wider context of GLMs. As will be explained in detail in Section 3, in this
paper, we extend the HS model and we formulate it in terms of qt,x, using a wide set
of canonical and non-canonical link functions.

4. The set of parameter constraints: most of the stochastic mortality models have identifia-
bility problems in the parameter estimation. In an effort to avoid this issue, a set of
parameter constraints is required to ensure unique parameter estimates. Notably, in
our case, the HS model does not need any parameter constraints as the model does
not face identifiability problems during parameter estimation and always provides a
unique solution due to its estimation methodology (Hatzopoulos and Sagianou 2020).

2.3. Hatzopoulos–Sagianou (HS) Model

In our previous publication, (Hatzopoulos and Sagianou 2020), we proposed a dynamic
multiple-component model that includes p age–period and q age–cohort non-predefined
effects. The aim of this section is to overview that work, as a more detailed analysis is out
of the scope of this paper. We prompt the interested reader to refer to (Hatzopoulos and
Sagianou 2020) for more details on the estimation process and model per se. The HS model
has the following form:

log(mt,x) = αx +
p

∑
i=1

β
(i)
x κ

(i)
t +

q

∑
j=1

β
c(j)
x γ

(j)
c

The number of age–period and age–cohort effects vary depending on the experimental
dataset, i.e., the intrinsic mortality peculiarities of the examined population for a given
time frame. The estimation methodology for defining the most important p age–period
and q age-–cohort components is briefly described below.

The data incorporate the number of deaths (Dt,x), with the respective central exposure
to risk (Ec

t,x), for each calendar year t = t1, ..., tn and for each age x = x1, ..., xa last birthday.
The deaths, Dt,x, follow a Poisson distribution with mean Ec

t,x ×mt,x. These data are used
for each calendar year t in order to model the mortality dynamics and consequently to
estimate the age–period and age–cohort effects. As described in (Hatzopoulos and Sagianou
2020), the model structuring method is unfolded in four steps, each of which utilises a
method which brings to the model its competitive advantages as will be described later.

Step #1: GLM is applied, with the number of deaths being the response variable, Dt,x,
for each calendar year t independently, by using the log link function, i.e., the canonical
link function for the Poisson distribution, and we treat the logarithmic exposure variables
(i.e., log(Ec

t,x)) as an offset. The predictor structure is:

ηt,x = log(E(Dt,x)) = log(Ec
t,x ×mt,x) = log(Ec

t,x) + log(mt,x)

Therefore, treating age as an explanatory variable, the linear predictor is produced
using an orthonormal polynomial structure in age effects for each calendar year indepen-
dently. That is, the following predictor structure is defined as:

log(m̂t) = bt · LT (2)

where, bt corresponds to the vector of the GLM-estimated parameters for calendar year
t. Given this, a random (asymptotically normal) matrix B = {bt,k−1}, k = 1, . . . , k1, of
order (n× k1), includes the GLM-estimated parameters for all calendar years t = t1, . . . , tn.
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L = {lx,k−1}, k = 1, . . . , k1, is a (a× k1)-dimensional matrix of orthonormal polynomials
with degree of k1 − 1 for age x.

Step #2: This step aims to keep in the model only the factors explaining most of
the data’s information in order to decrease the dimensionality of the problem. To do so,
SPCA is applied to the covariance matrix of the GLM-estimated parameters B. Given the
covariance matrix, A = Cov(B), as stated in (Luss and d’Aspremont 2006), the (dual)
problem of defining a sparse factor, which will allow to capture the maximum amount of
data’s variance, can be formulated as follows:

min λmax(A + U), s.t. |Uij| ≤ s (3)

where s is a scalar that defines the sparsity. The definition of the “optimum” s value
and, consequently, the most important p age–period (and corresponding q age–cohort
components) is achieved using the unexplained variance ratio (UVR) approach.

Step #3: (Hatzopoulos and Sagianou 2020) introduced a heuristic methodology based
on UVR metric to define the optimal model structure, i.e., to incorporate the most important
(i.e., informative) age–period and age–cohort components. It must be stated that the optimal
model structure is achieved through the process of defining the optimal s value. In other
words, the definition of the optimal model structure coincides with the definition of the
optimal scalar s, which in turn controls the sparsity in SPCA. This process is driven by the
UVR metric in order to converge to components that maximise the captured variance of
the mortality data and to acquire distinct and significant stochastic components, which
enable the attribution of an identified mortality trend to a unique age cluster. The aim is to
decrease the number of age–period components from k1 to p. The excluded components
are then treated as residuals.

Overall, the HS estimation methodology takes advantage of the SPCA and the UVR
criterion, not only for pinpointing the informative p components but also for uncovering
the age clusters that significantly contribute to the mortality trend of each component. This
approach results in the following model:

log(m̂t,x) = α̃x +
p

∑
i=1

β
(i)
x · κ

(i)
t + εt,x (4)

where the residuals εt,x at age x in year t denote the deviation of the model as a result of
the excluded sparse principal components (SPCs).

The estimation process for the age–cohort components follows a similar approach to
that for the age–period ones. However, there is no need to define a sparsity factor, as the
cohort structure is defined using principal component analysis. Thus, the UVR method
determines the optimal number q of age–cohort components by pinpointing those that,
again, reveal unique age clusters.

Step #4: The complete model structure is synthesised. Following the UVR-based
method, after having estimated the significant (informative) age–period and age–cohort
effects, we conclude to the final estimates of the log-graduated central mortality rates in
age, period and cohort effects:

log(m̃t,x,c) = αx +
p

∑
i=1

β
(i)
x · κ

(i)
t +

q

∑
j=1

β
c(j)
x · γ(j)

c

for the calendar years t = t1, . . . , tn, ages x = x1, . . . , xa and cohorts c = t− x = c1, . . . , cnc .

3. Methodology

In Section 2, we outlined the methodology followed by the HS model as it will serve
as the basis for elaborating on the extensions introduced in the context of this paper. In
addition, we provided an overview of the fundamental principles of the GLM methodology,
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which contribute to the formation of the presented methodology and the extensions of
the HS model. Based on this, we proceed to the documentation of the extended form of
the HS model, formulated in terms of qt,x (while the former was in terms of mt,x), and we
adapt the HS to be modelled using: (i) off-the-shelf link functions in the literature, namely
the logit, complementary log–log and probit, and (ii) by introducing a new form of link
functions in an effort to further improve the goodness-of-fit of the model and to evaluate their
applicability in the context of mortality through the HS extensions. The aforementioned
cases are described in Sections 3.1 and 3.2, respectively.

3.1. HS Model Using Off-the-Shelf Link Functions

We extend the HS model through the formulation in terms of qt,x and by adopting the
estimation methodology described in Section 2.3 making the appropriate configurations.
Under this prism, the data include the number of deaths (Dt,x) and the initial exposure to
risk (E0

t,x), for t = t1, ..., tn and for x = x1, ..., xa.
We treat dt,x as a random variable, Dt,x and the initial exposures E0

t,x as fixed, then Dt,x

follows a Binomial distribution with mean E0
t,x × qt,x and let Qt,x =

Dt,x
E0

t,x
be the estimator of

qt,x =
dt,x
E0

t,x
. In the case of the Binomial distribution, the following three link functions can

be used:

i logit: η = log
(

q
1−q

)
ii probit: η = Φ−1(q) where Φ(·) is the Normal cumulative distribution function.
iii complementary log–log: η = log(− log(1− q))

Thus, and according to (McCullagh and Nelder 1989) (Section 2.2.3) and (Currie 2016),
we have 0 < q < 1 and a link should satisfy the condition that it maps the interval (0, 1)
onto the whole real line (e.g., −∞ < logit(q) < ∞).

At this point, we follow the four steps mentioned in Section 2.3 to model the age–
period and age–cohort components. Therefore, a GLM approach is applied for each
calendar year t independently, with dependent variable Dt,x, binomial error, E0

t,x weights,
the corresponding link function and linear predictor η = b · X. We note that the exposures
are introduced into the Poisson model as an offset, but into the Binomial model as a weight,
and the model matrix, X, is a matrix of orthonormal polynomials, so that:

ηt = logit(E(Qt)) = logit

(
E
(

Dt,x

E0
t,x

))
= log

(
qt

1− qt

)
= bt · LT

or
ηt = probit(E(Qt)) = Φ−1(qt) = bt · LT

or
etat = cloglog(E(Qt)) = log(− log(1− qt)) = bt · LT

where bt corresponds to the vector of the GLM-estimated parameters for calendar year
t. Given this, a random (asymptotically normal) matrix B = {bt,k−1}, k = 1, . . . , k1, of
order (n× k1), includes the GLM-estimated parameters for all calendar years t = t1, . . . , tn.
L = {lx,k−1}, k = 1, . . . , k1, is a (a× k1)-dimensional matrix of orthonormal polynomials
with degree of k1 − 1 for age x. The optimal degree k1 − 1 of the orthonormal polynomials
is defined by using a variety of statistical tests.

Then, we continue with the next two steps by applying the SPCA to the associated
covariance matrix of the GLM-estimated parameters B and, in tandem with the UVR
approach, we come to the following age–period stochastic mortality model:

ηt,x = logit(qt,x) = α̃x +
p

∑
i=1

β
(i)
x · κ

(i)
t + εt,x
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In a similar way, we deploy the rest of the link functions, i.e., the probit and cloglog,
in order to define the corresponding HS variations for the age–period part of the model.

Finally, the age–cohort components are estimated in a way similar to that of the age–
period components, and then the final form of the estimates of the age–period–cohort
stochastic mortality model is defined as:

ηt,c,x = logit(q̂t,c,x) = αx +
p

∑
i=1

β
(i)
x · κ

(i)
t +

q

∑
j=1

β
c(j)
x · γ(j)

c

for the calendar years t = t1, . . . , tn, ages x = x1, . . . , xa and cohorts c = t− x = c1, . . . , cnc .
In a similar way, one can deploy the rest of the off-the-shelf link functions.

3.2. Introducing a New Form of Link Functions in the Mortality Modelling

Triggered by the probit case, where the cumulative distribution function of the stan-
dard normal distribution is used, we generalise this rationale as the inverse of any con-
tinuous cumulative distribution function can be used for the link, as long as a proper
transformation is given to satisfy the condition that the CDF’s range should be mapped to
the whole real line.

As is the case for the probit, the same applies to the newly proposed form of link
functions. We treat dt,x as a random variable, Dt,x and the initial exposures E0

t,x as fixed,

then Dt,x follows a Binomial distribution with mean E0
t,x × qt,x and let Qt,x =

Dt,x
E0

t,x
be

the estimator of qt,x =
dt,x
E0

t,x
. As noted in Section 3.1, we have 0 < qt,x < 1. Thus, the

link function that we choose should satisfy the condition that it maps the interval (0, 1)
to the whole real line. Following this rationale, there are the following three categories
to be considered and provide a transformation method, depending on the cumulative
distribution chosen:

1. The cumulative distribution as link function, maps q, 0 < q < 1, to−∞ < F−1(q; ξ, θ) <
∞, so that:

ηt = F−1(E(Qt); ξ, θ) = F−1
(
E
(

Dt

E0
t

)
; ξ, θ

)
= F−1(qt; ξ, θ) = bt · LT

or

E
(

Dt

E0
t

)
= qt = F(ηt; ξ, θ)⇔ qt = F(bt · LT ; ξ, θ)

For instance, some distributions that can be used are: Normal, Logistic, Extreme value,
Gumbel, etc.

2. The cumulative distribution as link function, maps q, 0 < q < 1, to 0 < F−1(q; ξ, θ) <
∞, so the logarithmic form of the cumulative distribution is needed to map q, to
−∞ < log(F−1(q; ξ, θ)) < ∞, the natural scale for regression, so that:

ηt = log(F−1(E(Qt); ξ, θ)) = log
(

F−1(qt; ξ, θ)
)
= bt · LT

or

E
(

Dt

E0
t

)
= qt = F(exp(ηt); ξ, θ)⇔ qt = F(exp(bt · LT); ξ, θ)

For instance, some distributions that can be used are: Generalised Pareto, Weibull,
Fréchet, etc.

3. The cumulative distribution as link function, maps q, 0 < q < 1, to 0 < F−1(q; ξ, θ) <
1, so we need the logit of the cumulative distribution so that maps q, to −∞ <
logit(F−1(q; ξ, θ)) < ∞, the natural scale for regression, so that:



Risks 2022, 10, 131 10 of 30

ηt = logit(F−1(E(Qt); ξ, θ)) = logit
(

F−1(qt; ξ, θ)
)
= log

(
F−1(qt; ξ, θ)

1− F−1(qt; ξ, θ)

)
= bt · LT

or

E
(

Dt

E0
t

)
= qt = F

(
exp(ηt)

1 + exp(ηt)
; ξ, θ

)
⇔ qt = F

(
exp(bt · LT)

1 + exp(bt · LT)
; ξ, θ

)
For instance, Beta distribution can be used in this case.

In this work, a particular focus is given to the use of heavy-tailed distributions. From
a modelling perspective, heavy-tailed distributions are important when extreme events
must be part of the model. For example, although the probability of shock cases, such as
mortality during World War II or the COVID-19 pandemic, is small, the magnitude of the
impact is so large that these events are vital in capturing the mortality dynamics in an
accurate manner. In this regard, as will be showcased in Section 4, we document the use of
the Generalised Pareto and Beta distributions through the corresponding extensions of the
HS model.

Table 1 summarises the transformations of the HS model along with key characteristics.

Table 1. Link functions transformations of the HS model.

Dist Link Name Link Function η = g(µ) = Xβ Mean Function µ = g−1(Xβ)

Logit log
(

µ
1−µ

)
= Xβ µ =

exp(Xβ)
1+exp(Xβ)

Cloglog log(− log(1− µ) = Xβ µ = 1− exp(− exp(Xβ))

Probit Φ−1(µ) = Xβ µ = Φ(Xβ)

Inverse CDF

F−1(µ; ξ, θ) = Xβ, if −∞ <
F−1(x) < ∞

µ = F(Xβ; ξ, θ)

log(F−1(µ; ξ, θ)) = Xβ, if 0 <
F−1(x) < ∞

µ = F(exp(Xβ); ξ, θ)

Bi
no

m
ia

l

logit(F−1(µ; ξ, θ)) = Xβ, if 0 <
F−1(x) < 1

µ = F
(

exp(Xβ)
1+exp(Xβ)

; ξ, θ
)

Based on the analysis given above, one needs to estimate the parameters of each
possible distribution. That is, in the context of the HS model, the estimation methodology
defined in Section 2.3 needs to be revised in order to incorporate the estimation process
of the parameters of each possible distribution. This revised method is described in the
following subsection.

3.2.1. HS Revised Estimation Methodology

The revised estimation process follows the rationale and the methodology steps
analysed in (Hatzopoulos and Sagianou 2020) by making appropriate configurations. The
ultimate goal is the definition of the age–period and age–cohort effects, but this time, by
including the task of estimating the parameters of the adopted distribution.

In this section, we opt to showcase how the estimation process is updated using
the 2nd case of the new form of the link function, namely the logarithm of the inverse
cumulative distribution, as documented in Section 3.2, i.e., −∞ < log(F−1(q; ξ, θ)) < ∞,
where F is a cumulative distribution (e.g., Generalised Pareto). The same process can also
be followed for the rest of the identified cases in Section 3.2, but we opt to document one of
the cases for simplicity reasons.
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In this regard, the estimation of the parameters of the adopted distribution requires
the estimation of the (ξ, θ) pairs for both the age–period and the age–cohort part of the
model, referring to them as (ξt, θt) and (ξc, θc), respectively.

Hence, regarding the age–period effects, before we follow the four steps of the estima-
tion methodology described in Section 2.3, we first need to determine the parameters of the
selected distribution and the respective link function.

For fitting the probabilities of deaths, qt,x, to the chosen cumulative distribution, we
need to pinpoint a particular pair (ξt, θt) of parameter values from the set of all possible
pairs, so that the q̂t,x will be estimated as close as possible to the observed data. To build an
unambiguous approach, this parameter estimation process must be driven by a measure
of distance or discrepancy between the observed qt,x and the fitted q̂t,x (e.g., classical
least square) or by maximising the model’s log-likelihood. In our case, we opt for the
log-likelihood maximisation approach given by:

L(dt,x, d̂t,x) = ∑
t

∑
x

{
dt,x log

(
d̂t,x

E0
t,x

)
+ (E0

t,x − dt,x) log

(
E0

t,x − d̂t,x

E0
t,x

)
+ log

(
E0

t,x
dt,x

)}
(5)

where

d̂t,x = E0
t,x · F(exp(α̃x +

p

∑
i=1

β
(i)
x · κ

(i)
t ); ξt, θt) (6)

and the pair of parameters (ξt, θt) is the one that maximises the aforementioned measure.
The fitted q̂t,x are estimated by using the GLM approach. Thus, a GLM approach

is applied for each calendar year t independently, with dependent variable Dt,x, and the
initial exposures E0

t,x are handled as a weight. By using the appropriate link function, the
following predictor structure is defined:

ηt = log(F−1(E(Qt); ξt, θt)) = log

(
F−1

(
E
(

Dt,x

E0
t,x

)
; ξt, θt

))
= log

(
F−1(qt; ξt, θt)

)
= bt · LT

(7)

where bt corresponds to the vector of the GLM-estimated parameters for calendar year t,
having chosen the optimum parameter values (ξt, θt). Given this, a random (asymptotically
normal) matrix B = {bt,k−1}, k = 1, . . . , k1, of order (n× k1), includes the GLM-estimated
parameters for all calendar years t = t1, . . . , tn. L = {lx,k−1}, k = 1, . . . , k1, is a (a× k1)-
dimensional matrix of orthonormal polynomials of k1 − 1 degree for age x. The optimal
degree k1− 1 of the orthonormal polynomials is defined by using a variety of statistical tests.

According to the steps described in Section 2.3, SPCA is applied to the covariance
matrix of B to decrease the dimensionality of the problem. Note that we apply the UVR
approach, not only to define the “optimum” s value for the sparsity but also to define the
most significant p age–period components. In such a manner, the number of age–period
components is decreased from k1 to p. Thus, the age–period form (logarithm of the inverse
cumulative distribution in this case) of the model is as follows:

log(F−1(qt; ξt, θt)) = α̃x +
p

∑
i=1

β
(i)
x · κ

(i)
t + εt,x (8)

where the disturbance term εt,x ∼ N(0, vx) (or residuals) is the error component at age x in
year t and reflects the deviation of the model due to the excluded components.

Regarding the age–cohort components, the estimation process is, in a way, similar to
that for the age–period components. Therefore, our data, Dt,x, E0

t,x and qt,x, are processed
as cohorts.
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Thus, the GLM approach is applied for each cohort c = t − c = c1, ..., cnc, with
dependent variable Dc,x. Note that the exposures are introduced as a weight, and the p
age–period effects (Equation (8)) are handled as an offset, so that:

ηc = log(F−1(qc; ξc, θc)) = bc · (Lc)T + offset (9)

offset = log(F−1(q̂t; ξt, θt)) = α̃x +
p

∑
i=1

β
(i)
x · κ

(i)
t

where bc corresponds to the vector of the GLM-estimated parameters for each cohort c.
Given this, a random (asymptotically normal) matrix Bc = {bc,k−1}, k = 1, . . . , k2, of order
(nc × k2), includes the GLM-estimated parameters for all cohorts c = c1, . . . , cnc . Lc =
{lc

x,k−1}, for k = 1, . . . , k2, is an (a× k2)-dimensional matrix of orthonormal polynomials
with k2 − 1 degree for age x. Note that the pair of optimum parameter values (ξc, θc) for
the age–cohort components are defined by following the same approach as described in
the age–period case, i.e., by maximising the log-likelihood of the model. To do so, this
process is driven again by Equation (5), but dt,x and E0

t,x are processed as cohorts and d̂c,x is
defined as:

d̂c,x = E0
c,x · F

(
exp

(
α̃c

x +
q

∑
j=1

β
c(j)
x · γ(j)

c + offset

)
; ξc, θc

)
(10)

The optimum degree k2 − 1 of the orthogonal polynomials Lc is achieved using the
same statistical tests as was the case for the age–period effect estimation methodology.

Finally, we apply eigenvalue decomposition to the matrix of the GLM-estimated
parameters Bc and, in tandem with the UVRc approach described in (Hatzopoulos and
Sagianou 2020), which is used to determine the optimum number of age–cohort compo-
nents, we come to the following age–cohort stochastic mortality model:

ηc,x = log(F−1(qc,x; ξc, θc)) = α̃c
x +

q

∑
j=1

β
c(j)
x · γ(j)

c + εc,x (11)

Hence, by combining Equations (8) and (11), the final form of the age–period–cohort
stochastic mortality model is defined as:

ηt,c,x = log(F−1(q̂t,x; ξt, θt) + log(F−1(q̂c,x; ξc, θc) = αx +
p

∑
i=1

β
(i)
x · κ

(i)
t +

q

∑
j=1

β
c(j)
x · γ(j)

c (12)

for the calendar years t = t1, . . . , tn, ages x = x1, . . . , xa and cohorts c = t− x = c1, . . . , cnc .
According to the aforementioned method, after estimating the significant age–period

and age–cohort effects utilising the SPCA, UVR and GLM approaches, we conclude to the
final estimates of the probabilities of death in age, period and cohort effects.

It becomes clear that the UVR plays an important role in the formation of the model. That
is, the UVR takes the form given in Equation (13), specifically for the case log(F−1(q; ξ, θ)),
where F is the chosen cumulative distribution. We prompt the reader to refer to (Hatzopou-
los and Sagianou 2020) for more information on the use of the UVR metric.

In short, the aim is to measure the variance of the time series of the log(F−1(qt,x; ξt, θt))
and the variance of the error between the estimated probabilities of death and the actual
ones (for each age x and each component i). The ratio of these two variances for successive
components defines the UVRx(i) value. Based on the updated estimation methodology
described in this section, the UVR metric is given in Equation (13).
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UVRx(i) =



Var
(

log(F−1(qt,x ;ξt,θt))−αx−β
(1)
x κ

(1)
t

)
Var
(

log(F−1(qt,x ;ξt,θt))−αx
) , i = 1

Var
(

log(F−1(qt,x ;ξt,θt))−αx−β
(1)
x κ

(1)
t −β

(i)
x κ

(i)
t

)
Var
(

log(F−1(qt,x ;ξt,θt))−αx−β
(1)
x κ

(1)
t

) , i = 2, . . . , p

(13)

In a similar way, one can adapt the HS model to the rest of the link functions docu-
mented in Table 1.

Implementation-wise, our model and the proposed extensions have been developed
in MATLAB, which enables a user to define their own link functions. Taking advantage of
this functionality, we fit the Binomial model with new link for the probabilities of death qt,x
using the following command:

B = glmfit(Lx, qt,x, ”binomial”, ”link”, new_F, ”weights”, E0
t,x, ”constant”, ”off”)

Details of the user-defined link new_F are given in Appendix A.

4. Application

In this section, we elaborate on the experimental approach followed to evaluate the
performance of the HS mortality model using the newly proposed methodology presented
in Section 3. In order to offer a fair and straightforward comparison to the performance of
the HS model, we opt for the same evaluation metrics and datasets as in (Hatzopoulos and
Sagianou 2020). In addition, we perform a comparison with other well-known mortality
models of the literature, namely the (Lee and Carter 1992) (LC), (Renshaw and Haberman
2006) (RH), (Currie 2006) (APC) and (Plat 2009) (PL) models. This section also describes
the datasets and the experimental parameters of the HS model extensions and analyses the
results of the evaluation through a comparative analysis.

Moreover, we evaluate the models in terms of forecast. That is, we provide a back-
testing framework to forecast 10 years ahead in order to compare out-of-sample estimations
against the actual values. Based on this, we measure the efficiency of the models using
the MSPE and the MAPE metrics. For providing an objective and unbiased evaluation,
we forecast the kt and the γc indexes using two different approaches, namely the Random
Walk with Drift (RWD) (Arima(0,1,0) with drift), and the appropriate Arima model based
on Bayesian Information Criterion (ARIMA).

It has to be noted that our evaluation considers two experimental setups to evaluate
the capacity of the HS extensions on datasets having both long and short periods. More
specifically, apart from the E&W dataset that offers an extremely long fitting period, we
apply the models to the Greek dataset, which begins in 1961 and contrasts to the rather
long periods of the E&W mortality data that start in 1841. The motivation behind this
approach lies in the fact that the utilisation of a different link function and distribution
could make the difference to the fitting process and deliver a more accurate model fit, as
the link function and the distribution could aid in capturing the intrinsic characteristics of
the data in a more precise way.

4.1. Evaluation Metrics

We have chosen a set of quantitative criteria in an effort to approach the problem from
different angles. Both Information Criteria and Percentage error tests are used to evaluate
the fitting performance of the models. Specifically, we use the Bayesian Information
Criterion (BIC), the Akaike Information Criterion (AIC), the Mean Squared Percentage
Error (MSPE) and the Mean Absolute Percentage Error (MAPE). Additionally, when it
comes to the qualitative analysis of the results, we adopt the unexplained variance ratio
(UVR) which is used to reveal the magnitude of the captured information by each age–
period and age–cohort component.
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Information Criteria: A common practice in the mortality domain is the use of in-
formation criteria in order to evaluate the goodness-of-fit of mortality models that have a
different number of parameters, while penalising models with more parameters. That is,
we use AIC and BIC, which are defined as

AIC = −2l + 2 · npar and BIC = −2l + npar · log N

where N is the number of observations, l is the log-likelihood and npar is the number of
parameters being estimated, and is calculated based on the following formula:

npar = 2 + (k1 + k2) + p ∗ (n + k1) + q ∗ (nc + k2)

where n is the index of last calendar year (i.e., t = t1, . . . , tn) and nc is the index of the last
cohort (i.e., c = c1, . . . , cnc )

Percentage Error Tests: We use percentage error tests to measure the difference be-
tween the estimator and what is estimated to measure the fitting quality of an estimator.
Specifically, we apply the MSPE which measures the average of the squares of the errors.
The MSPE is the second moment of the error and considers the variance of the estimator and
its bias. An additional measure is the MAPE, which measures how close the estimations
are to the actual values and quantifies the magnitude of the error and, thus, expresses the
accuracy. For all ages from x1 to xa and for all years t1 to tn, these measures are defined as
follows:

MSPE =
1

t · x ∑
t

∑
x

(
q̂t,x − qt,x

qt,x

)2
and MAPE =

1
t · x ∑

t
∑
x

|q̂t,x − qt,x|
qt,x

where q̂t,x is the estimated central mortality rate and qt,x is the observed crude central mortal-
ity rate.

Unexplained Variance Ratio (UVR): The UVR metric is used in order to capture and
visualise the significant amount of variance captured by each of the model’s components
and to illustrate the age clusters where this variance corresponds to. Therefore, we use this
method with all the HS model extensions that take part in the evaluation to uncover the age
clusters and their unexplained variance for each model’s component. In fact, this metric will
help us understand whether the HS extensions are able to capture more information and
reveal more fine-grained age–period and age–cohort components and ease the attribution
of a mortality trend to a specific age cluster. In this respect, the UVR gives a qualitative
overview of each model structure. For more details on the definition of the UVR metric, we
prompt the interested reader to refer to (Hatzopoulos and Sagianou 2020).

4.2. Evaluation Results

In this section, we present the data and the optimum parameters of the HS model
and its extensions used to evaluate the proposed methodology described in Section 3.
Sections 4.2.2 and 4.2.3 document the results and proceed with the comparative analysis.

4.2.1. Mortality Data and the Optimum Parameters

The historic mortality data used are the same presented in (Hatzopoulos and Sagianou
2020) for the purpose of making our results directly comparable. We have selected datasets
of both long and short periods to evaluate the behaviour of all extensions of the HS model
in an effort to validate its modelling capacity both in the case of highly informative and
non-informative data. The latter are provided by the (Human-Mortality-Database n.d.) and
(Eurostat n.d.), having the following characteristics:

• Greece (GR), males, calendar years 1961–2013, individual ages 0–84.
• England and Wales (E&W), males, calendar years 1841–2016, individual ages 0–89.

Tables 2 and 3 present the parameters used for fitting each model structure for each
of the aforementioned datasets. The tables contain the number of optimum parameters of
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the GLM polynomials, k1 (Equation (7)) and k2 (Equation (9)), for the age–period and age–
cohort effects, respectively. In addition, the tables document the optimum s values, while p
and q denote the optimum number of the period (Equation (8)) and cohort (Equation (11))
components, according to the approach described in Section 3. ξt, θt and ξc, θc are the
parameters (see Section 3.2.1) of the adopted distribution for the age–period and the age–
cohort part of the model, respectively.

Table 2. Optimum parameters for each HS model extension structure for the E&W dataset.

Country: E&W Years: 1841–2016 Ages: 0–89 (Years)

Model s k1 p k2 q ξt θt ξc θc

HS_log 54.50 29 5 4 2 - - - -
HS_lgt 55.19 30 5 14 2 - - - -
HS_cll 6.40 30 5 14 2 - - - -
HS_prbt 9.26 30 5 10 2 - - - -
HS_beta 4.13 30 5 8 2 6.00 1.25 4.00 1.25
HS_prt 71.45 23 6 4 1 16.50 1.00 11.50 1.00

Table 3. Optimum parameters for each HS model extension structure for the GR dataset.

Country: Greece Years: 1961–2013 Ages: 0–84 (Years)

Model s k1 p k2 q ξt θt ξc θc

HS_log 2.55 16 4 8 1 - - - -
HS_lgt 2.52 16 4 8 1 - - - -
HS_cll 2.58 16 4 8 1 - - - -
HS_prbt 0.21 16 5 8 1 - - - -
HS_beta 2.18 20 5 8 1 1.25 0.50 1.00 0.25
HS_prt 3.37 20 5 8 1 4.00 1.00 7.00 1.00

In our application, we make use of the Generalised Pareto and Beta distributions to
offer the HS_prt and the HS_beta model extensions, respectively. The former utilises the
probability density function for the Generalised Pareto distribution with shape parameter
ξ 6= 0, scale parameter θ, as given in Equation (14), based on the MATLAB implementation
given in (MATLAB n.d.b).

f (x|ξ, θ) =

(
1
θ

)(
1 + ξ

x
θ

)−1− 1
ξ (14)

and the respective cumulative distribution function is defined as:

F(x|ξ, θ) = 1−
(

1 + ξ
x
θ

)− 1
ξ (15)

In our implementation, we set the scale parameter θ = 1. Equation (14) can take the
form of the Lomax distribution as a special case of the Generalised Pareto distribution, with
ξ = 1

α and θ = λ
α . In that case, the probability density function is

f (x|α, λ) =
α

λ

(
1 +

x
λ

)−1−α
(16)

where α = 1
ξ and λ = θ

ξ .
For the Beta extension, we make use of the probability density function of Equa-

tion (17), with first shape parameter ξ and second shape parameter θ, following the MAT-
LAB implementation given in (MATLAB n.d.a).
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f (x|ξ, θ) =
1

B(ξ, θ)
xξ−1(1− x)θ−1 (17)

and the respective cumulative distribution function is defined as:

F(x|ξ, θ) =
B(x|ξ, θ)

B(ξ, θ)
(18)

where B(ξ, θ) is the beta function and B(x|ξ, θ) is the incomplete gamma function.

4.2.2. E&W Data Performance Analysis

E&W Quantitative Analysis

Table 4 summarises the quantitative results that reflect the efficacy of the HS model
and its extensions for the fitting process in terms of the log-likelihood-based tests (AIC,
BIC) and PE tests (MSPE, MAPE). The best scores are highlighted in bold, with the HS_prt
extension being dominant among them.

Table 4. Results of the quantitative tests for E&W mortality dataset.

Model k1 npar Log-
Likelihood

AIC BIC MSPE
(%)

MAPE
(%)

HS_log 29 1598 −135,970.84 275,137.68 287,394.81 0.329 3.696
HS_lgt 30 1634 −125,713.76 254,695.52 267,228.78 0.336 3.694
HS_cll 30 1634 −168,056.21 339,566.43 352,813.03 0.449 4.707
HS_prbt 30 1622 −115,111.76 233,467.52 245,908.73 0.346 3.693
HS_beta 30 1343 −129,916.62 262,519.24 272,820.45 0.381 3.945
HS_prt 23 1492 −113,143.64 229,271.28 240,715.35 0.346 3.596

A key observation that clearly supports the motivation of this work is that the HS
model under the binomial form and qt,x modelling reached a higher level of performance.
More specifically, four out of the five extensions performed better than the original HS_log
model, showing better goodness-of-fit through the log-likelihood, AIC and BIC metrics and
a slight improvement for the MAPE. Notably, even though the BIC is destined to penalise
complex structures, the HS_lgt and HS_prbt extensions score a better BIC even when
having more parameters than the HS_log, meaning that the additional ones contribute
substantially to the improvement of fit. In fact, the better performance of the HS_lgt and
HS_prbt will be noted also on the qualitative results later in this section. Among the HS
extensions based on the off-the-shelf link functions, the HS_prbt is the one achieving the
best performance under all metrics, having also less parameters than the HS_lgt and HS_cll.
On the downside, the HS_cll extension had the lowest performance among the collected
results. When it comes to the structure of the models of the HS_lgt, HS_cll and HS_prbt
extensions, according to Table 2, the number of the generated p and q components remains
the same as those of the HS_log. However, a slight deviation is noted for the k1 and k2
factors, which also justifies the increased number of parameters noted in Table 2. Overall,
as will be shown in the qualitative analysis, the HS extensions remain consistent when
it comes to the identified p and q components and the corresponding age ranges which
are revealed.

When it comes to the quantitative results of the HS extensions based on the new
form of link functions, i.e., the HS_beta and HS_prt cases, the latter is the one dominating
among all, while the former is ranked around the performance achieved for the HS_lgt,
HS_cll and HS_prbt cases. According to Table 4, the HS_beta incorporates the lowest
number of parameters, resulting in a more simple model structure, but this is reflected as an
inefficiency in the rest of the qualitative metrics, implying that the HS_beta cannot capture
the E&W data dynamics in an efficient manner. When it comes to the incorporated p and q
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components, the HS_beta still remains consistent, as will be discussed in the qualitative
analysis, but fails to make a difference in terms of the quantitative metrics.

Notably, the case of the HS_prt extension is of special interest as it outperforms the rest
of the extensions and the original HS_log for all metrics, apart from a negligible deficiency
on the MSPE. More specifically, contrary to the HS_log, the HS_prt has an improvement
of 16.24%, 16.67% and 16.79% for the BIC, AIC and log-likelihood metrics, respectively,
while the MAPE is improved by 2.7%. According to Table 4, the HS_prt comes with a
decreased number of parameters and a smaller number of the optimum parameters of the
GLM orthonormal polynomials (k1). Hence, the HS_prt extension concludes to a simpler
model which also produces lower error in the fitting process. In addition, according to
the p and q parameters in Table 2, the HS_prt has identified one age–period component
more (i.e., 6) and one age–cohort component less (i.e., 1). Such a difference may sound
minor, but as will be documented in the qualitative analysis, it is quite substantial for the
explainability of mortality.

Moreover, the results of the quantitative evaluation of the well-known stochastic
mortality models are given in Table 5. According to the table, and having selected the best
model from the extensions in Table 4, we notice that the HS_prt not only performs better
compared to the HS_log but also achieves the best scores among the rest of the well-known
stochastic mortality models.

Table 5. Results of the quantitative tests for well-known stochastic mortality models against HS_prt
for E&W dataset.

Model npar Log-Likelihood AIC BIC MSPE (%) MAPE (%)

LC 354 −1,075,745.35 2,152,198.70 2,154,913.98 7.131 18.473
RH 707 −553,002.06 1,107,418.13 1,112,841.02 5.369 14.896
APC 528 −1,157,738.25 2,316,532.50 2,320,582.42 20.541 23.522
PL 880 −762,205.25 1,526,170.51 1,532,920.37 9.136 15.737
HS_log 1598 −135,970.84 275,137.68 287,394.81 0.329 3.696
HS_prt 1492 −113,143.64 229,271.28 240,715.35 0.346 3.596

E&W Qualitative Analysis

The results of the qualitative analysis aim to complement the numeric ones presented
in Table 4. To do so, Appendix B offers the graphical representation of the age–period and
age–cohort components for both the off-the-shelf HS extensions and those following the
new form of link function. The graphical representation reveals the identified mortality
trends and eases the attribution of a trend to a specific age cluster.

Figures A1 and A2 provide a graphical representation of the age–period components
and the corresponding UVR values for all the HS extensions. One can observe that the HS
extensions remain consistent with the HS_log and reveal the same age clusters. However,
in some cases, according to the UVR values, the HS extensions under the Binomial form can
capture more information from the mortality data. More specifically, according to UVRx(1),
the HS_prbt, HS_beta and HS_prt model structures are able to grasp more information
regarding the 60+ ages. In fact, this reflects a slightly different mortality trend in the κ1

t
factor for the HS_prt. The κ1

t for the HS_prbt and HS_beta is factorised in a different way
than the other cases, that is why the corresponding graphs seem to be dislocated. Despite
this fact, the HS_prbt and HS_beta generate κ1

t graphs which are almost identical to the
HS_prt case.

UVRx(3) and UVRx(4) refer to the 20-25 and 30-40 age clusters, respectively. The
lower UVR values achieved by the HS_prbt structure, which are illustrated in
Figures A1 and A2, confirm the good performance advocated by the quantitative per-
formance reported in Table 4.

When it comes to Figure A2, the HS extensions have revealed a more clear age cluster
compared to the HS_log. More specifically, according to UVRx(5), the HS_log had initially



Risks 2022, 10, 131 18 of 30

identified a mixed age cluster for the 10–20 and 20–25 age ranges. In this work, all the
HS extensions clearly attribute the κ5

t mortality trend to the 10–20 age range, while the
20–25 age cluster is clearly addressed by the 3rd age–period component. Overall, the
HS_prt structure is of special interest. Again, one can notice that the HS model for the
Generalised Pareto case remains consistent as, in general terms, the identified age–period
and age–cohort components reveal fine-grained age clusters and ease the attribution of a
mortality trend to distinct age ranges. In fact, the most important outcome of the application
for the HS_prt is the identification of one additional and distinct age–period component.
UVRx(6) is a new informative component that reveals the mortality trend for the 25–30
age range. As aforementioned, the focal point of UVRx(3) is the 20–25 age range, while
a significant and clear trend for the 10–20 age cluster is revealed in κ5

t as advocated by
UVRx(5). In fact, in the case of the HS_log, the 10–20 cluster was included in the captured
variance of the 5th age–period component along with the variance of the 20–30 age range.
Considering these facts, the HS_prt model generated more fine-grained age clusters, and it
eases the attribution of a mortality trend to unique age clusters, contributing significantly
to the explainability of the model. This behaviour justifies the improvement of around 16%
in the quantitative metrics in contrast to the HS_log.

Moreover, in Figure A3, one can notice that for the HS_prt, only one age–cohort
component is identified. This is a normal outcome, as the age–period modelling process has
captured most of the data variance and resulted in one additional age–period component
(six in total). As a result, the residuals bear the information for the identification of one
age–cohort component. Generally, this modelling behaviour results in a less complex model
structure which incorporates less parameters as shown in Table 2.

Overall, when it comes to the off-the-shelf HS extensions, the HS_prbt case seems to
perform better both in the qualitative and quantitative evaluation results. When using the
new form of link function, the HS_prt case is the one that stands out among all cases.

4.2.3. Greek Data Performance Analysis

Based on Table 3, the Greek dataset covers a shorter period (from 1961) in contrast to
the rather long period for the E&W data. One could say that it is reasonable for multiple
component models, such as the HS model and the introduced extensions, to achieve good
results. That is, in order to verify that the better performance of the HS extensions (as
happened for the case of the E&W data) is not solely attributed to the extremely long fitting
periods, we also conduct the evaluation using the shorter GR dataset, and we assess the
consistency and performance of the Binomial HS extensions with respect to the original
Poisson model (HS_log) presented in (Hatzopoulos and Sagianou 2020).

In fact, according to the (Human-Mortality-Database n.d.) and as reported in the
(HMD-Greek-data n.d.), the GR dataset contains inconsistencies and is of poor quality.
Hence, due to the limited time period of the GR data and the low quality, we form a more
challenging basis for a model to thrive. In addition, we aim to prove through experimental
results that the model extensions inherit the beneficial characteristics of the HS model
and can perform even better through the use of the suggested transformations of our
methodology, being at the same time consistent with the identification of mortality trends
for unique age clusters.

GR Quantitative Analysis

Following the same approach as in Section 4.2.2, Table 6 summarises the quantitative
results that reflect the efficacy of the HS model and its extensions for the fitting processes.
The best scores are highlighted in bold, with the HS_prt being the dominant and the
HS_beta being very close to the HS_prt.
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Table 6. Results of the quantitative tests for the Greek mortality dataset.

Model k1 npar Log-
Likelihood

AIC BIC MSPE
(%)

MAPE
(%)

HS_log 16 447 −20,176.13 41,246.26 44,112.84 4.109 10.115
HS_lgt 16 447 −20,069.65 41,033.29 43,899.88 4.080 10.065
HS_cll 16 447 −20,133.42 41,160.85 44,027.43 4.104 10.079
HS_prbt 16 516 −19,569.21 40,170.43 43,479.50 4.078 10.074
HS_beta 20 540 −19,358.74 39,797.48 43,260.47 3.444 9.515
HS_prt 20 540 −19,353.29 39,786.59 43,249.58 3.449 9.498

As advocated by the quantitative results, also for the case of the short GR dataset,
the HS model under the binomial form and qt,x modelling achieved better performance
scores. More specifically, all four extensions performed better than the original HS_log
model, showing better goodness-of-fit through the log-likelihood, AIC and BIC metrics and
a slight improvement for the MAPE. However, it must be mentioned that the improvement
is not as significant as the one achieved for the E&W case. Taking a closer look at the
performance of the HS extensions for the off-the-self link functions, the HS_prbt is the
one that stands out in contrast to the HS_lgt and HS_cll, which achieve quite similar
performances with the initial HS_log. In fact, the HS_prbt has a negligible improvement
for the MSPE and the MAPE, but the improvement in the log-likehood, AIC and BIC needs
to be highlighted. As can be seen, the HS_prbt is based on 516 parameters, leading one
to expect higher BIC and AIC scores due to the more complex structure. Though, despite
the higher number of parameters, the HS_prbt structure achieves a better BIC, meaning
that the additional parameters contribute substantially to the improvement of fit. In fact,
the better performance of the HS_prbt is more evident in the qualitative results which are
analysed later in this section. According to Table 3, the number of the generated p and q
components of the HS_lgt and HS_cll extensions remain the same as those of the HS_log
(i.e., 4) and so does the k1 factor. However, for the HS_prbt, a new additional age–period
component is identified; thus, p = 5, and as will be noted in the qualitative analysis, this
component contributes to the explainability of the model.

A case of special interest is the application of the HS_prt, for which the new form of
link functions led to a notable improvement of the model. More specifically, Table 6 reports
that the HS_prt achieves a significant improvement for all the evaluation metrics, apart
from the MSPE, for which the HS_beta is slightly better. More specifically, contrary to the
HS_log, the HS_prt has an improvement of 1.96%, 3.54% and 4.25% for the BIC, AIC and
log-likelihood metrics, respectively, while the MSPE is improved by 16.06% and the MAPE
by 6.10%. Even though the magnitude of improvement is less than the improvement for the
case of the E&W data, one needs to consider the challenging nature of the Greek mortality
data, where the room for improvement is rather limited. In addition, the HS_beta achieves
almost identical performance to the HS_prt and, without a doubt, it is also a competitive
extension for the GR case.

The HS_log model was slightly lacking in performance when compared with the
Renshaw and Haberman (2006) and Plat (2009) models, specifically in the case of the Greek
data, as reported by the comparative study given in (Hatzopoulos and Sagianou 2020)
and as can be seen in Table 7. By utilising the proposed methodology, the HS_prt and
HS_beta extensions have significantly improved the goodness-of-fit. In addition, according
to the p and q parameters in Table 3, the HS_prt and HS_beta have identified one age–
period component more (i.e., 5), as was the case with the HS_prbt, and this contributes
substantially to the explainability of mortality.

The results of the quantitative evaluation against the well-known stochastic mortality
models LC, RH, APC and PL are given in Table 7. According to the table, and having
selected the best model from the extensions in Table 6, we note that the HS_prt is the model
variation that achieves a similar performance to the RH model in terms of the quantitative



Risks 2022, 10, 131 20 of 30

tests. However, the RH can be questioned for its robustness, as it faces difficulties to
converge and presents unstable behaviour (Hunt and Villegas 2015).

Table 7. Results of the quantitative tests for well-known stochastic mortality models against HS_prt
for GR dataset.

Model npar Log-Likelihood AIC BIC MSPE (%) MAPE (%)

LC 221 −21,213.44 42,868.89 44,286.15 4.287 11.379
RH 441 −18,633.10 38,148.19 40,976.30 3.790 9.460
APC 272 −21,317.67 43,179.33 44,923.65 5.405 12.715
PL 378 −19,113.68 38,983.36 41,407.45 5.395 10.371
HS_log 447 −20,176.13 41,246.26 44,112.84 4.109 10.115
HS_prt 540 −19,353.29 39,786.59 43,249.58 3.449 9.498

It must be noted that the HS_prt achieved a significant improvement in the case of the
E&W data, contrary to the GR. As discussed before, the Generalised Pareto belongs to the
heavy-tailed distributions family. That is, it is expected to perform better when extreme
values are part of the data. As can be seen from the κi

t figures in Appendices B and C, the
E&W data include several high peaks in contrast to the GR. That is why the HS_prt seems
to have a greater performance improvement in the E&W case.

GR Qualitative Analysis

The results of the qualitative analysis complement the numeric ones presented in
Table 6 by explaining the UVR for the identified age clusters. The graphical representations
of the identified age–period and age–cohort components of the Greek dataset are given
in Appendix C. Figures A4 and A5 provide a graphical representation of the age–period
components and the corresponding UVR values for the HS extensions.

As a general remark, one might note that all the extensions remain consistent, but the
HS_prbt, HS_beta and HS_prt identified an extra (5th) age–period component. Overall,
slight differences in the UVR graphs and the mortality trends can be noticed among the
other extensions.

The HS_prbt is of special interest as its structure leads to the definition of more fine-
grained age clusters. More specifically, focusing on Figure A4, UVRx(1) reveals that the
HS_prbt is able to grasp more information regarding the 60+ ages. UVRx(4) is a component
that reflects the difficulty to identify clear trends on the Greek mortality data. As can be
seen, the interpretation of the cluster is quite difficult, as for all model extensions, there is
no strong indication of the age cluster which is being highlighted. On the bright side, the
HS_prbt is able to identify a quite clear cluster and the corresponding mortality trend for
the 30–40 age cluster. In addition, UVRx(2) shows a clearer concentration of the explained
variance to the ages around 80, in contrast to the rest of the extension which makes an
attribution to the 70–80 cluster. In fact, the HS_prbt has identified a clear cluster for the ages
of 70 in UVRx(5) of Figure A5. Hence, it is evident that the HS_prbt structure achieved a
clean cut in the 70–80 cluster, and it eases the attribution of a trend to a specific age cluster.
In addition, despite the different structure achieved for the age–period components (i.e.,
5 instead of 4), UVRc

x(1) in Figure A6 remains consistent and still captures considerable
variance of the data.

When it comes to the HS_prt, as advocated by the quantitative results, it achieved a
noticeable improvement from the HS_log case, and this is actually reflected in the figures
of Appendix C. UVRx(2) for the HS_prt can significantly explain the variance of the 80s
age range, while the focal point of UVRx(3) is on the 20s. The middle ages of 40–50 are
addressed by UVRx(4), and finally, a newly identified cluster for the 70s is highlighted in
UVRx(5). Almost the same behaviour can be seen for the HS_beta extension. The most
important outcome of the application for the HS_prt and HS_beta, as was the case for
the HS_prbt, is the identification of the 5th age–period component. This was not initially



Risks 2022, 10, 131 21 of 30

uncovered by the HS_log model. Thus, the addition of the new component justifies the
improvements noted for the quantitative performance metrics. The HS_prt model remains
consistent as the identified age–period and age–cohort components reveal fine-grained
age clusters and ease the attribution of a mortality trend to distinct age ranges, even when
operating over the non-informative Greek dataset.

When it comes to the age–cohort components, Figure A6 shows that for the HS
extensions, UVRc

x(1) remains consistent and still captures a considerable variance of the
data for all cases. However, due to the existence of the 5th age–period component for
the HS_prbt, HS_beta and HS_prt, the age–cohort differs slightly from that of the HS_log,
HS_cll and HS_lgt. Nonetheless, the age–cohort components are still informative, they
denote a clear age cluster and contribute to the explainability of the model.

4.2.4. Out-of-Sample Results

The results of the quantitative analysis for the forecasting process complement the
comparative evaluation. In order to evaluate the HS_prt extension under the out-of-sample
mode, the model needs to be fit to a shorter dataset, excluding the years to be forecasted.
This implies that the fitting and estimation processes will be executed again in order to
define the necessary model parameters. The parameters of the HS_prt for the E&W and GR
datasets for the shorter periods are given in Table 8.

Table 8. Optimum parameters for HS_prt structure for the E&W and GR shorter datasets.

Model: HS_prt

Country Years Ages s k1 p k2 q ξt θt ξc θc

E&W 1841–2006 0–89 56.58 29 6 4 1 15 1.00 11.50 1.00
GR 1961–2003 0–84 1.55 20 3 8 1 5.50 1.00 11.50 1.00

According to the results of Tables 9 and 10, the HS_prt model under the RWD
and ARIMA achieves lower error scores and demonstrates a consistent behaviour also
under the forecasting mode. More specifically, for the E&W case, the difference in the
MSPE and MAPE is considerable, comparing to the other well-known models. This is
not only attributed to the high goodness-of-fit performance of the model, which provides a
solid base to be extrapolated, but also due to the fact that the HS model defines multiple
components which reveal the clear mortality trends of unique age clusters. On the contrary,
the unreasonably high error values of the RH and PL models come, to a certain extent, as
a result of their unstable behaviour during the fitting process and the limitations of their
structure and estimation process. The results for the GR dataset in Table 10 show overall a
more consistent behaviour for all models. The HS_log was slightly lacking in performance
in contrast to the PL and RH models. However, the newly derived HS_prt extension was
able to outperform the rest of the models both under the MSPE and the MAPE metrics in
the RWD and ARIMA approaches.

Overall, it seems that the HS model, due to its structure, i.e., it is a multiple-component
model which reveals unique age clusters, and the notable goodness-of-fit performance
achieved by utilising the newly introduced methodology, delivers an informative—and
close to the actual data—basis that can lead the out-of-sample process to a more precise
prediction.
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Table 9. Results of the percentage error tests for predicted mortality rates of 10 years out-of-sample
for well-known stochastic mortality models against HS_prt for E&W dataset.

MSPE (%) MAPE (%)

RWD ARIMA RWD ARIMA

HS_prt 3.206 5.550 13.219 18.852

HS_log 3.221 7.135 13.271 20.800

RH 271.861 271.861 58.085 58.085

LC 29.508 29.509 49.838 49.837

PL 586.784 371.845 62.748 55.635

APC 86.494 84.316 46.192 46.131

Table 10. Results of the percentage error tests for predicted mortality rates of 10 years out-of-sample
for well-known stochastic mortality models against HS_prt for GR dataset.

MSPE (%) MAPE (%)

RWD ARIMA RWD ARIMA

HS_prt 8.446 8.549 14.961 15.067

HS_log 8.691 10.390 15.332 15.857

RH 8.361 8.581 15.440 15.275

LC 10.398 10.333 20.320 20.964

PL 8.860 11.163 18.402 15.148

APC 10.054 10.077 21.364 21.599

5. Discussion and Conclusions

This section offers a discussion over our experimental results and highlights the lessons
learnt by the adoption of the various link functions in a model’s estimation methods, having
witnessed the beneficial impact of the proposed methodology to our model’s efficacy.

Our aim was to extend the HS model and investigate its behaviour when formulated in
terms of qt,x, using generalised linear models and by adopting various link functions. Our
motivation originates from similar endeavours in the literature (Currie 2016; Haberman
and Renshaw 1996) and is aligned with the capabilities offered by well-known tools, such
as StMoMo (Millossovich et al. 2018)). To the best of our knowledge, it is the first time that
a systematic approach is documented for the adoption of this new form of link functions,
F−1(x; ξ, θ) for the mortality modelling domain, along with the necessary transformations
to satisfy the condition that the CDF’s range should be mapped to the whole real line. We
argue that the ability to use various link functions can lead to the better performance of
the mortality models, as showcased through the use of the HS model in the context of
this work.

An additional point to be highlighted is the integration of heavy-tailed distributions
(Generalised Pareto in our case). The motivation is two-fold. On the one side, the proposed
methodology of Section 3 enables the mortality analyst to apply such kinds of distributions
in a mortality model in case the intrinsic characteristics of the mortality data fit better to a
heavy-tailed distribution profile, i.e., when extreme events must be part of the modelling.
In this context, the proposed methodology eases an analyst to adapt a model depending
on the data, the time period and the case to be analysed, without being limited only to
the off-the-shelf link functions and distributions. Based on our results for the κt graphs
given in the appendices, one can observe that the long period of the E&W data includes
several mortality trend peaks (extreme values) as a result of the mortality during critical
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events of the 20th century. However, the Greek mortality data and the respective κt graphs
do not imply the presence of extreme events and outliers. Thus, despite the fact that the
improvement on the use of the new form of link functions and different distributions is
evident based on the quantitative and qualitative results, the improvement is greater for the
E&W for which we finally applied the Generalised Pareto heavy-tailed distribution to better
fit to the nature of the data. Even though the rationale behind the use of the heavy-tailed
distribution in the mortality realm is valid, we need to note that this outcome needs to be
further evaluated. In fact, we aim to continue in this line of research and to explore in our
future endeavours the behaviour of such distributions in mortality modelling.

In addition, it has to be noted that the adaptation of a mortality model to the new form
of link functions implies an additional step in the model’s estimation process, as explained
in detail in Section 3.2, in order to estimate the ξ and θ parameters. In terms of the codebase,
this requires the addition of an extra, but simple routine, which can tackle this problem.
Overall, the complexity of the process is slightly increased but we argue that the potential
benefit outweighs the added complexity.

The above-mentioned highlights are advocated by our experimental results, while
the efficacy of the HS model extensions support the motivation of this work. In fact, the
transition to the use of the Binomial distribution has improved the performance of the HS
model under the vast majority of the adopted link functions. Notably, the performance
improvement for the reference model of the HS_log was even greater in the case of the
HS_prt extension for the E&W data, where we noted an improvement of 16.24%, 16.67%
and 16.79% for the BIC, AIC and log-likelihood metrics, respectively, while the MAPE
improved by 2.7%. In the case of the short GR dataset, the HS_prt extension was the one
that outperformed the rest, achieving a similar performance with the HS_beta, proving
again that the selection of the correct distribution and link function can further boost the
performance of a mortality model even in cases where we need to operate over a poor
and non-informative dataset. During our experiments, we applied several distributions,
including the Generalised Extreme value, Gumbel, Fréchet, Weibull and Burr, and we
experimented with other various datasets (e.g., French data). In order to keep the length
of the paper within reasonable limits, we chose to present the best results. However,
our methodology enables an analyst to apply virtually any distribution in the modelling
process. In addition, we offered a comparative analysis among the HS extensions and other
well-established mortality models of the literature, both under the fitting and forecasting
modes. The results showed that the HS_prt achieved the best goodness-of-fit performance,
while under the forecasting mode, the new HS_prt extension improved the position of the
HS and outperformed the rest of the models in terms of prediction accuracy.

In addition, we need to note that the HS improvement through the introduced exten-
sions is not solely reflected in the quantitative results, but most importantly, it is reflected
in the qualitative ones. The HS model was able to improve its performance in the identifica-
tion of more fine-grained age–period and age–cohort components, and thus prove that the
proposed methodology retains the model’s efficacy and consistency, and it can boost even
more its explainability through the attribution of a mortality trend to unique age clusters.
This feature is one of the unique characteristics of the HS model in contrast to other models
of the literature.

Overall, our application advocates that different mortality data imply the need for
a different model transformation in order to increase the goodness-of-fit, capture the data
dynamics and uncover interesting characteristics in the mortality trend of individual age
clusters. Our results show that even a top-notch mortality model, such as the HS, has room
for improvement, as the adaptation with an appropriate link function can lead to even
better qualitative and quantitative performance.

This work complements the series of work for positioning the HS model and its
extensions among the other well-established models of the literature. As future work, we
aim to investigate machine learning-based approaches in mortality modelling (Deprez et al.
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2017; Levantesi and Pizzorusso 2019) that could benefit our approach and to explicitly
evaluate their explainability.
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Appendix A. Definition of User-Defined Link Functions in MATLAB

We consider the class of models for the probability of deaths with Binomial errors and
a user-defined link function. We suppose D ∼ B(E, q) have the Binomial distribution and
let Q = D/E0 be the random variable corresponding to q.

Here, q = E(Q) is the mean of Q, E0 is the initial exposure and η is a linear function of
the explanatory variables. A user-defined link in MATLAB requires three functions: the
link function itself, i.e., η as a function of q, the inverse link function, i.e., q as a function of
η, and the derivative of η with respect to q. As defined in Section 3.2, we reported three
cases depending on the cumulative distribution chosen.

1. The cumulative distribution as link function g, maps q, 0 < q < 1, to −∞ <

F−1(q; ξ, θ) < ∞, so that:
η = F−1(q; ξ, θ)
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q = F(η; ξ, θ)

dη

dq
=
(

F−1(q; ξ, θ)
)′

=
1

f (F−1(q; ξ, θ); ξ, θ)

2. The cumulative distribution as link function, g, maps q, 0 < q < 1, to 0 < F−1(q; ξ, θ) <
∞, so the logarithmic form of the cumulative distribution is needed to map q, to
−∞ < log(F−1(q; ξ, θ)) < ∞, the natural scale for regression, so that:

η = log
(

F−1(q; ξ, θ)
)

q = F(exp(η); ξ, θ)

dη

dq
=

1
F−1(q; ξ, θ)

·
(

F−1(q; ξ, θ)
)′

=
1

F−1(q; ξ, θ) · f (F−1(q; ξ, θ); ξ, θ)

3. The cumulative distribution as link function, g, maps q, 0 < q < 1, to 0 < F−1(q; ξ, θ) <
1, so we need the logit of the cumulative distribution so that maps q, to −∞ <
logit(F−1(q; ξ, θ)) < ∞, the natural scale for regression, so that:

η = logit
(

F−1(q; ξ, θ)
)
= log

(
F−1(q; ξ, θ)

1− F−1(q; ξ, θ)

)

q = F
(

exp(η)
1 + exp(η)

; ξ, θ

)
dη

dq
=

(
F−1(q; ξ, θ)

)′
F−1(q; ξ, θ) · (1− F−1(q; ξ, θ))

=
1

f
(

F−1(q; ξ, θ)
)
· F−1(q; ξ, θ) · (1− F−1(q; ξ, θ))

Note that there is no need to define the derivative of any cumulative distribution, as
this can be achieved by using the probability distribution function as described below.

By using the chain rule:
f ( f−1(x)) = x

and therefore
d

dx
f ( f−1(x)) =

d
dx

x = 1 (A1)

and also by chain rule

d
dx

f ( f−1(x)) = f ′( f−1(x)) · ( f−1)′(x) (A2)

Thus, by (A1) and (A2), we have

f ′( f−1(x)) · ( f−1)′(x) = 1

( f−1)′(x) =
1

f ′( f−1(x))

Thus, in our case, by replacing f with F, we have

(F−1)′(x) =
1

F′(F−1)(x)
=

1
f (F−1(x))

In addition, the MATLAB code for the user-defined link function is:

l i n k = @(mu) log ( gpinv (mu, xi , t h e t a ) ) ;
der l ink = @(mu) 1 . / ( gpinv (mu, xi , t h e t a ) . * gppdf ( gpinv (mu, xi , t h e t a ) , xi , t h e t a ) ) ;
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i n v l i n k = @( e ta ) gpcdf ( exp ( e ta ) , xi , t h e t a ) ;
new_F = { l ink , der l ink , i n v l i n k } ;

B = g l m f i t ( Lx , qtx , ’ binomial ’ , ’ l i n k ’ ,new_F , ’ weights ’ , etx0 , ’ constant ’ , ’ o f f ’ )

where B contains the GLM-estimated parameters, etx0 contains the initial exposures, Lx is
the matrix of the orthonormal polynomials and qtx is the probability of deaths.

Appendix B. Age–Period, Age–Cohort Components and Unexplained Variance Ratio
Graphical Representations for E&W Dataset
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Figure A1. First to fourth age-period component for E&W dataset.
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Figure A2. Fifth and sixth age-period component for E&W dataset.
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Figure A3. First and second age-cohort component for E&W dataset.
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Appendix C. Age–Period, Age–Cohort Components and Unexplained Variance Ratio
Graphical Representations for GR Dataset

0 20 40 60 80

0
.0
0

0
.1
0

0
.2
0

0
.3
0

b x
1

G
R

HS.25

1960 1980 2000

-4
-2

0
2

4

kt
1HS.26

0 20 40 60 80

0
.0

0
.4

0
.8

1
.2

UVRx(1)
HS.27

log

logit

cloglog

probit

beta

pareto

0 20 40 60 80

-0
.1

0
.1

0
.2

0
.3

b x
2

G
R

HS.28

1960 1980 2000

-1
.5

-1
.0

-0
.5

0
.0

0
.5

kt
2HS.29

0 20 40 60 80
0
.2

0
.6

1
.0

UVRx(2)
HS.30

log

logit

cloglog

probit

beta

pareto

0 20 40 60 80

-0
.2

0
.0

0
.2

b x
3

G
R

HS.31

1960 1980 2000

-1
.5

-1
.0

-0
.5

0
.0

0
.5

kt
3HS.32

0 20 40 60 80

0
.4

0
.8

1
.2

UVRx(3)
HS.33

log

logit

cloglog

probit

beta

pareto

0 20 40 60 80

-0
.2

-0
.1

0
.0

0
.1

0
.2

b x
4

G
R

HS.34

1960 1980 2000

-0
.5

0
.0

0
.5

kt
4HS.35

0 20 40 60 80

0
.6

0
.8

1
.0

1
.2

UVRx(4)
HS.36

log

logit

cloglog

probit

beta

pareto

Figure A4. First to fourth age-period component for GR dataset.
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Figure A5. Fifth age-period component for GR dataset.



Risks 2022, 10, 131 29 of 30

0 20 40 60 80

-0
.0
5

0
.0
5

0
.1
5

0
.2
5

b x
c(1)

G
R

HS.40

1880 1900 1920 1940
-0
.4

0
.0

0
.4

g c
(1)HS.41

0 20 40 60 80

0
.4

0
.6

0
.8

1
.0

UVRx
c(1)HS.42

log

logit

cloglog

probit

beta

pareto

Figure A6. Age-cohort component for GR dataset.
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