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Abstract: One of the most basic methods of technical analysis that is used in the practice of in-
vestment is the analysis of moving averages, usually calculated for exchange rates in a candlestick
representation. The following paper proposes a new, state model, describing the process of trajectory
changes in a binary-temporal representation. This kind of representation carries a significantly higher
informative value than the candlestick one. The model is based on a proper definition of the moving
average, proposed for a binary-temporal representation. The new model allows for exchange rate
trajectory prediction in a short future window and, as a consequence, can be used to construct
effective HFT systems. The article provides a concept of this kind of system and its comparison with
others based on historical data for AUD/NZD exchange rate from the 2014–2020 period.

Keywords: automatic forecasting; price forecasting; high frequency econometric; investment decision
support; econometric models

1. Introduction

Modern methods of technical analysis and course modelling for financial instruments
are created mainly to support investors in decision-making (e.g., indicators) or to fully
automatize the investment process (algorithmic systems, HFT (high-frequency trading)
systems). High-frequency markets (e.g., FX market) allow for concluding hundreds or even
thousands of short-term transactions. Realization of investment strategies for this kind of
market is possible only by a total automatization of the investing process. This stems from
the need of monitoring the market ceaselessly 24 h/day, while simultaneously opening
multiple short-term transactions. There is also the need for psychological detachment
(Aldridge 2013; Gallo 2014). Only those factors allow for reliable statistical market analysis
and, as a consequence, lead to the creation of adequate investment strategies for HFT
systems. Revenue in this kind of system comes from the percentage advantage of profitable
transactions over the lossy ones. At the same time, the high number of transactions allows
for a credible analysis of the results.

Construction of HFT systems require using advanced predictive methods (Alonso-
Monsalve et al. 2020; Dempster and Leemans 2006; Evans et al. 2013). One of the most basic
methods of technical analysis used in investing practice to predict changes in exchange
rates is the analysis of moving averages (Kirkpatrick and Dahlquist 2010; Schlossberg
2012). However, the moving averages are usually calculated based on the course trajectory
given in a candlestick representation. This kind of representation is characterized by
a loss of significant information about the course and can, as a consequence, lead to
assessment errors in prediction (Stasiak 2020). Therefore, a binary-temporal representation
was introduced (Stasiak 2016), which results in a more precise description of the course
change process. T analysis in a binary-temporal representation assigns each binary change
the average value from last n changes. This, consequently, helps to define corresponding
market states so that they include information about the size and duration of the change, as
well as the average from previous changes. In this article, we introduce a proper definition
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of the moving average for a course prediction model in a binary-temporal representation.
Therefore, the main goal of this article is to propose a new state model that uses the moving
average mechanism and that allow for the construction of simple and financially effective
HFT systems. The article is organized as follows. After this brief introduction, Section 2
introduces the description and rules for constructing the binary-temporal representation
and its advantages and properties. Section 3 is devoted to state models in a binary-
temporal representation. It discusses the assumptions of state modelling and presents
a brief description of state models known from the literature on the subject. Section 4
introduces the methods of appointing moving averages in binary temporal representation.
Assumptions of the new state model are presented, which takes into account the average
from previous course changes given in a binary-temporal representation. Finally, Section 5
contains a practical implementation of applying the proposed model to the construction of
an HFT system. This part of the work contains a description of the performance results for
the researched system based on historical data of the AUD/NZD exchange rate. Section 6
provides a summary of conducted research.

A dedicated software written in C++ and MQL4 was created to model, build, and test
the research results presented in the paper.

2. Binary-Temporal Representation

When constructing an HFT system, course modelling requires using the proper format-
ting of historical data. Quotations of most financial instruments change with high frequency
(often few changes can happen during a single second). Many from these changes oscillate
around defined values and with a very small amplitude of 1–3 pips. Those changes are in
fact of a random character (noise) and do not carry any informative value, which could
have been used in course modelling (Lo et al. 2000; Neely and Weller 2011). Therefore,
using so-called ‘tick data’ (that is, the data regarding even the smallest change in the course,
is ineffective). The amount of data and the possibility of noise affecting the change process
hinders any analysis. Thus, the adequate formatting of historical data seems to be crucial.
The most common data format used by both investors and researchers is the candlestick
representation (Evans et al. 2013; Fischer and Krauss 2018; Rundo et al. 2019). It is surely
the most popular representation of quotations, used in most economic research as well as
in most presentations and market analyses on the broker platforms (MetaTrader, JForex
etc.) (Gallo 2014; Burgess 2010; Schlossberg 2012).

Candlestick course, for a given timeframe, is described by four values: the opening
and closing price, and the highest and lowest registered course value. The properties of the
course represented in the candlestick representation are dependent on the assumed time
interval and are independent of the course trajectory dynamics. This leads, in consequence,
to the loss of informative value “inside” the candle. The frequency and range of the course
trajectory changes are variable, dependent on the time of the day and current market
situation (e.g., publishing of important data leads to an increase in change frequency, which
can be lost if the candle range is too big). When using historical data in candlestick format,
we often cannot distinguish how many transactions would have been concluded and if
they would have ended with a loss of profit. As a result, using data in the candlestick
representation can lead to faulty results of high-frequency trading market analysis, which
was researched in detail (Stasiak 2020).

To filter the noise and for potential application of the model to HFT systems, a binary
(Stasiak 2016) and binary-temporal (Stasiak 2018) representation was proposed. The idea for
constructing those representations came from the visual point-symbolic method (De Villiers
1933), which despite its many advantages was almost totally replaced by the candlestick
representation. In both binary and binary-temporal representations, the market changes
are represented as a binary sequence, corresponding to the course trajectory changes. The
binary-temporal representation, as compared to the binary one, also includes information
about the duration of each change.
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The binary representation is constructed based on a binarization algorithm. The
algorithm describes the upper and lower change limit for a given course value. The limits
are equal to the positive (or negative, respectively) increase of the course by a given unit
(i.e., so-called discretization unit (δ)). If the exchange rate drops below the lower limit, the
algorithm assigns i-th change the binary value εi = 0. In case of an increase beyond the
upper limit, the algorithm assigns i-th change the binary value of εi = 1. As a result, the
course is presented as a binary sequence EB for N observed changes:

EB = {εi}N
i=1. (1)

Similarly, in case of falls in the binary-temporal representation, the binarization algo-
rithm assigns the i-th change two values: the binary value εi = 0 and the duration of the
change expressed in seconds ∆ti. Also, when an increase occurs, the algorithm assigns the
value εi = 1 and the duration of the change ∆ti. In the next steps, the algorithm calculates
the next limit values for currently registered change and notes the time passed since the end
of the previous change. Eventually, we obtain a representation for the considered course
trajectory in form of a sequence EBT of N registered changes:

EBT = {(εi, ∆ti)}N
i=1. (2)

Advantages of such a course representation are registering all changes of range bigger
than the discretization unit and filtration of the noise. Noting changes that are bigger
than the discretization unit in the binary-temporal representation effectively eliminates the
problem of losing the informative value of data, contrary to the candlestick representation.
Additionally, the binary-temporal representation leads to an effective noise filtration, i.e.,
elimination of changes which size is smaller than the given discretization unit. The binary-
temporal representation can stand as a basis to construct HFT systems. Details of such a
construction are given in Section 4.

3. State Modelling in a Binary-Temporal Representation
3.1. Assumptions

The course trajectory of a given financial instrument can be seen as a change process
of the market state. This process reflects the behavioral patterns of the investors. The
foundation of the state modelling as well as other methods of technical analysis is the
assumption about the existence of statistically more frequent patterns in exchange rate
fluctuations than it would imply from the assumption of its completely random fluctuations
in the rate (Peters 1996; Yao and Tan 2000; Li et al. 2019). The change patterns represent
investors’ behaviors and are defined in the models as sequences of state changes. They occur
as a response to the current market state. An example can be the occurrence of corrections
after a certain period of increases caused by the publication of important information (e.g.,
about interest rates). Part of the investors assumes that the price is already overestimated
and they start to sell the instrument, which leads to a fall in the price (i.e., the so-called
correction). On the psychological grounds, such parameters such as risk aversion force
the investors to make decisions according to some defined patterns (Oberlechner 2005).
Another argument for the existence of repetitive behavioral patterns of investors is technical
and fundamental analysis methods, which are popularized in numerous publications. As a
result, one can assume that a large number of investors will make similar decisions and, as
a consequence, will influence the course trajectory in the same way.

State modelling of the exchange rate trajectory in a binary representation consists in
defining the states in such a way that the specific set of changes can be always assigned
a given state. We assume that the states change at the end of change duration in the
binary model. The state-space includes a limited number of states. The state model can be
described by the so-called transition process graph, which shows a “picture” of the market
that reflects the process of market changes. The graph presents all possible transitions
between the states. Based on historical data of the considered instrument one can assign
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probabilities of transitions between states and next, corresponding probabilities of the
future changes, which are saved in a so-called prediction table. The prediction table can, in
turn, be a basis for constructing an HFT system.

3.2. Binary State Model

The first and simplest state model in the binary representation is the SMBR model
(State Model in Binary Representation) (Stasiak 2016). The main idea of the model is to
define the states of the market as a set of possible directions of a given number of binary
changes in the course trajectory. Next, the probability of the direction of a next change is to
be calculated based on the analysis of transition frequency between states. In the SMBR
model, the course for N observed changes is presented as a binary sequence ESMBR, given
by (1). Therefore, we have:

EB = ESMBR = {εi}N
i=1. (3)

SMBR model assumes, that the order of changes εi in its newest history (i.e., m last
changes) influences the probability of the future change direction. Thus, the model uses
the order and type of changes in the binary representation to analyze behavior patterns of
investors, yet it does not analyze the duration of the changes.

State in SMBR model is defined as a set Sm (m ∈ N) of ensuing course changes:

Sm = {ε1, ε2, . . . , εm}. (4)

Depending on the parameter m we can determinate the state space we can determinate
the state space ΩSMBR =

{
Sm

0 , . . . , Sm
k
}

where the number of states k is described by the
number of all m-element permutations with repetitions from the two-element set {0,1}:

kSMBR = 2m. (5)

It is worth noting that during the observation period of N ensuing changes, the trajectory
of the change process in the SMBR model would consist of N − m + 1 ensuing states.

Based on the defined states one can construct a graph of the change process, in which
the states are represented by vertices and edges define the set of possible transitions between
states. Each edge of the graph is assigned frequency value of the transition between given
states, that are calculated based on historical data:

P
(
Si → Sj

)
=

nSi→Sj

nSi

, (6)

where nSi in the number of returns to the state Si, and nSi→Sj is the number of transitions
between Si and Sj. Frequencies (6) are interpreted as probability estimators for transitions
between given states, and can in consequence be used in the prediction of future changes.
SMBR model for a given instrument in the presented notation can be described by two
parameters: δ and m (that is, the discretization unit and the number of ensuing course
changes). In further considerations, it will be thus referred to by SMBR(δ, m). Figure 1
presents an exemplary graph of the change process for the SMBR(25,2) model.
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Let us now consider the performance of the SMBR(25,2) model. The state-space
consists of four states: S1 = {0, 0}, S2 = {0, 1}, S3 = {1, 0}, S4 = {1, 1}. Each state has
two possibilities of transition to the neighboring states: first in case of the course increase
and second in case of the decrease. Let us assume, that the market during the i-th change
is in the state S1 = {0, 0}. If an increase occurs, the next change will be equal to εi+1 = 1
and the model will change its state to S2 = {0, 1}. On the other hand, in case of a fall, the
process will stay in the state S0 = {0, 0}.

Based on historical data analysis, we can assess the probability distribution of transi-
tions between particular states and then the change direction probability distributions (i.e.,
probabilities for increases and decreases). In the SMBR model, both of those distributions
are identical. In Table 1 we can see quotation results from the 1 January 2014–31 December
2015 time period for the AUD/NZD instrument of SMBR(25;3).

Table 1. Probability estimation for ups and downs of the AUD/NZD instrument in SMBR(25;3)
model. Source: author.

State Probability of Increase Probability of Decrease Number of Returns

{0,0,0} 0.5103 0.4897 437
{0,0,1} 0.4230 0.5770 487
{0,1,0} 0.5822 0.4178 639
{0,1,1} 0.4437 0.5563 471
{1,0,0} 0.5421 0.4579 487
{1,0,1} 0.4247 0.5753 624
{1,1,0} 0.5339 0.4661 472
{1,1,1} 0.5094 0.4906 426

The probability distribution of the future change along with the information about a
more probable change direction can stand as a recommendation for concluding transactions
and can be presented in form of a prediction table (Table 2).

Table 2. Prediction table for the SMBR(25,3) model of the AUD/NZD. Source: author.

State Recommendation Probability of Success Number of Returns

{0,0,0} 1 0.5103 437
{0,0,1} 0 0.5770 487
{0,1,0} 1 0.5822 639
{0,1,1} 0 0.5563 471
{1,0,0} 1 0.5421 487
{1,0,1} 0 0.5753 624
{1,1,0} 1 0.5339 472
{1,1,1} 1 0.5094 426

Each state model allows for the construction of a prediction table of a structure
presented in Table 2. Based on the prediction table one can construct an HFT system, which
would automatize the investment process (Piasecki and Stasiak 2019, 2020). An example of
such a system description will be given in Section 4.

SMBR model stands as a kind of base state model for binary-temporal representation of
an exchange rate trajectory. In the model, only the direction of a fixed number of (m) changes
is analysed. This kind of basic information hypothetically allows for a market advantage.
The information is taken into account also in more advanced models. Therefore, comparing
the results of the simplest model with more advanced ones allows for estimating their
effectiveness. However, there is one restriction: the model does not analyze the duration of
changes. Other research suggests that time has a significant predictive value.



Risks 2022, 10, 69 6 of 15

3.3. Binary-Temporal State Model

An extension of the SMBR model that takes into consideration the duration of a change
is called a state model in a binary temporal representation (SMBTR) (Stasiak 2018). The
model assumes that the duration of a change has a significant influence on the probability
distribution of the future change direction. This fact can be explained by psychological
aspects (e.g., when the increase or decrease lasts for too long, investors start to open
opposite positions). Also, the majority of investors make similar decisions based on indices
that are calculated for the candlestick representation, and thus including the duration of
changes (Stasiak 2020).

SMBTR model is founded on the binary-temporal representation of exchange rate
trajectory changes, given in (2). A state in this model is defined similarly to the SMBR model
(that is, based on previous changes (4) and additional information that can be referred
from the registration of duration of changes). The parameter of registered durations for
given states would have been an intuitive solution, but it would have led to the need of
considering even ten thousand different states. Since the number of possible states has to
be limited, the author decided to assign each i-th binary change a parameter τi, describing
the duration using a threshold method:

τi =

{
1, ∆ti ≥ Qτ ,
0, ∆ti < Qτ .

(7)

In (7) we use threshold Qτ , which enables the distinction of the duration of particular
changes. It is easy to note that Qτ = 0 describes the elimination of time influence in the
model and collapses it to the SMBR model. In the SMBTR model, the course for N observed
changes is given as a sequence of binary pairs ESMBTR:

ESMBTR = {(εi, τi)}N
i=1 (8)

It is worth noting that due to the threshold method of calculating duration, ESMBTR 6= EBT ,
where EBT is given by (2).

The state in the SMBTR model is defined as the set Sm(m ∈ N) of ensuing course
changes and Tn(n ∈ N) of ensuing durations, given in binary values:

Sm,n = {Sm; Tn} = {ε1, ε2, . . . , εm; τ1, τ2, . . . , τn} (9)

Parameter m, similarly to the SMBR model, describes the number of historical changes,
Parameters m and n describe the space the space ΩSMBTR =

{
Sm,n

0 , . . . , Sm,n
k
}

, where the
number of states k is defined by the number of all (n + m)—element permutations with
repetitions from the 2-element set {0,1}:

kSMBRT = 2m+n. (10)

The state change in the SMBTR model depends only on the course change of a given
discretization unit (δ). Therefore, in the observation period of N ensuing course changes in
the SMBTR model, the trajectory will consist of N − m + 1 ensuing states, analogously to
the SMBR model.

Proceeding in the same way as in the SMBR model, based on appropriately defined
states, it is possible to construct a change process graph, in which states are represented by
vertices, while the edges of the graph define a set of possible transitions between states.
SMBTR model can be described by four parameters: m, δ, Qτ and n, that is the number of
ensuing changes, discretization unit, the duration threshold and the number of ensuing
durations, respectively. In further considerations, we will refer to it by SMBTR(δ, m, n, Qτ).
Figure 2 shows an exemplary process graph for the changes in SMBTR(25,2,1,300) model.
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Let us follow the performance of the SMBTR(25,2,1,300) model. We assume that the
market is in the state {(0,0);1}. If an increase in the course occurs next 52 s (52 < 300), then
the market will make a transition to the state {(0,1);0}. On the other hand, if a decrease
occurs in next 450 s (450 > 300), then the market will stay in the {(0,0);1} state. Similarly, if
next 103 sec a decrease occurs, (103 < 300), the market transitions to {(0,0);0}. Finally, if the
rate increases in 512 s (512 > 300), the market reaches {(0,1);1}.

Based on the historical data analysis, we can assess the probability distribution for
transitions between states, and next, the probability distribution of change direction (i.e.,
probability of an increase and a decrease in the quotations), for particular states. Based on
the probability distributions, we can assess the probability of a future change direction.

The probability distribution calculated for transitions between states in the SMBTR
model is not identical with the probability distribution of changes, similarly to the SMBR
model. For each state in the SMBTR model we can distinguish four possible types
of changes:

- An increase in a time shorter than the threshold value Qτ ;
- An increase in a time longer than the threshold value Qτ ;
- A decrease in a time shorter than the threshold value Qτ ;
- A decrease in a time longer than the threshold value Qτ .

Again, similarly to the SMBR model, we can construct a prediction table, based on
historical data. The prediction table can next be used to design a proper HFT system.

3.4. State Modelling with the Use of Moving Average
3.4.1. Moving Average in a Binary-Temporal Representation

The moving average is one of the basic parameters of technical analysis, used in the
analysis of the course trajectory in candlestick representation. We can distinguish simple
moving average (SMA), which is an arithmetic average of the closing prices from n previous
candles, and a group of weighted moving averages (WMA) (Lim 2015).

Let us consider using moving averages in the analysis of course trajectory given in
the binary-temporal representation. In the binary representation, it is not easy to define a
simple moving average SMA. To describe an average based on only the size of a change in
n periods would lose the information about the order of changes and about the times of
their occurrence. Due to this observation, we introduce a so-called “binary average”, which
consist in appointing an average from the binary changes expressed by the time parameter.

In the proposed method of calculating the binary average, we transform the notation
of a single course change from ε ε {0, 1} to ϕ ε {−1, 1}. In this notation, a decrease is
assigned a value (−1), and the increase is assigned a 1. Therefore, for i-th change, we have:

ϕi =

{
−1 if εi = 0,

1 if εi = 1.
(11)
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In the model, we assume that the average will be appointed based on an n-element
sequence of ensuing changes. By the symbol Tn(i), where 1 ≤ i ≤ n, we denote the sum of
durations and first changes of the n-element sequence:

Tn(i) =
i

∑
k=1

∆tk. (12)

Each change in the considered sequence can be assigned a corresponding weight.
Weight of the i-th change ωn(i) is defined in the model as the ratio between the duration of
first i changes Tn(i), to the duration of all n analyzed changes Tn(n):

ωn(i) =
Tn(i)
Tn(n)

. (13)

In the model, we assume that weight increases with the increase of the change index.
This means that the newest changes (those closest to n) have the highest weight. The
last, n-th change has the highest possible weight, which is 1. Now, based on the weights
and their normalization to a probabilistic measure we can calculate the binary-weighted
average E(n):

E(n) =
n

∑
k=1

ωn(k)
∑n

i=1 ωn(i)
ϕk. (14)

Such construction of the average places the calculated value in the [−1, 1] interval. The
inclusion of time in the determining weights for the moving average allows for obtaining
better results of course modelling than the threshold time analysis in the binary-temporal
model. This is proven by empiric research results performed by the Author, which is
partially presented in Section 5.

3.4.2. State Model for Moving Average in a Binary-Temporal Representation

Let us now consider a model which uses information about the binary average to find
the probability distribution (i.e., state model of the binary moving average (SMBMA)). The
main idea of this model, as in the classic technical analysis methods, is that the current
moving average influences the probability distribution of the future change of direction.
The model uses binary-temporal representation given by (2).

A state in the SMBMA model is described analogously as in the SMBR as last m
changes (4) and additional information that can be inferred from assigning each change an
average value, calculated based on the previous sequence of n changes. However, using
averages given by (15) to describe all binary states would have led to generating a large
number of states which would have made the practical applications of the model rather
impossible. Therefore, due to the need of limiting the general number of states, each i-th
change is assigned a µi(n) parameter, describing the average from n previous changes.

µi(n) =


1, Ei(n) ≥ Qµ,
0, −Qµ < Ei(n) < Qµ,
−1, Ei(n) ≤ −Qµ.

(15)

where Qµ is the assumed discretization threshold for the average. In the SMBMA model,
the course for N observed changes is represented as a sequence of pairs ESMBMA:

ESMBMA = {(εi, µi(n))}N
i=1. (16)

A state in the SMBMA model is defined as the set of m consecutive course changes
and average from last n course changes µm(n) expressed using a threshold, calculated at
the last m-th change:

Sm = {ε1, ε2, . . . , εm, µm(n)}, (17)
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where µm(n) is described by (16) for I = m.
Parameters m and µm(n) describe the state space ΩSMBMA =

{
Sm

0 , . . . , Sm
k
}

, where
the number of states k is defined by the multiplication of all m-element permutations with
repetitions from the 2-element set {0,1} and a single element from the set {−1,0,1}:

kSMBMA = 2m ∗ 3. (18)

The SMBMA model is defined by four parameters: δ, m, n and Qµ. In further con-
siderations, it will be therefore referred to as SMBMA (δ, m, n,Qµ). Figure 3 presents an
exemplary process graph for changes in SMBMA (300,2,4,0.55) model. Since not all of the
states can occur (they are dependent on the threshold, etc.) the graph shows only those
states, which have occurred at least once.
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In the considered model, at each state two last changes are analyzed (m = 2), as well
as the binary average, described based on the four last changes (n = 4). If at any state I
the average form the last four changes Ei(4) is higher than Qi = 0.55, then µi(4) = 1. If
parameter Ei(4) is smaller than 0.55 and at the same time higher than −0.55, then µi(4) = 0.
However, if the parameter Ei(4) is smaller than −0.55, then µi(4) = −1. Let us assume
that after i-th consecutive change the market finds itself in the state {(0,0);−1}. If in the next
change an increase occurs and the average will be equal to Ei(4) = 0.1, then the market will
make the transition to the state {(0,1);0}. On the other hand, if in the next change we have
an increase but the average equals Ei(4) = 0.57, then the market will go to the state {(0,1);1}.

Based on the historical data and analogously to SMBR and SMBTR models, we can cal-
culate the probability distribution of the transitions between states. Furthermore, based on
it we can create a corresponding prediction table that can be further used in the construction
of an HFT system.

4. Construction of HFT Systems Based on State Models
4.1. Construction of HFT Systems

We will now consider building an HFT system that will be constructed based on the
binary-temporal representation. In such kinds of systems, each binary change is assigned a
transaction (Piasecki and Stasiak 2019, 2020). The transaction is opened at the beginning
of the change and closet at its end. Choice of the transaction made is made based on
the prediction table, depending on the state in which the market is currently at. If the
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transaction is concluded with a profit, the account balance Bi, after the i-th transaction, will
increase as follows:

Bi = Bi−1 + (δ− r) ∗ v, (19)

where r is the spread which stands as the broker’s provision. Parameter v describes the
size of a pip for the instrument:

v = 100, 000 ∗ l, (20)

where l is the number of lots. If the transaction is concluded with a loss, the account balance
Bi, after the i-th transaction, will decrease:

Bi = Bi−1 − (δ + r) ∗ v. (21)

According to the construction of CFD contracts, the size of profit/loss is identical in
the case of both buy and sell transactions. In HFT systems transactions are opened one
after another and the return rate results from the advantage of the number of profitable
transactions over lossy ones. The transaction is not concluded only if the direction cannot
be determined for a given state (0.5 in the prediction table).

4.2. Performance Evaluation for HFT Systems

By using the prediction table, which is determined based on historical data, it is
possible to assess the usefulness of state models for the construction of HFT systems. The
profit of a successful trade (19) is always smaller than the loss on the unsuccessful one
(21). Thus, a system based on a given prediction table will generate profit if the following
condition is met:

(δ− r)v ∗ Pg > (δ + r)v ∗ (1− Pg), (22)

where Pg is the average probability of success in a single transaction. By (23) we have:

Pg >
δ + r

2δ
. (23)

Systems that do not satisfy the condition (24) cannot be further considered. If the
prediction table of a given model meets the condition (24), the HFT system corresponding
to this model can be verified and compared with other systems based on the so-called
backtests. Backtests consist in determining the prediction table of a given system from
historical data and then testing the performance of that system on historical data from a
later period. As a result of a backtest, we obtain a description of dependences in balance
changes over time. The results of backtests are usually presented in form of a graph of
changes in the cumulative return rate RC(t).

To evaluate and compare backtests the so-called financial efficiency indicators are used.
Financial efficiency is defined as the ratio of profit to the risk taken. In the case of HFT
systems using CFDs, the profit is determined by the achieved return rate. Since the account
balance in the case of HFT systems changes dynamically, and bankruptcy occurs only when
all funds are lost, the risk is measured based on the so-called maximum drawdown dmax
(Chekhlov et al. 2005). This parameter describes the largest decrease in the cumulative
return rate recorded during the backtest:

∀
tε(0, T) ∧ sε(0, t)

∃
dmax

dmax = max{RC(s)− RC(t)}. (24)

where T is the duration of the backtest. One of the most commonly used effectivity
indicators is the Calmar indicator ρ (Young 1991), which is defined as the ratio of the
average annual rate of return RY to the maximum decrease in the capital:

ρ =
RY

dmax
. (25)
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The higher the Calmar coefficient, the greater the profit at a given risk level. The
backtest is carried out for the assumed initial balance Bbc and the given position size lbc.
The system generates identical transaction signals, so the selection of Bbc and lbc parameters
does not have any influence on the indicator; the Calmar efficiency index assumes a constant
value for any of their appointment.

4.3. Empirical Research of HFT Systems

Let us consider the performance of HFT systems constructed based on the binary
models for the AUD/NZD course. A prediction table is required to perform a backtest, so
the researched period was divided into two time periods: first, a three-year-long period of
1 January 2014–31 December 2015, in which the prediction table was determined, and then
second, a three-year period between 1 January 2016–1 January 2020, where the backtest
was performed. Tick data from the Ducascopy broker were used. The research assumes
that the average spread offered by brokers is set to 2 pips.

We will now describe the construction of an HFT system based on the SMBR(25,3)
model, where at each state three changes are analyzed. SMBR model does not analyze the
duration of changes. To define the influence of the duration of changes on the effectiveness
of the prediction, the SMBRT model was researched, which also takes into account three
changes and the time of the last change. To determine the maximal influence of the time on
the probability of success, an optimal time threshold was appointed. The best results were
obtained for SMBRT(25,3,2,3610) model.

In the conducted research of the SMBMA model, the influence of the averages on the
HFT system performance was taken into account. Analogously to the previous experiments,
research was performed with the use of a discretization unit equal to 25, and the states
were determined based on the three last course changes. Modelling results in the SMBMA
model are dependent on two more parameters: the length of the sequence n for the average
determination, and the appointed threshold for the discretization of the averages—Qµ. All
sequence lengths in the 3–20 range were researched. Sequences longer than 35 did not bring
any significant improvement to the prediction effectiveness. Also, all possible values for
the threshold were checked, starting from 0 to 1, with the 0.05 step. The best results were
obtained for the SMBMA(25,3,28,0.2) model. Table 3 shows the prediction table obtained
based on the data analysis in the first research period. Analogous to the previous models,
we can assess the probability of the direction of the recommended change.

Results of the modelling in the first testing period show that the introduction of the
time parameter into the model allowed for an increase in the precision of calculating
the probability distribution of a future change direction. Even more precise results were
obtained when modelling the averages.

To assess the possibilities for using the obtained results in the construction of HFT
systems. The initial account balance was assumed to be B0 = 10,000 $ and the transaction
size was set to l = 1 lot. Figure 4 shows the backtest results.

Based on the performed backtests, Calmar’s efficiency indicator was calculated. For the
considered models it takes the following values: ρSMBR = 2.86; ρSMBRT = 3.92; ρSMBMA = 7.65.
By analyzing the backtest, one can easily see a systematic increase of the accumulated
return rate. Registered capital loses remain at a similar level; there are no drastic falls that
deviate from the average. Thus, one can assume that the changes have a stable character.
Beside Calmar indices, one should pay attention to the drawdown duration (Pardo 2011),
which shows the maximal time after which the next capital increase is registered (here,
4.5 months).
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Figure 4. Backtest results for HFT system constructed based on SMBMA(25,3,28,0.2) model.
Source: author.

Table 3. Prediction table for SMBMA(25,3,28,0.2) model of AUD/NZD, calculated for 01 January
2014–31 December 2016. Source: author.

State Recommendation Probability of Success Number of Returns

{(0,0,0);−1} 0 0.54945 91
{(0,0,0);0} 1 0.51841 326
{(0,0,0);1} 1 0.65000 20

{(0,0,1);−1} 0 0.58947 190
{(0,0,1);0} 0 0.54286 210
{(0,0,1);1} 0 0.63218 87

{(0,1,0);−1} 1 0.55085 236
{(0,1,0);0} 1 0.63636 297
{(0,1,0);1} 1 0.51200 106

{(0,1,1);−1} 0 0.52764 199
{(0,1,1);0} 0 0.64557 79
{(0,1,1);1} 0 0.54922 193

{(1,0,0);−1} 1 0.50857 175
{(1,0,0);0} 1 0.56140 228
{(1,0,0);1} 1 0.55952 84

{(1,0,1);−1} 0 0.57915 259
{(1,0,1);0} 0 0.57364 129
{(1,0,1);1} 0 0.57203 236

{(1,1,0);−1} 1 0.51579 190
{(1,1,0);0} 1 0.55455 110
{(1,1,0);1} 1 0.54070 172

{(1,1,1);−1} 0 0.59375 96
{(1,1,1);0} 1 0.60000 15
{(1,1,1);1} 1 0.53651 315

Backtest of the systems shows similar effectiveness of prediction such as the one
calculated in the predictions table. Such prediction effectiveness allows for obtaining a
positive return rate according to (24).

The introduction of the duration of each change to the model (SMBRT model) led to
an increase in the efficiency of the system performance. In this case, a proper HFT system
can be constructed, which will allow the investor to obtain a higher systematic profit.

HFT system operating based on SMBMA model that uses a moving average from a
few previous changes confirmed the efficiency of prediction stated in the prediction table.
The system is characterized by the highest financial efficiency, equal to ρSMBMA = 7.65.
Such a result means that the SMBMA model allows for achieving the highest return rate.
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Obtained results indicate unequivocally that the introduction of averages to the course
analysis is fully justified and allows for an effective prediction of future changes and for
achieving a high return rate.

5. Discussion

The research results presented in the article allow for the formulation of several
conclusions of a theoretical and practical nature. In terms of theory, it can be concluded that
the use of the binary-temporal representation in modelling of the exchange rate process
allows for a more accurate analysis of historical data than in the case of using a candlestick
representation. This is especially important for fast-changing financial instruments, since
the investor’s profit or loss may be determined by unregistered changes “inside” the candle
(Stasiak 2020). However, such changes are included in the binary-temporal representation,
provided that the appropriate parameters for a given financial instrument are selected.

The article shows the results of an effective analysis of the exchange rate on the basis
of two previously published state models in a binary-temporal representation (i.e., SMBR
(Stasiak 2016) and SMBTR (Stasiak 2018)). One of the goals of this work was to answer the
question whether the introduction of technical analysis methods to the course description in
a binary-temporal representation will increase the predictive value of the model. To verify
this, the moving average method was selected and a state model was built for the binary-
temporal representation. It takes into account the average parameter in the description of
the states in the exchange rate process (SMBMA model). The model introduces appropriate
mean definitions, which are dependent on the assumed number of preceding changes and
their duration.

The results of the research presented in the paper show that the proposed model has
better predictive properties than the previous models for the binary-time representation.
However, the conclusions resulting from the conducted research have a much broader
context than a simple comparison of several models. It turns out that the use of technical
analysis methods in state modelling (and binary-temporal representation) can significantly
increase the accuracy of this modelling. The condition of success is the precise definition of
the course changes process and the appropriate parameters of the technical analysis (e.g.,
the moving average). Those conclusions define the direction for further research, the aim
of which will be to use other methods of technical analysis in modelling of exchange rates
(e.g., MACD, RSI indicators). The practical result of the work presented in the article is the
possibility of using the proposed models to build HFT systems. The results presented in the
author’s previous works (e.g., (Piasecki and Stasiak 2019; Stasiak 2016, 2018)) indicate that
the binary-temporal representation is conducive to the construction of predictive tables for
such systems, and the inclusion of technical analysis methods increases their accuracy. This
increased accuracy of prediction results in increased profits for the investor using those
HFT systems.

6. Conclusions

The article discusses the assumptions of a new SMBMA state model for binary-
temporal representation, which uses a moving average to predict market changes. During
the research, assumptions for the construction of HFT systems based on appropriate state
models were deduced. To verify the usefulness of researched systems in real-life investment
practice and to evaluate their effectiveness, the results of empirical research on HFT systems
with state models for the AUD/NZD instrument are described. The following models were
compared: a binary state model, a binary-temporal state model, and a new binary average
state model.

As a result of the research, it was proven that the inclusion of time in the state analysis
leads to a significant improvement of the modelling results and, consequently, to higher
financial efficiency in comparison with the SMBR model. The best efficiency was achieved
with the SMBMA model. Thus, the proposed model allows obtaining a higher level of
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prediction efficiency (as compared to previous systems) and, consequently, to obtain a
higher return rate in the HFT system built on its basis.

The proposed, new model allows for a next step in state modelling and construction
of practical solutions that are based on its results. It is a first model that uses classic method
of technical analysis that is usually applied to candlestick representation The method is
modified and implemented in state modelling with a binary-temporal representation. In
consequence, better results were obtained, as compared to SMBR and SMBRT models
presented in previous research (which were based on relations between change parameters).
The presented results indicate the direction of future research, that is modification of classic
methods of technical analysis (e.g., indices) in state modelling with a binary representation.

It should be emphasized that the presented model and the method of HFT system
construction presented in the article with the example of one of the very popular derivative
instruments for the FX market (AUD/NZD) is universal and can be used for any financial
instrument.
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