
����������
�������

Citation: Basu, Treena, Olaf Menzer,

Joshua Ward, and Indranil SenGupta.

2022. A Novel Implementation of

Siamese Type Neural Networks in

Predicting Rare Fluctuations in

Financial Time Series. Risks 10: 39.

https://doi.org/10.3390/

risks10020039

Academic Editor: Anatoliy

Swishchuk

Received: 8 November 2021

Accepted: 24 January 2022

Published: 11 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

risks

Article

A Novel Implementation of Siamese Type Neural Networks in
Predicting Rare Fluctuations in Financial Time Series
Treena Basu 1,†, Olaf Menzer 2,† , Joshua Ward 3,† and Indranil SenGupta 4,*,†

1 Department of Mathematics, Occidental College, Los Angeles, CA 90041, USA; basu@oxy.edu
2 Department of Geography, University of California, Santa Barbara, CA 93117, USA; menzer@geog.ucsb.edu
3 Department of Statistics, University of California Los Angeles, Los Angeles, CA 90095, USA;

joshuaward805@gmail.com
4 Department of Mathematics, North Dakota State University, Fargo, ND 58108, USA
* Correspondence: indranil.sengupta@ndsu.edu
† These authors contributed equally to this work.

Abstract: Stock trading has tremendous importance not just as a profession but also as an income
source for individuals. Many investment account holders use the appreciation of their portfolio (as
a combination of stocks or indexes) as income for their retirement years, mostly betting on stocks
or indexes with low risk/low volatility. However, every stock-based investment portfolio has an
inherent risk to lose money through negative progression and crash. This study presents a novel
technique to predict such rare negative events in financial time series (e.g., a drop in the S&P 500 by a
certain percent in a designated period of time). We use a time series of approximately seven years
(2517 values) of the S&P 500 index stocks with publicly available features: the high, low and close
price (HLC). We utilize a Siamese type neural network for pattern recognition in images followed
by a bootstrapped image similarity distribution to predict rare events as they pertain to financial
market analysis. Extending on literature about rare event classification and stochastic modeling in
financial analytics, the proposed method uses a sliding window to store the input features as tabular
data (HLC price), creates an image of the time series window, and then uses the feature vector of
a pre-trained convolutional neural network (CNN) to leverage pre-event images and predict rare
events. This research does not just indicate that our proposed method is capable of distinguishing
event images from non-event images, but more importantly, the method is effective even when only
limited and strongly imbalanced data is available.

Keywords: Convolutional Neural Network (CNN); image processing; rare event prediction; siamese
neural networks; time series

1. Introduction

Rare event prediction has recently been a field of substantial quantitative model
development (Ali and Ariturk 2014; Cheon et al. 2009; Janjuaa et al. 2019; Li et al. 2017;
Lin and SenGupta 2001; Rao et al. 2020; Weiss and Hirsh 2000). Originating in Statis-
tics (Gumbel 1958), rare event prediction and the related field of extreme value prediction
have been further enabled by modern computing and a multitude of methods have been
investigated. This study aims to extend the literature of rare event prediction in the field of
financial analytics by proposing an implementation of image pattern recognition.

Some common features in the rare event prediction problem are: (i) that the outcomes
are usually binary in nature (for example, buy stock versus not to buy stock), (ii) imbalanced
data distribution (a majority group versus a minority group) and (iii) limited availability of
data in some cases.

Financial analytics can be split in two different types: fundamental analytics and
technical analytics. While fundamental analytics utilizes a company’s financial information
to make purchase decisions by comparing a stock’s intrinsic value to the prevailing market
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price, technical analytics utilizes technical charts and other instruments and variables such
as key performance indicators and trend analytics to identify patterns that might be able to
advocate stock movements without measuring a stock’s intrinsic value (Drakopoulou 2016).
While several papers identify fundamental analytics as promising to identify potential
stock value appreciation (Cheng and Chen 2007), others show the importance of technical
analytics (Chavarnakul and Enke 2008; Hu et al. 2021; Sezer and Ozbayoglu 2018; Vijh et al.
2020) or the combination of both (Bettman et al. 2009; Drakopoulou 2016).

This study focuses on pattern recognition and can therefore be classified as extension
for technical financial analytics. Technical analyses have been an academic topic for almost
60 years (Nazário et al. 2017) and are built on top of long- and short-term stock trend
analysis, identifying patterns that are able to predict future movements of stocks and
indexes. The identification of patterns that can predict stock or index price drops support
portfolio management decisions such as backing out of an index or stock to avoid losing
money or to short an index or stock to bet on it and to make money due to its depreci-
ation (Murphy 1999; Sezer and Ozbayoglu 2018). Those drops (of 10% or more) depend
on stock or index volatility. In case of market indexes (with low volatility) such strong
fluctuations are rare but possible.

The rest of this paper is organized as follows. Section 1.1 discusses recently proposed
methods that focus on the classification of tabular data using CNNs. This section includes a
discussion of non-time series tabular data as well as time series tabular data. We conclude
Section 1 by providing motivation for the research presented in this paper.

Section 2 provides the methodology used for our research and consists of three parts.
Section 2.1 discusses the connection between classical stochastic models and machine
learning approaches for the detection of rare events in financial time series. This is followed
by Section 2.2, which describes where the financial data used in this research was collected,
which features were extracted and how the collected tabular data was converted into
images. Section 2.2 also explains our approach to labeling an image as either an event
image or as a non-event image.

Section 2.3 details the steps in which images are passed through a pre-trained CNN
and their output feature vectors are used to measure similarity between images. We
describe how the similarity scores are used to create two bootstrapped distributions. We
then proceed to explain how these distributions are used to classify a new image as an
event or a non-event.

We present the results of our proposed method in Section 3 for various sized images
and various levels of class imbalance and discuss the results in Section 4. Finally, we
conclude this paper by suggesting avenues for future research in Section 5.

1.1. Literature Review on Classification of Tabular Data Using CNNs

CNNs are a class of deep neural networks widely used for the purpose of image classifi-
cation (Taigman et al. 2014). Research indicates that the performance of CNNs approach and
in some cases surpass human level accuracy for classification of images (Esteva et al. 2017).
Unfortunately, there is still no similar process in which CNNs can be applied to classifica-
tion of tabular data. Furthermore, there is a lack of existing techniques for classification
tasks in the case of limited tabular data and in the presence of extreme class imbalance.

Currently, a few different approaches have been brought forth for classification through
the use of CNNs where the dataset is in tabular form. The primary idea on which these
approaches lie is in converting tabular data into image data-which has been done in many
ways and subsequently classifying the resulting images using CNNs. We discuss these
approaches below.

For instance, Buturovic and Miljkovic (2020) created TAC-tabular convolution for
classification of tabular data using CNNs. They transform tabular data to images by
treating each row of tabular data, i.e., a vector of features as an image filter (kernel) and
apply the filter to a fixed base image. A CNN is then trained to classify the filtered images.
They demonstrate the performance of their method by applying it to a data set consisting
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of 2590 blood samples from patients with an infectious disease to diagnose whether they
have a bacterial or viral infection. Using 2331 samples for training and 259 samples for
testing their model achieves accuracy of 91.1%. While their work in the field is novel, their
research does not accommodate the situation in which limited tabular data exists and the
data is highly imbalanced. One of the main differences between our work and that of
Buturovic and Miljkovic is that we provide a method by which one can convert tabular
data into images instead of using the tabular data as a way to create a filter that is applied
to base images.

Sharma and Kumar (2020a) process data in the form of a 1D data vector and con-
vert it into a 2D graphical image with appropriate correlations among the fields to be
passed through a CNN with the goal of classifying images as cancer versus non-cancer.
They propose three different ways to convert tabular data to image data: Equidistant
Bar Graphs, Normalized Distance matrix and a combination of the first two methods.
They apply their technique on two datasets Wisconsin Original Breast Cancer (WBC)
(https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(original), accessed on
7 November 2021) with 10 attributes (699 instances) and Wisconsin Diagnostic Breast Cancer
(WDBC) (https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(diagnostic),
accessed on 7 November 2021) with 32 attributes (569 instances), both of which publicly
available at UCI Machine Learning Repository (https://archive.ics.uci.edu/ml/index.php,
accessed on 7 November 2021). This is one of the earliest available works that show that
non time series tabular data can be converted to images and be subsequently used for classi-
fication.

Sharma and Kumar use deep ConvNet (https://cs231n.github.io/convolutional-
networks/, accessed on 7 November 2021) model made publicly available by Karen Si-
monyan and Andrew Zisserman (Simonyan and Zisserman 2014). Their model performs
well achieving specificity, sensitivity scores and F1-scores in the high 90 s. Our work differs
from Sharma and Kumar (2020a) in that we are working with tabular data that arises from
time series and unlike Sharma and Kumar, we will be working with a dataset that has
extreme class imbalance.

While tabular data that arises from time series is often analyzed using regression for
prediction, more recently time series data has been used for classification problems. In the
following paragraphs we highlight research in which data in the form of time series has
been converted into images to be used for classification.

In the recent past Hatami et al. (2017) propose a method for time series classification.
Their method consists of converting time series signals into textured images using recur-
rence plots and then taking advantage of CNN’s high performance on image classification.
Recurrence plots provides a way to visualize the periodic nature of a trajectory through a
phase space. Their model outperforms traditional classification framework such as sup-
port vector machines, for instance. The work presented in this paper differs from that
of Hatami et al. (2017) in that we are using time series data arising from the stock market,
whereas Hatami et al. (2017) utilizes twenty different time series data sets, none of which
are financial data. While, their research is a novel step in using images to represent data in
the form of time series they do not focus on the issues of class imbalance or the case when
there is limited labeled data as is addressed in the paper.

In 2015 Wang and Oates (2015) propose a framework for encoding time series as
different types of images, namely, Gramian Angular Summation Fields (GASF), Gramian
Angular Difference Fields (GADF) and Markov Transition Fields (MTF). They then utilized
Tiled CNNs on 20 standard datasets to learn high-level features from the single GASF,
GADF and MTF images as well as the compound GASF-GADF-MTF images and classify
them. Tiled CNNs are a variation of CNNs that use tiles and multiple feature maps to learn
invariant features. The datasets used as a part of their study come from a range of fields
such as medicine, entomology, engineering, astronomy, signal processing and others. Their
results were impressive and show potential for further uses; however, their methods are
well suited for use CNNs with having a high N size and low class imbalance. Our work

https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(original)
https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(diagnostic)
https://archive.ics.uci.edu/ml/index.php
https://cs231n.github.io/convolutional-networks/
https://cs231n.github.io/convolutional-networks/
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differs from Wang and Oates (2015) in that we choose a dataset arising from the financial
sector and has inherent extreme class imbalance. Furthermore, work in this paper aims
to develop and test a novel method that can classify tabular data through the use of a
Siamese type neural network by transforming tabular data into image data as Siamese
Neural Networks have been shown to perform well at classification with small amounts of
data and heavy class imbalance Koch et al. (2015).

Sezer and Ozbayoglu (2018) converted financial time series data arising from Dow
Jones 30 and ETFs into 2D images using 15 technical indicators over a 15 day time period
resulting is 15× 15 sized 2D images. Each image is labeled Buy, Sell or Hold depending on
the hills and valley of the original time series. In their proposed model CNN-TA, Sezer and
Ozbayoglu’s adapted and trained a CNN structure similar to the deep CNN used in the
MNIST algorithm. Their results applied to financial data from 2002 through 2017 indicate
that when compared with the Buy & Hold Strategy over a long period, the trained model
provides better results for stocks and ETFs. Thier CNN-TA model achieves a total accuracy
of 62%.

The primary difference between Sezer and Ozbayoglu (2018) and the research pre-
sented in this paper is that our dataset is significantly smaller, has only three features
compared to their use of 15, and the event we are trying to predict occurs in 1–10% of
the time making our dataset highly class imbalanced. Furthermore, for the work pre-
sented in this paper we use the CNN named VGG-16 which is available on OpenCV
(https://opencv.org, accessed on 7 November 2021). We are using VGG-16 because we
have limited data which restricts us from effectively training our own CNN. The pre-trained
VGG-16 (Simonyan and Zisserman 2014) has been shown to have praise worthy results on
a wide array of problems and its use in this paper makes our research reproducible.

1.2. Motivation

The objective of this study is to develop an algorithm that can perform a classification
task with limited and imbalanced tabular data within the context of financial time series.
While there already are algorithms designed to classify images with limited training data
through use of Siamese networks (Taigman et al. 2014), we found that classification methods
on limited and highly imbalanced tabular data are not well developed. There is even
less existing research within the context of temporally distributed data for classification
problems. Our proposed research seeks to improve current classification methods by
addressing some of these challenging scenarios associated with rare event prediction,
and showcases a successful use case in detecting abrupt changes in the stock market using
time series data.

In this paper, we present two novel methods, one for converting time series data into
images and another for using these images to predict rare fluctuations.

2. Materials and Methods

In this section we provide a brief mathematical survey on financial analytics and we
describe the time series data used in our implementation of Siamese type neural networks
for rare event prediction. Section 2.1 surveys classical stochastic models in financial
analytics and their connection with machine learning. Section 2.2 describes the fist part
of our methodology: converting financial time series data from tabular form into images.
In Section 2.3 we narrate the second part of our methodology: how to use the images
created to predict future rare fluctuations as it pertains to the financial market.

2.1. A Brief Mathematical Survey on Financial Analytics

Extending the literature in technical financial analytics (Hu et al. 2021; Sezer and
Ozbayoglu 2018), this paper proposes a methodology beyond stochastic short- and long
term trend identification approaches such as Ornstein-Uhlenbeck type models and the
classical stochastic BN-S models (Barndorff-Nielsen and Shephard 2001a, 2001b). In this
subsection we discuss these classical stochastic models and their limitations, current re-

https://opencv.org
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search in the field that addresses these limitations and the role of machine learning in
propelling the field forward.

Financial time series of different assets share many common features such as heavy-
tailed distributions of log-returns, aggregational Gaussianity, quasi long-range dependence.
Many such facts are successfully captured by models in which stochastic volatility of log-
returns is constructed through Ornstein-Uhlenbeck (OU) type stationary stochastic process
driven by a subordinator, where a subordinator is a Lévy process with positive increments
and no Gaussian component. One such model is introduced in various works of Barndorff-
Nielsen and Shephard and is known in the literature as the BN-S model see Barndorff-
Nielsen and Shephard (2001a, 2001b). Since the pioneering work of Barndorff-Nielsen and
Shephard, it is clear that the model has excellent potential in financial time series analysis.

A major disadvantage of the classical stochastic models (including the BN-S model)
is the inclusion of a single background driving Lévy process for both the log-return and
volatility. One possible alternative is to drive the log-return and volatility by correlated
Lévy processes. In the paper (SenGupta 2016), the authors propose a generalized model
that has the liberty to construct the log-return and volatility in a correlated but different
way. This is a major improvement of the classical stochastic BN-S model. This is further
developed in Habtemicael and SenGupta (2016), where this generalized stochastic model is
implemented to obtain the arbitrage-free pricing of various financial derivatives, such as
variance, volatility and covariance swaps. The mathematical analysis is further extended
in Issaka and SenGupta (2017), where three major issues are addressed: (1) a partial-integro-
differential equation (PIDE) related to the dynamics of variance swap prices, (2) a lower
and upper bound on the set of variance swap prices with respect to various equivalent
martingale measures of the BN-S model and (3) expressions for transition probability
density functions in terms of various special functions for some Lévy process-driven
financial markets.

Even with the above generalizations, there remain some significant problems for the
existing stochastic models. For example: (1) the performances of the existing stochastic
models vary considerably depending on both the length and the density of time in the
observed time series. Slow convergence is essentially caused by a high serial correlation
between the latent variables and the parameters. The problem is particularly acute in the
case of a sparsely observed time series, or any case in which the time series contains many
data; (2) most of the analytically tractable stochastic models do not incorporate the long
range dependence property. Existing stochastic models fail significantly for a longer range
of time.

In the paper (SenGupta et al. 2021), the authors show that for some financial time
series data, the jump is not completely stochastic. On the contrary, there is a deterministic
component (θ) in the dynamics that can be extracted by various machine/deep learning
algorithms and implemented to the existing models to incorporate a long range dependence.
Based on this, a machine/deep learning based sequential hypothesis testing is developed
in the papers (Roberts and SenGupta 2020; Salmon and SenGupta 2021). In another pa-
per (Shoshi and SenGupta 2021), the problem is transformed to an appropriate classification
problem with a couple of different approaches: the volatility approach and the duration
approach. The analysis is implemented to an empirical data set and the aforementioned
deterministic component is obtained. With the implementation of this parameter in the
refined model, it is shown that the resulting model performs much better than the clas-
sical BN-S model. Consequently, an improved way of “anticipating" big fluctuations in
the market will help to improve the underlying stochastic model. For example, in the
case of the classical BN-S model, the stock price St on some risk-neutral probability space
(Ω,G, (Gt)0≤t≤T ,Q) is modeled by

St = S0 exp(Xt), (1)

dXt = (B− 1
2

σ2
t ) dt + σt dWt + ρ dZλt, (2)
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dσ2
t = −λσ2

t dt + dZλt, σ2
0 > 0, (3)

where the parameters B ∈ R, λ > 0 and ρ ≤ 0. In the above model Wt is a Brownian
motion, and the process Zλt is a subordinator. Also W and Z are assumed to be independent.
Since ρ ≤ 0, from (1) and (2), it is clear that the value of St primarily grows with the drift
coefficient B, and decays with the action of the subordinator Z.

As discussed in Ekapure et al. (2021), for short-term forecasting, we may refine (2)
based on three different values of θ. This is different in comparison to previous works
where the possible values of theta are either 1 or 0.

dXt = (B(θ)− 1
2

σ2
t ) dt + σt dWt + ρ(θ) dZλt, (4)

where θ can take three values, 0, and ±1, and for an appropriate Λ ∈ R,

B(θ) =

{
B, if θ = 0,−1,
B + Λ2, if θ = 1,

(5)

and

ρ(θ) =

{
ρ, if θ = −1,
0, if θ = 0, 1.

(6)

Consequently, the indicator function θ gives rise to three scenarios:

1. θ = 1, where a short-term upward share movement is expected:

dXt = (B + Λ2 − 1
2

σ2
t ) dt + σt dWt.

2. θ = 0, where not much short-term share movement is expected:

dXt = (B− 1
2

σ2
t ) dt + σt dWt.

3. θ = −1, where a short-term downward share movement is expected:

dXt = (B− 1
2

σ2
t ) dt + σt dWt + ρ dZλt.

In summary, this refined model is driven by an indicator function θ that can take
values 1, 0 or−1, for short-term anticipated upward, stable or downward share movements,
respectively.

For this paper, we derive a machine learning driven approach for finding the appro-
priate indicator function. In effect, this refines the underlying stochastic model.

2.2. Materials: Data

Our dataset is publicly available at Yahoo Finance (https://finance.yahoo.com, ac-
cessed on 7 November 2021). Of the many available features associated with financial
time series data such as Open/Close Price, High/Low Price, Trading Volume, 5/10 Day
Moving Average (MA5/MA10) and many more, we specifically focus on and filter out
three features: the daily High, Low and Close price of the S&P 500 index between the first
day of trading in 2010 through the last day of trading in 2019 as was done in Vijh et al.
(2020). The High, Low and Close price of S&P 500 are frequently used as market indicators
as shown in Hu et al. (2021); Vijh et al. (2020) and data from the S&P 500 is frequently stud-
ied (Chavarnakul and Enke 2008; Hu et al. 2021; Vijh et al. 2020). This resulted in a dataset
that consists of 2517 instances.

Rare events of interest in a financial time series context are drops of the index or stock
price by some defined percentage. We defined a rare event as a small proportion of our

https://finance.yahoo.com


Risks 2022, 10, 39 7 of 16

dataset that corresponds to a large drop in the intra day percent change of close price (e.g.,
a drop in the S&P 500 by 3% in 24 h). We constructed that response variable by using the
day over day percent change of the daily close price (offset by one day for each observation).
Thus, an observation can be understood as the High, Low and Close price at the end of the
trading day with an outcome variable now defining the percent change of close price at the
end of the next subsequent observation. For example, an observation for the first day of the
month will have a High, Low, Close price, and the percent change in close price that will
occur the second day of the month.

Three binary variables were then constructed representing the 99th, 95th and 90th
percentiles of negative day to day close price percent change magnitude. These categorical
variables describe different degrees of the rarity in the negative percent change, or market
downturns, in the (S&P 500) index. For example, if there was a 97th percentile decrease
in close price, the previous day would have the label non-event for the 99th percentile and
event for both the 95th and 90th percentiles. It should be noted that the labels in our dataset
are constrained such that there is extreme class imbalance in our labels. Class imbalance
can adversely effect model performance (Johnson and Khoshgoftaar 2019), but our method
described later on is designed to specifically deal with these constraints.

Images representing time series in this dataset were then constructed. First, slid-
ing look back windows of a perfect square length N capture the High, Low, and Clos-
ing prices of the previous N days. The values of N being considered in this paper are:
N = 25, 36, 49, 64, 81. This new N × 3 matrix’s values are then converted to 8 bit integers
between 0 and 255 where each row can be thought of as a RGB channel pixel. These pixels
are then arranged in a snake like pattern such as in Figure 1 to represent the temporal
relationship in our data spatially. This results in an

√
N ×
√

N image that can be thought
of as representing the days leading up to an event or non-event. Finally, this image is
resized to 224× 224 in order to be usable by the CNN. We do this because we want to take
advantage of transfer learning and use VGG-16 which takes a 224× 224 input.

We write out the data processing steps below for a 25 day time period:

1. We collect High, Low and Close price for a 25 day period. This results in tabular data
that can be arranged in a 25× 3 matrix. The columns of this matrix represent the High,
Low and Close price of the day and the ith row of the matrix represents the ith day in
the 25 day window.

2. The values across each row are converted to an 8 bit integer between 0 and 255 and
stored in the vector ~V25×3 below.

~V25×3 =



v1
v2
...

vi
...

v25


(7)

where vi = [vi,1, vi,2, vi,3] and vi represents the transformed values of High, Low and
Close price of the day.

3. We then arrange the vi’s in a way that allows us to represent the temporal relationship
spatially.

M5×5 =


v1 v2 v3 v4 v5
v10 v9 v8 v7 v6
v11 v12 v13 v14 v15
v20 v19 v18 v17 v16
v21 v22 v23 v24 v25

 (8)

4. This allows us to create an image corresponding to the matrix M5×5 as shown in
Figure 1 below.
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Figure 1. Sample image representing a 25 day period with HLC as input.

Using Figures 2 and 3 below, we provide visualizations of two time series line graphs
of an event and a non-event in a 25 day window along with the corresponding images we
created using the steps listed above.

Figure 2. Examples of line graphs that show 25 days leading up to an event and non-event.

Figure 3. Corresponding image reconstructions of the time series in Figure 2.

Our image creation process in markedly different from the work in Sezer and Ozbayo-
glu (2018) in which a 15× 15 image is generated for each day using 15 technical indicators
and are labeled Buy, Hold or Sell. On the other hand, we generate an images of size
5× 5, 6×, 7× 7, 8× 8 that capture information from the past 25, 36, 49, 64 or 81 days, respec-
tively, and are labeled either event or non-event.

2.3. Methods

In this subsection we describe our novel method for rare event time series classification
using Siamese type neural networks. For input, we will be using the images created using
the data transformation technique outlined in the previous Section 2.2. This 25 day window
is often represented in a line graph like Figure 2. Figure 3 represents the corresponding
image representation of those graphs.

Due to the relatively small sample size we are working with and the presence of
extreme class imbalance, we chose to use a standard pre-trained CNN, namely, VGG-16
available on OpenCV (https://opencv.org, accessed on 7 November 2021). This is because
the size of our dataset restricts us from effectively training our own CNN and leaves us an
insufficient amount of data for testing. The pre-trained VGG-16 developed by Simonyan

https://opencv.org
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and Zisserman in Simonyan and Zisserman (2014) has been shown to have praise worthy
results on a wide array of problems and therefore is a reasonable choice for our research.

Additionally, VGG-16 has been successfully used for transfer learning (Li et al. 2018;
Liu et al. 2017). This makes VGG-16 a reasonable choice for us, since our research leverages
the feature vector outputted by VGG-16 to be used to create the bootstrapped similarity
distribution that is described later in this section. Furthermore, choosing a publicly available
CNN like VGG-16 makes the work presented here reproducible and allows researchers to
make a fair comparison across multiple datasets.

Each of the M images are passed through VGG-16. The number of images that are
created is directly related to the pre-chosen size of each image. In other words, when using
shorter windows of time we have more images than when longer time frames are used; the
effects of the image size and count are explored in the results section.

VGG-16 outputs a feature vector of size 1× 4096 for each image passed through it.
We theorize that the feature vector represents interaction effects between days that are
otherwise hard to detect in methods that use tabular data. This process is repeated for
all M images and the resulting feature vectors each of length 4096 are stored in a matrix.
For reference we call this matrix FM×4096. The size of the resulting matrix is M× 4096. Each
row of the matrix FM×4096 corresponds to the feature vector that is the output of an image.
Each column of the matrix represents a specific feature of each image, extracted from the
CNN. At this point the terms feature vector and image are used interchangeably. We
illustrate this process in Figure 4 below.

Figure 4 shows that each of the M images are passed through the same CNN, namely
VGG-16 and their output feature vector of size 1× 4096 stored for future use. In the case
of images of size 5× 5, M = 2492. In the figure, Fi represents the ith row of the matrix
FM×4096 and fi,j represents the element in the ijth position of FM×4096.

Figure 4. Images of size 5× 5 passed through VGG-16 resulting in F2492×4096.

This process can be thought of as the forward propagation of a Siamese Neural Net-
work (SNN). Both in an SNN and in the method presented in this paper, two different
images are passed through a Convolutional Neural Network with the same weights. This
results in two distinct feature vectors where the Manhattan Distance is computed between
them resulting in a similarity score. While other vector similarity techniques such as Eu-
clidean distance and Cosine Similarity were experimented with, we settled with Manhattan
Distance in keeping with Koch et al. (2015) which recommends using Manhattan distance
for image similarity problems. Traditionally, Siamese Neural Networks are trained to
maximize the similarity between same-class images and minimize the similarity between
different-class images where the underlying Convolutional Neural Network’s weights are
modified through backpropagation. Since we do not train this network, we consider this a
Siamese-Type Neural Network as this method only uses forward propagation to yield a
similarity score.

Next, we describe our bootstrapping method by first splitting the matrix into a 50/
50 training and testing set from the median date of the time series. By splitting at the
median date we ensure that there is no data leakage. In other words, by using the median
date to split the matrix FM×4096 into training and testing, we are using the past events
and non-events to predict future events. Thus, there are approximately M

2 instances in the
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training and testing set and each instance consists of 4096 components. This part of our
methodology is in sharp contrast with the work in Sezer and Ozbayoglu (2018) in which
the authors use a sliding training and testing approach on their model CNN-TA. Their
process is more computationally intensive as it involves repeated re-training and testing of
the model.

Note that purpose of the training set is not to train the CNN, since VGG-16 is a pre-
trained CNN. Instead, we use the training set to create a bootstrapped distribution of
similarity scores which we describe in the following sentences. Within the training set, we
iteratively paired random images from the event class, computed the Manhattan Distance
between each pair, and took the average of the set. The size of each set was half of the
amount of the event class observations in our training data. This process was repeated
until the sampled distribution of the averages of these pairs converged to an approximately
normal distribution where the resulting bootstrap represents a distribution of the average
similarity between pairs of event images. We refer to this as the event/event distribution.
We then repeat this process but instead pair event images with non-event images This
bootstrap distribution is referred to as the event/non-event distribution. We illustrate this
process in Figure 5 below.

Figure 5, showcases the idea that the training set is used to create two bootstrapped
distributions of the average similarity between (i) pairs of event images (referred to as
the event/event distribution) and (ii) pairs of event and non-event images (referred to as
event/non-event distribution). The figure also shows that the two distributions are then
used to classify new images (that have been passed through step 1) as either an event or
non-event.

Figure 5. Diagram illustrating the process by which new predictions are made.

The reason for using the bootstrapped similarity distribution is that we assume that
two event feature vectors should have less distance compared to an event and non-event
feature vector. By constructing bootstrapped sampling distributions of these two mea-
sures, we can then compare new data to these distributions and find the probability of
a new observation belonging to either of these distributions. If the probability that this
new, unknown observation belonging to the event/event distribution is higher than the
event/non-event class distribution, we can classify that observation as belonging to the
event class. Similarly if the opposite is found in that the probability of it belonging to the
event-nonevent class distribution is higher, we classify it as a non-event. As an additional
note, as this is a bootstrapped sample, these distributions are approximately normal in
accordance with the Central Limit Theorem (Stine 1989).

Thus, we can compare the probabilities of a new observation belonging to a distri-
bution using the probability density function of the normal distribution found by the
mean and variance of each bootstrap. Here, the average Manhattan distance between a
new observation and a set of random event class vectors are taken and the probability
that this value belongs to the event/event and event/non-event distributions are calcu-
lated. The distribution that the new observation has a larger probability for belonging to is
then predicted.
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Formally, if x represents the average similarity score of a new image paired with
random event images:

P(Xevent/event = x) > P(Xevent/non-event = x)

classify the new observation as an event, otherwise classify it as a non-event, where

Xevent/event ∼ N(µevent/event, σ2
event/event)

Xevent/non-event ∼ N(µevent/non-event, σ2
event/non-event).

Figure 6 show the distribution of the average Manhattan distance for event/event and
event/non-event images of size 9× 9 with a 1% class imbalance.

Figure 6. 9 × 9 Image Bootstrapped Distributions

3. Results

We implement what was described in Sections 2.2 and 2.3 treating the image size as a
hyperparameter of our method. Here we are interested in testing the performance of our
model given the financial image sizes of 5× 5, 6× 6, 7× 7, 8× 8 and 9× 9. We are also
interested in testing various class imbalance levels, defining the binary outcome variable we
are predicting as whether an intra-day negative percent change in close price was exceeded
in X% of the dataset where X is 1, 5, and 10. The performance metrics considered are:
Accuracy, Precision, Recall and F1-Score where the results can be seen in Table 1. The total
number of images on which the model was tested on across all class imbalance ratios can
be found in Table 2.

Overall, our bootstrapped similarity method performed well compared to our bench-
marks. While it was dependent on the size of the image and class imbalance of the dataset,
we found we were able to achieve F1-scores of up to 14.4 percent (corresponding to images
of size 7× 7 and class imbalance of 10%) as shown in Table 1.
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Table 1. Comparing performance metrics in the test data set across all image sizes and class imbal-
ance ratios.

Image Size Class
Imbalance Accuracy Precision Recall F1 Score

5 × 5
1% 0.691 0.010 0.364 0.020
5% 0.763 0.024 0.105 0.039

10% 0.819 0.086 0.109 0.096

6 × 6
1% 0.687 0.005 0.182 0.010
5% 0.776 0.041 0.179 0.067

10% 0.808 0.083 0.121 0.098

7 × 7
1% 0.580 0.008 0.364 0.015
5% 0.795 0.067 0.259 0.106

10% 0.826 0.131 0.159 0.144

8 × 8
1% 0.678 0.008 0.273 0.015
5% 0.708 0.048 0.267 0.082

10% 0.707 0.086 0.239 0.127

9 × 9
1% 0.765 0.011 0.273 0.021
5% 0.782 0.044 0.167 0.070

10% 0.835 0.123 0.138 0.130

Table 2. Number of test images of each size across all class imbalance.

Image Size Imbalance Event Images Non-Event
Images Total

5× 5
1% 11 1235

12465% 57 1189
10% 110 1136

6× 6
1% 11 1230

12415% 56 1185
10% 107 1134

7× 7
1% 11 1216

12275% 58 1169
10% 113 1114

8× 8
1% 11 1216

12275% 60 1167
10% 109 1118

9× 9
1% 11 1207

12195% 60 1158
10% 109 1110

4. Discussion

The research presented in this paper uses a time series of approximately 7 years
resulting in 2517 instances of the S&P 500 index stocks with publicly available features: the
High, Low and Close price. When converted to images of size 5× 5, 6× 6, 7× 7, 8× 8, 9× 9,
we end up with only about 2400 images for each case (See Table 2 for exact number of
images corresponding to image size) for creating the bootstrapped distribution of average
similarity scores between images and for testing. Thus, the data set being used for analysis
in this paper has the following properties:

• Limited data resulting in production of limited images
• Extreme class imbalance (99-1, 95-5, 90-10) as is common with rare event prediction.

Our problem is further constrained since we use only three input features High, Low and
Close price of the day. In addition to having limited data with limited features and high
class imbalance, our method is restrictive based on how we chose to split the training
and testing set. By choosing the median date we are guaranteeing that there is no data
leakage and that future rare events are only being predicted by looking at past events
and non-events. In contrast the work done by others in the field such as Buturovic and
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Miljkovic (2020); Sharma and Kumar (2020a) do not address the issues of limited data and
high class imbalance. Furthermore, their data sets are not generated from time series.

The works of Hatami et al. (2017); Sezer and Ozbayoglu (2018); Wang and Oates (2015)
use data generated from time series. However, in the case of Hatami et al. (2017); Wang
and Oates (2015), the data does not arise from the financial sector and did not have the
additional challenges of limited data with high class imbalance and limited input features.
The work of Sezer and Ozbayoglu (2018) did use financial time series data, but their dataset
is not challenged by these limitations since the goal of their paper is markedly different
from our goal. In Sezer and Ozbayoglu (2018) the authors have the goal of being able to
develop more profitable trading models that can predict whether one should Buy, Sell or
Hold a current stock. On the other hand, our goal is to predict rare events.

In our experiments, we varied the image size and class imbalance to report the results
of this novel method with different hyperparameter settings. Overall, we found that larger
image sizes tended to have better classification metrics while class imbalance significantly
effected model performance. We hypothesize that there are a variety of possible explana-
tions for these findings. The first is that larger image sizes contain more information than
the smaller ones which would likely result in better models. However, the largest image
did not always perform the best, notably the 7× 7 image size outperformed the 9× 9 in
F1-score for datasets with 5 and 10 percent imbalances. This could be possible due to the
7× 7 image spatially fitting the serial correlation in the data better than the 9× 9 image.

In terms of class imbalance affecting model performance, we believe this can be
explained by the low number of instances of the heavily imbalanced sets. At a 1 percent
event to non-event ratio, only 11 observations qualify as events in the training set. These low
sample sizes may lead to non-convergence in the estimation of the true average similarity
distribution between two event vectors, causing potential miss-classifications later on.
Indeed, at higher event to non-event ratios, the F1-score tends to increase.

As a last point of discussion, a heuristic that can be used to better understand models
from this method is a plot of the event/event and event/ non-event distributions. Figure 6,
shows the event/event distribution in blue and the event/non-event distribution in orange,
corresponding to images of size 9× 9 with a 1% class imbalance. Ideally, the two distribu-
tions would be well separated along the x-axis. A small intersection would suggest that the
two distributions are well separated and thus new comparisons of similarity would thus
be classified with a higher confidence to a particular distribution.

Benchmark models used included Logistic Regression, and a variety of other stan-
dard binary classification methods such as Random Forest, XGBoost, K-Nearest Neighbor
and Naive Bayes. The 1× 4096 feature vector extracted from the CNN: VGG-16 was used
as input for these baseline models. In an attempt to boost the performance of benchmark
models several techniques were employed. For instance,

• image size, class imbalance level and training and testing split ratios were varied
• Principal Component Analysis (PCA) on the M × 4096 matrix before training and

testing was performed
• different types of re-sampling techniques were used and
• hyperparameter variations were considered.

We found that the actions listed above yielded benchmark models unable to make
event predictions. Specifically, our benchmark models resulted in having high accuracy,
but 0 percent F1-scores as they only made predictions for non-events. This is consistent
with existing literature (Johnson and Khoshgoftaar 2019). In comparison, we found that our
method of using a bootstrapped distribution of similarity scores outperformed traditional
binary classification approaches to the problem of identifying rare events in financial time
series because our F1-scores were all greater than 0.

We also investigated the explanatory power of the feature vectors extracted from the
CNNs by using them as predictors in time series classification models in comparison to
training classification models on traditional High, Low, Close variables only. Models with
the feature vectors were generally found favorable over models just using HLC variables,
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although further research needs to be done to assess this potential gain in a more systematic
way and on multiple different time series data sets.

5. Conclusions

In this paper the S&P 500 index was examined using a novel method that consisted of
(i) converting tabular data into images (ii) passing the resulting images in a CNN and (iii)
examining similarity scores using the output vector of size 1× 4096 with the intention of
being able to identify rare events. All baseline models explored failed to predict an image
as an event. For instance, the Logistic Regression model yielded an F1-score of 0, whereas
our proposed method was able to achieve F1-scores of up to 14.4 percent.

Thus, the work presented in this paper attempts to tackle a notoriously difficult
problem of predicting rare events in financial markets with limited features and limited
observations. Our results indicate even with these shortcomings, this method has the ability
to identify patterns correlated with events better than baselines and in a context ill suited
for other methods proposed in the literature.

While the results of this paper are comparable to other research outcomes in the field
of stock market event prediction (Shen et al. 2012; Tsai and Wang 2009), the focus of our
research is to present a new concept of implementing time series features through image
representation and Siamese type neural networks. Using the methodology developed in
this paper we were able to show that our approach results in significant improvement
on time series event classification. Additionally, while this paper can be considered as
introduction of a new framework of how to represent data for time series forecasting, we are
certain that future research will be able to further improve performance and methodology.

There are multiple ways in which our work may be extended.

• The first is that an active learning approach (Malialis et al. 2020) can be applied to this
method in which after every day, the two bootstraps are retaken to include the new
observation. While this method may be computationally expensive, it could lead to a
more pronounced separation in the event/event and event/non-event distributions,
thereby leading to better predictions.

• In this paper we proposed a “snake" method to transform time series into images.
Since there a variety of ways to visualize tabular data as an image (Hatami et al. 2017;
Sezer and Ozbayoglu 2018; Sharma et al. 2019; Sharma and Kumar 2020a; Sun et al.
2019), we note this as a means to parameterize or tune our method for other future
applications. For instance, the research presented in this paper made use of square
images. However, one could consider circular images (Wang and Oates 2015), textured
images (Sharma and Kumar 2020b) or images created through Markov Transition
Field (MTF) (Wang and Oates 2015). Further research can be done to compare image
shape or similarly develop new transformation techniques that result in other types of
images.

• We believe different image classification frameworks such as ResNet50 (https://arxiv.
org/abs/1512.03385, accessed on 7 November 2021) can be experimented with to
further improve results as they can effect the image resizing as well as the output
feature vector that is used for similarity comparisons.

• For this research we used time series data from only the S&P 500 index. The combina-
tion of S&P 500 with other time series data such as Dow Jones (https://finance.yahoo.
com/quote/%5EDJI/, accessed on 7 November 2021) or Nasdaq (https://finance.
yahoo.com/quote/%5EIXIC/, accessed on 7 November 2021) could help to identify
further patterns to improve prediction accuracy, or related derived metrics such as
volatility indexes.

• Lastly, although this paper investigated daily financial time series data (HLC) to
predict and identify patterns for rare event prediction, the proposed approach could
also be applied to intra-day trading applications as technical analyses are even more
relevant there.

https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://finance.yahoo.com/quote/%5EDJI/
https://finance.yahoo.com/quote/%5EDJI/
https://finance.yahoo.com/quote/%5EIXIC/
https://finance.yahoo.com/quote/%5EIXIC/
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