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Abstract: We compare parametric and machine learning techniques (namely: Neural Networks)
for in–sample modeling of the yield curve of the BRICS countries (Brazil, Russia, India, China,
South Africa). To such aim, we applied the Dynamic De Rezende–Ferreira five–factor model with
time–varying decay parameters and a Feed–Forward Neural Network to the bond market data of
the BRICS countries. To enhance the flexibility of the parametric model, we also introduce a new
procedure to estimate the time varying parameters that significantly improve its performance. Our
contribution spans towards two directions. First, we offer a comprehensive investigation of the
bond market in the BRICS countries examined both by time and maturity; working on five countries
at once we also ensure that our results are not specific to a particular data–set; second we make
recommendations concerning modelling and estimation choices of the yield curve. In this respect,
although comparing highly flexible estimation methods, we highlight superior in–sample capabilities
of the neural network in all the examined markets and then suggest that machine learning techniques
can be a valid alternative to more traditional methods also in presence of marked turbulence.

Keywords: BRICS; De Rezende–Ferreira model; Artificial Neural Network (ANN); Feed–Forward
Neural Network (FFNN); emerging markets; term structure

1. Introduction

The term structure of interest rates, whose graphical representation is given by the
yield curve, describes the relationship between market interest rates and different times to
maturity, and provides an ex–ante measure of the investor’s return in a fixed income market
(Saunders and Cornett 2014). Besides, the yield curve contains fundamental information
to analyze the economic and financial situation of a country, which can be interpreted
in terms of market expectations of monetary policy, economic activity and inflation over
short, medium and long–term horizons; for this reason it is often employed to support
macroeconomic strategies. Modeling it is therefore fundamental for financial economists
and risk managers to define hedging and pricing strategies, as well as to get an effective
assessment of portfolio risk (Pereda 2009). Furthermore, yield curves can also provide
valuable information as input for financial stability, and banking supervision. Besides, once
a nominal yield curve is computed, a term structure of real interest rates and break-even
inflation rates can be derived.

When estimating yield curves, an important challenge is that they should reflect as
many as possible relevant movements in the underlying term structure of interest rates. In
the past decades an extensive literature has been developed accordingly: models based on
stochastic processes (Hess 2020), methods relying on splines (Filipović 2009), factor models
(Diebold and Rudenbusch 2017) and techniques based on machine learning algorithms
(Lopez De Prado 2018), to cite more relevant research strands. Shifting our attention to
practical applications, Chakroun and Abid (2014); Ullah and Bari (2018) pinpointed that the
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great majority of the works focuses on developed countries, mostly the United States and
the Eurozone and, on the contrary, relatively lower attention has been paid to emergent
markets, despite their growing economic and political weight.

This (relative) lack of contributions on emerging economies is potentially troublesome,
as the yield curve of those countries usually exhibits a very volatile behaviour with frequent
and marked humps, in contrast to more developed countries whose yield curves are less
sensitive. This rationale inspired our study, focused on the group of countries referred by
the acronym BRICS (Brazil, Russia, India, China and, since 2010, South Africa) which are
actually under the magnifying lens of financial investors as drivers of the globalization
process of financial markets (Stuart 2020). The BRICS countries, in fact, have experienced
several years of rapid expansion in trade and economic growth: they currently account
for nearly a quarter of the world economy. Furthermore, BRICS have set up the New
Development Bank (NDB) where those countries address the group’s economic challenges
with combined resources. All these elements make the BRICS countries important players
in the current pattern of global investment, because they are both the major recipients
of foreign direct investments and increasingly important for outward investors. This, in
turn, can have deep impact on the exposure to country risk: the economic, political and
social contexts can eventually cause losses to foreign investors. After all, BRICS countries
inspired many research strands Bekiros and Avdoulas (2020), de Boyrie and Pavlova (2016),
Zeb and Rashid (2019), Salisu et al. (2021); however, with the exception of El-Shagi and Jiang
(2019) and Caldeira et al. (2020), to the best of our knowledge, there aren’t other works
analyzing altogether BRICS yield curves and at the same time investigating on them the
interpolation capabilities of various techniques. Such an investigation can be useful under
various viewpoints: many central banks use to interpolate yield curves to assess monetary
policy measures; in addition such models have an economic interpretation and they can be
useful for measuring risk in fixed income portfolios. With this motivation, our paper tried
to test whether modeling based on either the parametric or machine learning approach
can ensure a streamlined in–sample fitting also for these new world players. To such aim,
we compared two alternative methods, the Dynamic Five Factor parametric model (5F–
DRF) De Rezende and Ferreira (2013) and the multilayer Feed–Forward Neural Network
(FFNNs). The models were chosen among the most performing ones (both parametric
and non–parametric). Focusing on the in–sample rather than on the out–of–sample fit
was supported by the existing literature, see for instance (Wahlstrom et al. 2021), and
(Prasanna and Sowmya 2017) that specifically refer to in–sample fitting of the yield curve.
Moreover, as our work examines for the first time the yield curve of all the BRICS at once,
it cannot be granted that methods of consolidated use for other countries can adapt so well
also to our data, especially in presence of sudden spikes. Working in–sample is therefore
nothing but the first step to identify whether those models work well also on emerging
countries and which of them is the best model in this task. Answering to those questions,
in turn, will allow to better address the forecasting issue for future research.

The 5F–DRF belongs to the factor models family (Diebold and Rudenbusch 2017) which
through the past decade have gained wide popularity: its five parameter structure can fit
complex curves dynamics, i.e., curves with multiple inflection points. This is a desirable
feature as the BRICS exhibit yield curves with humps which are difficult to approximate
with more parsimonious models. Moreover, towards this direction, we also worked on
the parameters estimation of the 5F–DRF model, introducing a two–step procedure that
significantly improves the overall performance of the method, assuring higher model
flexibility and better fitting performances also in presence of market turbulence, which
is the core issue where often parametric models fail. With regard to machine learning
techniques, on the other hand, we focused on Artificial Neural Networks (ANNs) and,
in particular, on FFNNs (Dey 2016). Thanks to their ability to bring out knowledge from
large and not necessarily homogeneous data sets (Di Franco and Santurro 2020), they
have found successful application in a wide variety of fields, including economics and
finance Lopez De Prado (2018). The rationale for using FFNNs resides in their flexibility
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and field–proven ability to replicate yield curves dynamics and stylized facts, as testified
by recent works of Rosadi et al. (2011), Vela (2013), Posthaus (2019) and Suimon et al. (2020).
The FFNNs capability to manage the ex-ante uncertainty turns out to be of paramount im-
portance within the BRICS bond market where FFNNs are asked to identify the functional
form of the yield curve as well as to overcome the limitations of parametric models in
presence of multiple humps. Furthermore, the possibility of customizing FFNNs settings
for each country, in order to achieve improvements in their fitting ability for all markets is
without any doubt an advantage of using this technique.

In short, our work will try to address the following instances. (i) We try to offer a
comprehensive view of the yield curves of the BRICS countries through techniques of
consolidate use on developed countries markets. (ii) Applying them on the BRICS, that
is a set of five emerging countries, in our opinion, should give proof that the results are
general and not data–dependent. (iii) An in–depth study of the fitting abilities of those
techniques on BRICS yield curves, would also help to better address the forecasting issue
for future research.

The remainder of the paper is organized as follows. Section 2 provides a brief description
of both the De Rezende–Ferreira model and the neural architecture employed in our
simulation; Section 3 contains the results and their discussion; Section 4 concludes and
offers some suggestions for further research.

2. Methodology
2.1. The Five Factor De Rezende–Ferreira Model

The De Rezende–Ferreira model assumes to estimate the value RF of the zero–coupon
spot rate depending on a 5-parameter vector β and a two dimension array τ to model the
set of humps observable on the yield curve dynamics:

RF(t, mk, β, τ) = β0 + β1

(
1− e−mk/τ1

mk/τ1

)
+ β2

(
1− e−mk/τ2

mk/τ2

)

+ β3

(
1− e−mk/τ1

mk/τ1
− e−mk/τ1

)
+ β4

(
1− e−mk/τ2

mk/τ2
− e−mk/τ2

)
+ εmk ,

where t is the estimation time, mk is the maturity over a set of N possible values m1, m2, . . . ,
mN that can be both fractions and multiples of the year, β = (β0, β1, β2, β3, β4)

′
and

τ = (τ1 τ2)
′

are the parameters and decay terms vectors, respectively. In particular, β0
represents the impact of the long–term component which is constant for every maturity; β1
and β2 are the weights associated to the short–term components, β3 and β4 are the weights
of the medium–term components. Additionally, τ1 and τ2 control the convergence speed
of the exponential components and determines the maturity at which the medium–term
components reach their maximum. By construction, there is a trade-off between the values
of τ1, τ2 and the effectiveness of the model at long/short term maturities. Big values of τj
(j = 1, 2), in fact, result in a slow decay and ensure a better fit at long maturities but not in
the short term if marked curvatures are present; conversely small values of τj (j = 1, 2) get
a quick decay and hence a better fit at short maturities, but not in the long run. Finally, εmk

is the error term for all the maturities mk, k = 1, . . . , N:, with:

εmk ∼ N (0, σ2
k ) ∀mk, cov(εmj , εmk ) = 0 ∀j, k = 1, . . . , N

In our study we used a slight modification of the model discussed in De Rezende and
Ferreira (2008). We consider the decay components as time–varying parameters and we
run a two–step estimation procedure that at each time t finds the optimal pair (τ̂∗1t, τ̂∗2t) as
the one associated to the lowest Root Mean Square Error (RMSE). This optimal pair is then
employed to get β̂∗(t) = (β̂∗0t, β̂∗1t, β̂∗2t, β̂∗3t, β̂∗4t)

′
. In contrast to an a priori selection of decay

terms, this procedure provides the model with the highest adaptive capability, that is a
very desirable feature to use in such a turbulent context like that of the BRICS markets.
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For an easier understanding, on following we describe the main steps of the procedure.

1. For each market we define the sets Ωj = {mj,k}k=1,...,Nj
of maturities mj,k with j = 1, 2

and Nj equal to the sets cardinality. In particular, m1,1 is the lower bound of Ω1 (m1,L)
and corresponds to the first available maturity of the market, while the upper bound
m1,U is, at the same time, the lower bound of Ω2, that is m1,U = m2,L and it is equal to
the straddling maturity between the short and medium–term period. Finally, the upper
bound of Ω2 (m2,U) is the longest observed maturity. In our study we set m2,U = 30 years,
as in general there aren’t any bonds traded for longer maturities in the analyzed markets.
Values in Ω1 and Ω2 ranges between corresponding lower/upper values by proper step
sizes ∆1 and ∆2. As the step size can affect the overall performance of the procedure,
we tried various step sizes in the range [0.25, 0.75] for ∆1 and [0.25, 1] for ∆2. After
extensive simulations we set ∆1 = 0.75 and ∆2 = 1.

2. For each maturity mj,k in the sets Ω1 and Ω2 we estimated the parameters τ1(t) and
τ2(t) that maximize the medium term component:

[τj(t)(1− e−mj,k/τj(t))/mj,k]− e−mj,k/τj(t) k = 1, . . . , Nj

In this way we get as many curves as the number of maturities.
3. For each time t in the time horizon of length T and for every maturity mj,k, k = 1, . . . , N,

keep τ1(t) constant and vary τ2(t) to estimate by OLS different array sets β̂(t); choose
then the set β̂∗(t) associated to the lowest Sum of Squared Residuals (SSR):

SSR(t) =
N

∑
k=1

[y(t, mk)− R̂F(t, mk, β̂(t), τ(t))]2 t = 1, . . . , T

with y(t, mk) and R̂F(t, mk, β̂(t), τ(t)) being the observed and fitted spot rates respectively.
4. Repeat Step 3 for all τ1(t) so that there are as many sets of optimal parameters β̂∗(t)

as the τ1 values. Then, select the set with the lowest SSR and fit the yield curve at the
desired time t:

τ̂∗(t) = arg min
[τ1(t), τ2(t)] ∈ (Ω1×Ω2)

{
N

∑
k=1

[y(t, mk)− R̂F(t, mk, τ(t), β̂∗(t))]2
}

5. Repeat Steps 3–4 for each time t (t = 1, . . . , T), to get the set of T yield curves fitting
and the related time series for all the model parameters.

2.2. Feed Forward Neural Networks

Feed Forward Neural Networks (FFNNs) are non–linear regression tools which do not
require any a priori assumption about the functional form or statistical properties of the
data set under examination and can be used to identify and model nonlinearity in the data
(Hornik et al. 1989). They are made of information processing units (nodes or neurons)
arranged into one or more interconnected layers.

Figure 1 shows a graphic representation of an artificial neuron: each input vector
x = (x1, . . . , xn)

′
is processed by a linear combiner (Σ) through the use of a weight vector

w = (w1, . . . , wn)
′
, and hence transformed with the aid of a proper activation function

(usually the sigmoid). At this stage a bias value can be inserted to delay the triggering of
the activation function.
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x1 w1

x2 w2 Σ Φ(·)

Activation
function

zj

Output

...

xn wn

Bias
b

Weights

Inputs

Figure 1. Representation of a node with n input features.

Nodes are grouped in three types of layers: the Input layer with nodes supplying the
input features to next layers consisting of one or more Hidden layers which, in contrast to
Input/Output layers, are not in direct contact with either the network input or the output.
The response value (zj) is sent either to another hidden layer (if any) or to the Output layer
that is the neurons layer which generates the final response of the network.

In order to obtain the desired output, the network must undergo a learning process
which identifies the optimal weights configuration (Wilamowski and Irwin 2011): increas-
ing or decreasing the weights values by means of proper learning algorithms changes
the strength of nodes connections and directly affects the network capability to learn the
input space features. The FFNN makes use of a supervised learning algorithm: infor-
mation and correct target results are available and presented to the network which tries
to define the optimal weights configuration, so that the network response is as close as
possible to the correct output. In detail, we used the Backpropagation Algorithm—BPA
(Rumelhart et al. 1986). This is an iterative procedure through a certain number of cycles
(epochs), each including two phases: a forward stage with the network, initialized at
random, generating the output signals (responses), and a backward phase. In the latter the
network responses are compared to the target values, the error is back–propagated from
the output layer through the hidden ones towards the inputs, and then used to update the
networks coefficients to reduce the error at the end of the next forward phase. The process
goes on until the optimal combination of weights that minimizes a loss function (e.g., the
Mean Squared Error—MSE) is determined according to the gradient descent criterion, so
that the estimated output values are the closest to the target output.

3. Empirical Analysis
3.1. Data

Our dataset consists of daily returns for government zero–coupon bonds (ZCB) of the
BRICS countries, as summarized in Table 1, where for each country we provided the Start
and the End of the observation period, the overall number of observations and the dataset
source, that is either TRD (Thomson Reuters Datastream) or CBR (The Central Bank of the
Russian Federation).

Table 1. Dataset description.

Country
Period

N◦ of Observations Source
Start End

Brazil 30/09/2011 30/12/2020 2128 TRD
Russia 04/01/2003 30/12/2020 4578 CBR
India 14/02/2012 30/12/2020 2185 TRD
China 24/01/2005 30/12/2020 3818 TRD

South Africa 18/02/2011 30/12/2020 2472 TRD
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As previously said, different maturities could be used to represent the yield curve,
depending on the liquidity conditions and availability of information of the analyzed
market: for example Diebold and Li (2006) examined maturities from 3 to 120 months (US),
while De Rezende and Ferreira (2008) focused on maturities in the range 1 to 60 months
(Brazil), and Caldeira et al. (2010) from 1 to 33 months (Brazil). In this work we considered
maturities from 3 months (i.e., 0.25 of the year) to 30 years. Combining the available
maturities with the observed time we obtained a tensor whose number of rows is equal
to the number of analyzed days and with the number of columns equal to the number of
maturities. In this way, for each maturity it is possible to observe the evolution of the spot
rates time-series: Figure 2a provides an example on the Chinese market with the maturity
set at 2, 7 and 15 years respectively; moreover for each day it is possible to extract the yield
curve varying the maturities: in Figure 2b we give an example on the Chinese market with
t set to 24/01/2005, 09/07/2007, 23/10/2014 and 30/12/2020.

(a) Daily rates

(b) Yield curve shapes

Figure 2. Behaviour of the daily rates for maturities 2, 7 and 15 years for China in the period
24/01/2005–30/12/2020 (a), and yield curve shapes for China (b) observed in t = 24/01/2005;
09/07/2007; 23/10/2014 and 30/12/2020, respectively.

A closer look to Figure 2a suggests the presence of spikes in the yield curve at various
maturities. Such variability is confirmed if we turn to Figure 2b, which offers a snapshot
inside how many different behaviours (flat, normal, inverted) the yield curve can show
depending on the time assumed as observation point.



Risks 2022, 10, 36 7 of 18

Furthermore, varying both t and m for each country it is also possible to build a 3D
surface chart as shown in Figure 3 for all the BRICS, where the x-axis reports the time t, the
y-axis shows the maturity m expressed in fractions (multiples) of the year and the z-axis
the observed level of the interest rate at each time t and for each maturity m.

Looking at the shapes of the yield surfaces in Figure 3 suggest that they are the result of
quite different instances, that is they have been affected not only by external conditions such
as the global crisis or the drop in the commodities demand, but also by internal drivers,
such as policy decisions, unemployment and recession in general. In the case of Brazil,
(Figure 3a), for instance, pronounced spikes are observable since 2015, when the country
began to be interested by a crippling two–year recession (in 2015 and 2016) which was
only partially recovered in next years. The booms and busts of the yield surface after 2017
bear witness of the uncertainty dominating the market in those years. In the case of Russia
(Figure 3b), on the other hand, the highest turbulence in the yield surface corresponds to
the period between 2014 and 2016, when the Russian economy suffered from a currency
crisis caused by the collapse of oil prices and the country’s engagement in the conflict
with Ukraine. In the case of India (Figure 3c), instead, the mostly flat surface is due to the
persistence of economic regression during the whole 2010s. Notably, we can observe an
inverted shape of the yield surface corresponding to the period 2012–2014, when India
underwent the worst slowdown of the decade in the manufacturing and mining sectors,
both of which labour intensive crucial sectors for the growth of other sectors. Conversely,
at the end of 2020 the surface turned to a normal behaviour, with lowest (higher) interest
rates associated to lower (higher) maturities; how much this stage is solid will depend on
the country capability in replying to ongoing inflation of fuel, food prices as well as rising
urban unemployment. Similar considerations can be extended to the discussion of the yield
surface of South Africa in Figure 3e: in the period 2011–2015, the surface is extremely flat,
in connection to higher turbulence in the markets. In this period, in fact, like all economies
dependent on commodity prices, the South African economy has been exposed to two
highly correlated external shocks: the slowdown in Chinese demand for commodities,
which has become the leading destination for South African exports in recent years and the
ensuing decline in iron ore. Finally, if we turn the attention to Figure 3d, we can observe that
highest variability corresponds to the period from June 2007 to September 2010, when the
Chinese financial market faced the Global Financial Crisis, while the flattening of the surface
in the following years is due partly to the trade war with the USA and partly to central
government driving the country’s transition towards an economy led by consumption and
services, rather than one driven by exports and investment.

Overall, we can preliminary conclude that BRICS countries offer the ground for testing
the effectiveness of fitting methods in presence of sensitively varying conditions.

For each country data we then run simulations with the 5F–DRF according to the
guidelines given in Section 2.1, while for what is concerning the FFNN, the final output was
obtained partitioning the countries market data into training (70%), validation (15%) and
testing (15%) sets. We defined the number of input, hidden and output neurons depending
on the analyzed country; in particular, the quantity of I/O nodes corresponds to the number
of available maturities. Regarding the number of intermediate layers and nodes, as there
is no a precise rule to select their best combination and the choice is data–dependent
(Lantz 2019), we followed a trial and error approach analyzing different configurations
(i.e., with one or more hidden layers). The best performance in terms of determination
coefficient R2 was obtained with the network architectures summarized in Table 2 for each
BRICS country.

All the FFNNs were trained with the backpropagation learning rule; the learning process
was cut after 1000 epochs, i.e., after presenting each training set to the network 1000 times.
The fitting accuracy of both models was evaluated comparing the Mean Square Error (MSE)
and Root Mean Square Error (RMSE) of both the 5F–DRF model and the FFNN.
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(a) (b)

(c) (d)

(e)

Figure 3. Zero-Coupon yield surfaces of the BRICS countries in the monitored period. From top to
bottom and from left to right, (a) is associated to Brazil, (b) to Russia, (c) to India, (d) to China, (e) to
South Africa.
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Table 2. Number of layers and neurons for each BRICS country assuring the best fitting performances.

Country Hidden Layer Input/Output Nodes Hidden Nodes

Brazil 1 12 9
Russia 1 12 13
India 1 18 10
China 1 14 11

South Africa 1 16 12

3.2. Comparison of the 5F-DRF and FFNN Models Fitting Performances

In this section we present the results of the empirical estimation of the term structure. The
analysis was carried out using R 4.0.4 and a freshly-new R package (Castello and Resta 2019)
with estimation routines implementing the 5F-DRF model, while the MATLAB R2021a
(9.10.0) Neural Network Toolbox was employed to run the FFNNs. All the code is available
for download in the Zenodo repository (https://zenodo.org/record/5814658 (accessed on
3 January 2022)).

Table 3 shows the average estimated parameters values for the time–varying 5F–DRF.

Table 3. Average estimated parameters values for the time–varying 5F–DRF model.

Brazil Russia India China South Africa

β0 11.8010 8.7710 6.0058 2.5294 9.4784
β1 200.3699 −0.2674 −4084.0492 662.6816 15.8301
β2 −203.2936 −2.5483 4085.0426 −663.1078 −19.2812
β3 4.3508 0.5273 −86.0267 31.5497 10.0752
β4 4.8412 0.3619 −81.2562 37.9129 20.9306
τ1 0.8246 1.079 1.9792 2.5018 2.4239
τ2 3.5799 6.1704 10.376 11.4936 9.2533

The estimated values emphasise the different role played in the yield curve of BRICS
by short/medium and long term components. The value of Brazilian β0, which addresses
the long–term effect, is greater than those of Russia and South Africa by 35% and 24%, and
by 96% and 366% than those of India and China, respectively. Clearly, these values reflect
the different perception of long–term expectation in the observed countries. Again, if we
turn to parameters associated to short term components of the yield curve (β1 and β2),
we observe that they differ significantly from one country to another: the scale of values
is in the (negative) tenths for Russia, in the dozens for South Africa, in the hundreds for
Brazil and China with alternate signs, in the thousands for India. Although so different in
scale, values for Brazil, India and China when compared to corresponding β0, β3 and β4
highlight the importance of short–term expectation in the yield curve of those countries.
This aspect is more shaded in the case of South Africa and ever more so for Russia. Mid–
term parameters (β3 and β4) are in turn different in scales in various BRICS countries, with
higher values associated to India and China, and lower values corresponding to Russia.
Overall the estimated values point out how, despite BRICS are often referred as a compact
group of countries, the underlying financial and economic drivers substantially differ and
they are reflected in the behaviour of the yield curve.

Moving to the results comparison, we obtained a very accurate fit with both the models,
as it can be seen in Figure 4, showing the average yield curve against the average fitted
ones generated by both the 5F–DRF and the FFNN.

https://zenodo.org/record/5814658
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(a) (b)

(c) (d)

(e)

Figure 4. Average observable yield curve against average yield curves generated by the 5F-DRF
(red) and FFNN (blue) models in the BRICS market. From top to bottom and from left to right, (a) is
associated to Brazil, (b) to Russia, (c) to India, (d) to China, (e) to South Africa.

At first sight it seems not possible to distinguish the average observable curve from the
fit provided by both the 5F–DRF and the FFNN. Besides, a common feature for the two
methods seems the capability to fit curves with quite different shapes as well as in different
variation ranges. Indeed, despite the fact that all the curves appear to share similar shapes,
that is increasing as function of the maturity, the slope of the average yield curve of South
Africa in Figure 4e grows faster than in other cases. This curve, in fact, varies in a range of
five percentage points while the range of variation of the other yield curve is much smaller.
Conversely, the average yield curve of India, in Figure 4c is the flattest one with a range of
variation of only 1.2 percentage points. Moreover, both the methods were able to capture
different variation ranges: in the interval [9, 11] for Brazil, [6, 9] for Russia, [7, 8.2] for India,
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[2.5, 4] for China and [6, 11] for South Africa. Our first conclusion is that the analysis of
the average yield curves does not provide sufficient evidence to uncover which is the best
fitting method. Indeed, the lesson learned from this first exploration into the results is that
both methods work very well in keeping very different behaviors. In Figure 5, in fact, we
offer a direct comparison on the average observable yield curve of the BRICS countries
where it is possible to look at the difference in both the variation range and the shape of the
curves, as we have already highlighted in the above rows. This feature makes the fitting
capabilities of the two methods even more valuable because they were able to capture the
dynamics of all the curves, despite the difference in both the maturity spectrum and the
steepness of the curve.

(a)

(b)

Figure 5. Plot of the BRICS average observable yield curves (a) and a zoomed-in area (b) which
covers the maturity spectrum common to all the examined countries.

In search of more clues, we then turned to analyze the average residuals that are shown
in Figure 6.
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(a) (b)

(c) (d)

(e)

Figure 6. Average residuals generated by 5F-DRF and FFNN for Brazil (a), Russia (b), India (c),
China (d), South Africa (e).

The average residuals are very close to 0 for all the BRICS countries: the range of
variation is between ±2× 10−3 for Brazil and Russia while for India, China and South
Africa it lies between±2× 10−2. These results highlight how both models are characterized
by excellent average fitting capabilities. However FFNNs residuals are lower at least by a
factor of 100 compared to those of the 5F–DRF model which are characterized by higher
oscillations. Taking for example the case of China at the maturity 1 and 30, for m = 1, the
errors are equal to 1.3× 10−3 and −3.7× 10−7 for the 5F–DRF and FFNNs respectively,
and equal to 7.7× 10−4 and −1.2× 10−6 for m = 30.
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To evaluate and compare the models fitting abilities we also calculated the MSE and
RMSE for the observed yield curves for each maturity, reporting main statistics in Table 4.

Table 4. Main statistics for MSE and RMSE associated to 5F-DRF and FFNN models applied to the
BRICS countries.

MSE RMSE
5F-DRF FFNN 5F-DRF FFNN

B
ra

zi
l

Mean 1.0511× 10−5 7.6401× 10−7 2.5536× 10−3 6.9986× 10−4

SD 6.3678× 10−5 2.6374× 10−6 1.9980× 10−3 5.2378× 10−4

Min 1.4523× 10−8 7.6170× 10−9 1.2051× 10−4 8.7275× 10−5

Max 2.8513× 10−3 1.0155× 10−4 5.3398× 10−2 1.0077× 10−2

R
us

si
a

Mean 6.8143× 10−5 2.3630× 10−8 6.1318× 10−3 1.2773× 10−4

SD 1.5740× 10−4 5.8504× 10−8 5.5273× 10−3 8.5538× 10−5

Min 4.5277× 10−7 6.5816× 10−10 6.7288× 10−4 2.5655× 10−5

Max 1.8731× 10−3 1.8621× 10−6 4.3279× 10−2 1.3646× 10−3

In
di

a

Mean 3.3058× 10−4 1.0865× 10−6 1.3763× 10−2 2.6338× 10−4

SD 5.6081× 10−4 4.8029× 10−5 1.0789× 10−2 1.0087× 10−3

Min 5.3692× 10−7 7.1060× 10−10 7.3275× 10−4 2.6657× 10−5

Max 8.6687× 10−3 2.1984× 10−3 9.3106× 10−2 4.6887× 10−2

C
hi

na

Mean 7.1533× 10−4 6.7902× 10−8 1.4338× 10−2 1.7081× 10−4

SD 3.0070× 10−3 4.1125× 10−7 2.2551× 10−2 1.9681× 10−4

Min 4.5227× 10−8 2.0021× 10−10 2.1267× 10−4 1.4149× 10−5

Max 6.3573× 10−2 1.6570× 10−5 2.5214× 10−1 4.0706× 10−3

S.
A

fr
ic

a Mean 3.3058× 10−4 1.0865× 10−6 1.3763× 10−2 2.6338× 10−4

SD 5.6081× 10−4 4.8029× 10−5 1.0789× 10−2 1.0087× 10−3

Min 5.3692× 10−7 7.1060× 10−10 7.3275× 10−4 2.6657× 10−5

Max 8.6687× 10−3 2.1984× 10−3 9.3106× 10−2 4.6887× 10−2

The results on the one hand show that both models are characterized by very low values
of the MSE. This confirms that on average they both are able to fit the wide variety of
shapes exhibited by the yield curves. On the other hand, the results clearly underline the
superior fitting abilities of FFNNs on the 5F–DRF model.

Further evidence of the higher fitting abilities of FFNNs is given in the 3D plots shown
in Figures 7 and 8 which represent the residuals surface generated by the 5F–DRF and
FFNN models respectively, obtained varying both the time t (x–axis) and the maturity m
(y–axis). For the FFNN the error surface also includes a zoomed-in area to highlight the
residuals magnitude otherwise unobservable at the same scale used to monitor the errors
behaviour in the 5F–DRF.
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(a) (b)

(c) (d)

(e)

Figure 7. Surface of daily residuals for the yield curve obtained with the 5F–DRF in the BRICS bond
market of Brazil (a), Russia (b), India (c), China (d), South Africa (e).

In principle, we can conclude that both models provided very good fitting performances.
The residuals did not exhibit systematic behaviour, i.e., neither incorrect zeroing or cyclical
behaviour caused by wrongly specified models; they took absolute values of very small
magnitude with fairly rare spikes mainly concentrated on periods characterized by greater
market volatility. In this regard, the error surface of both models contains additional clues
leading us to the following conclusions:

• (a) FFNNs perform better than the 5F–DRF model for in sample fitting of the yield curve
of the BRICS countries.

• (b) The reason of (a) is in a better adaptability of the FFNN to both internal and external
shocks.

The surface generated by the parametric model (5F–DRF), in fact, highlights that more
pronounced residuals values are associated to higher market turbulence, as discussed
analyzing the yield curve surfaces in Figure 3. This is, for instance, the case of Russia, with
maximum values in the error surface of the 5F–DRF corresponding to the period between
2014 and 2016. Again, if we turn the attention to Figure 7d, we can observe that maxima
in the error surface correspond to the period from June 2007 to September 2010, when the
China was struggling with the Global Financial Crisis. In the case of India (see Figure 7c),
instead, we can observe that the whole error surface is disseminated by spikes, mainly
concentrated at lower maturities. This clearly indicate an underestimation (overestimation)
of the observable values; as a matter of fact, the behaviour of the Indian yield curve at



Risks 2022, 10, 36 15 of 18

various maturities was a bit trickier to fit than for other countries in the sample: the
economic regression probably affected the volatility of financial markets. Similar remarks
hold also for South Africa and its error surface in Figure 7e: error peaks raised at the
maximum level once again in connection to higher turbulence in the markets. The lone
voice in this roundup comes from Brazil, with a flat error surface for the 5F–DRF as it can be
seen in Figure 7a, and more pronounced spikes (however not exceeding the range ±0.001)
in the zoomed–in area of Figure 8a, during the period 2015–2018.

(a) (b)

(c) (d)

(e)

Figure 8. Surface of daily residuals for the yield curve obtained with the FFNN in the BRICS bond
market. As the error surface is very flat, the inset shows a zoomed–in area highlighting the error
fluctuations otherwise not visible at the same scale employed to visualize the error surface of the
5F–DRF. From top to bottom and from left to right, (a) is associated to Brazil, (b) to Russia, (c) to
India, (d) to China, (e) to South Africa.
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In general, we can conclude that 5F–DRF model suffers for underestimation (overes-
timation) issue when used to interpolate curves with pronounced oscillations at certain
maturities. These are common for parametric model, and even the use of a more efficient
parameters estimation can only reduce the error but not at the levels provided by non–linear
black box technique like the FFNN. At the same time, in fact, FFNNs provided evidence
of being a more flexible tool for in–sample fit of the term structure of interest rates: the
residuals generated by the FFNNs are considerably lower, than those of the 5F–DRF and
less influenced by the market turbulence in every analyzed situation. They therefore denote
a greater ability to replicate almost all the patterns exhibited by the term structure curve,
even in cases of strong market fluctuations or downturn.

4. Conclusions

Motivated by the important role played by the term structure of interest rates we
investigated and compared the in–sample fitting abilities of two distinct methods, the Five
Factor De Rezende–Ferreira (5F–DRF) model and Feed–Forward Neural Networks (FFNNs)
when applied to the data of BRICS countries. For the parametric approach we discussed
the use of time–varying decay terms to ensure more flexible parameters and hence get
higher interpolating performances. Focusing on in–sample rather than out of sample was
not limited, in our opinion, as bond prices reflect market participants’ views on interest
rate levels in a forward–looking way.

The results may be analyzed under two reading keys. First, we offered a comprehensive
study of the BRICS yield curves all at once. In this respect, we outlined how despite BRICS
countries are often viewed as a compact set, this is not true, as reflected by the different
behaviour of related yield curves. This aspect was accurately kept by the 5F–DRF model,
as it can be seen by looking at the average values of estimated parameters: the values, in
fact, highlight the different weight associated to short/mid and long–term components
of the yield curve. Second, we highlighted very high in–sample fitting capabilities of
both the models for all the examined countries. Nevertheless although the 5F–DRF is
the most flexible model in the Nelson–Siegel Family and these features have been further
enhanced by way of time–varying parameters, the empirical evidence has clearly shown
the superior capability of FFNN in interpolating the behaviour of the yield curve; this
was also confirmed by comparing the average behaviour of monitored and interpolated
yield curves as well as examining the average residuals and the residual surface of both
the 5F–DRF and the FFNN. In fact, the FFNN perfectly adapted to all the typical yield
curve shapes, even to the most twisted ones with multiple inflection points like in the
Indian and Russian case. Moreover FFNNs efficiently replicated all the features of the
examined term structures, being flexible enough to overcome the common limitations
of parametric models in presence of booms and busts. The greater ability of the FFNN
was confirmed by the MSE and RMSE associated to the fit, with values ranging, in the
worst case, between ±0.02 for the 5F–DRF and between ±0.0002 for the FFNN. Another
advantage of FFNNs was related to the estimation process which is less time–consuming
than for the 5F–DRF, because it requires a lower amount of parameters during the network
calibration process. The possibility of customizing FFNNs settings for each country, in
order to achieve improvements in their fitting ability for all markets was without any doubt
an additional advantage of using this technique.

Based on the arguments set out above, we therefore conclude that the FFNN is a better
and flexible tool for the in–sample fit of the yield curve in all the BRICS markets. Neverthe-
less we do not underestimate some limitations of our approach and mainly the fact that we
performed in–sample fitting. To such aim, future plans include the extension of our conclu-
sions by comparing models performance out–of–sample and a deepest investigation of the
potential of our procedure to estimate time–varying parameters in the 5F–DRF compared
to alternative solutions discussed in the more recent literature on parametric models.
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Filipović, Damir. 2009. Term Structure Models. Berlin: Springer.
Hess, Markus. 2020. A pure-jump mean-reverting short rate model. Modern Stochastics: Theory and Applications 7: 113–34. [CrossRef]
Hornik, Kurt, Maxwell Stinchcombe, and Halbert White. 1989. Multilayer feedforward networks are universal approximators. Neural

Networks 2: 359–66. [CrossRef]
Lantz, Brett. 2019. Machine Learning with R: Expert Techniques for Predictive Modeling, 3rd ed. Birmingham: Packt Publishing.
Lopez De Prado, Marcos. 2018. Advances in Financial Machine Learning. New York: Wiley.

http://doi.org/10.3390/forecast2020006
http://dx.doi.org/10.1080/1540496X.2020.1808458
http://dx.doi.org/10.1177/0972652714552040
http://dx.doi.org/10.1080/00036846.2015.1083089
http://bibliotecadigital.fgv.br/ocs/index.php/sbe/EBE08/paper/download/521/13
http://dx.doi.org/10.1002/for.1256
http://dx.doi.org/10.1007/s11135-020-01037-y 
http://dx.doi.org/10.1016/j.jeconom.2005.03.005
http://dx.doi.org/10.15559/20-VMSTA152
http://dx.doi.org/10.1016/0893-6080(89)90020-8


Risks 2022, 10, 36 18 of 18

Pereda, Javier. 2009. Estimacion de la Curva de Rendimiento Cupon Cero para el Perú. Technical Report, Banco Central De Reserva Del
Perú. Available online: https://www.bcrp.gob.pe/docs/Publicaciones/Revista-Estudios-Economicos/17/Estudios-Economicos-
17-4.pdf (accessed on 28 January 2022).

Posthaus, Achim. 2019. Yield Curve Fitting with Artificial Intelligence: A Comparison of Standard Fitting Methods with AI Algorithms.
Journal of Computational Finance 22: 1–23. [CrossRef]

Prasanna, Krishna, and Subramaniam Sowmya. 2017. Yield curve in India and its interactions with the US bond market. International
Economics and Economic Policy 14: 353–75. [CrossRef]

Rosadi, Dedi, Yoga Aji Nugraha, and Rahmawati Kusuma Dewi. 2011. Forecasting the Indonesian Government Securities Yield Curve
Using Neural Networks and Vector Autoregressive Model. Technical Report. Yogyakarta: Department of Mathematics, Gadjah Mada
University.

Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams. 1986. Learning representations by back-propagating errors.
Nature 323: 533–36. [CrossRef]

Salisu, Afees A., Juncal Cuñado, Kazeem Isah, and Rangan Gupta. 2021. Stock markets and exchange rate behaviour of the BRICS.
Journal of Forecasting 40: 1581–95. [CrossRef]

Saunders, Anthony, and Marcia Cornett. 2014. Financial Markets and Institutions, 6th ed. New York: The McGraw-Hill/Irwin Series in
Finance, Insurance, and Real Estate.

Stuart, Rebecca. 2020. The term structure, leading indicators, and recessions: Evidence from Switzerland, 1974–2017. Swiss Journal of
Economics and Statistics 156: 1–17. [CrossRef]

Suimon, Yoshiyuki, Hiroki Sakaji, Kiyoshi Izumi, and Hiroyasu Matsushima. 2020. Autoencoder-Based Three-Factor Model for the
Yield Curve of Japanese Government Bonds and a Trading Strategy. Journal of Risk and Financial Management 13: 82. [CrossRef]

Ullah, Wali, and Khadija Malik Bari. 2018. The Term Structure of Government Bond Yields in an Emerging Market. Romanian Journal
for Economic Forecasting 21: 5–28.

Vela, Daniel. 2013. Forecasting Latin–American Yield Curves: An Artificial Neural Network Approach. Techreport 761. Colombia: Banco de
la República.

Wahlstrom, Ranik Raaen, Florentina Paraschiv, and Michael Schurle. 2021. A Comparative Analysis of Parsimonious Yield Curve
Models with Focus on the Nelson-Siegel, Svensson and Bliss Versions. Computational Economics 1–38. [CrossRef]

Wilamowski, Bogdan M., and David Irwin. 2011. Intelligent Systems, 2nd ed. Boca Raton: CRC Press. [CrossRef]
Zeb, Shumaila, and Abdul Rashid. 2019. Systemic risk in financial institutions of BRICS: Measurement and identification of firm-specific

determinants. Risk Management 21: 243–64. [CrossRef]

https://www.bcrp.gob.pe/docs/Publicaciones/Revista-Estudios-Economicos/17/Estudios-Economicos-17-4.pdf
https://www.bcrp.gob.pe/docs/Publicaciones/Revista-Estudios-Economicos/17/Estudios-Economicos-17-4.pdf
http://dx.doi.org/10.2139/ssrn.3089344
http://dx.doi.org/10.1007/s10368-016-0340-8
http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.1002/for.2795
http://dx.doi.org/10.1186/s41937-019-0044-4
http://dx.doi.org/10.3390/jrfm13040082
http://dx.doi.org/10.1007/s10614-021-10113-w
http://dx.doi.org/10.1201/ 9781315218427
http://dx.doi.org/10.1057/s41283-018-00048-2

	Introduction
	Methodology
	The Five Factor De Rezende–Ferreira Model
	Feed Forward Neural Networks

	Empirical Analysis
	Data
	Comparison of the 5F-DRF and FFNN Models Fitting Performances

	Conclusions
	References

