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Abstract: This article introduces a new approach for dealing with the diversification/concentration
risk of fixed income assets. Because Government bonds, corporate bonds, and mortgage backed
securities constitute a large proportion of the assets of institutional investors in most countries, it is
important to be able to determine the number of lines/issuers of such assets, not only for portfolio
management but also for risk management purposes. The approach that I introduce shows the
dependence of the critical number of lines of fixed income assets on the main interest rate risk and
credit risk drivers. Specifically, I examine the importance of volatility risk, force of mean reversion,
default risk, recovery risk, and default dependence risk on the critical number of assets in a fixed
income portfolio. The methodology in this paper relies on the use of the coefficient of variation for
the computation of the critical number of credit-sensitive securities in a fixed income portfolio. To the
best of my knowledge, this paper is the first to develop such an approach.

Keywords: diversification; interest rate risk; credit risk; asset-liability management; corporate bonds;
fixed income

1. Introduction

While a lot of finance research contributions have addressed, since the seminal work of
Markowitz (1952), the question of the diversification of stock portfolios, far fewer research
papers have examined the diversification of fixed income portfolios. Because a large
proportion of the assets of institutional investors are comprised of fixed income securities
in the U.S., in Europe, and in other developed economies, it turns out that a large part of
the diversification/concentration risk of these companies is related to fixed income assets.
The diversification of fixed income assets (bonds, shares of MBSs, and so on) involves, at
least, the diversification of interest rate risk and of credit risk. This paper deals with the
diversification of these two risks, excluding potential additional contributions, such as the
diversification of prepayment risk.

One of the outputs of this paper is the construction of management tools that can
help investors to determine the minimum number of fixed income issuers that should
be included into their portfolios. Being able to reduce the number of lines in portfolios
is particularly useful in the sense that it reduces the amount of financial analysis that is
required to build these portfolios. This study also allows investors to develop a sensitivity
approach, namely to vary the number of lines in their bond portfolios depending on the
evolution of the main credit or interest rate factors.

In the general finance literature, recent papers have put forward strong arguments
justifying that it may not be optimal to fully diversify stock portfolios. For instance, Mitton
and Vorkink (2007) show that considering higher order moments (more specifically skew-
ness in the case of their paper) can lead to more concentrated portfolios. Uppal and Wang
(2003) justify the construction of concentrated portfolios by the presence of uncertainty in
the modeling of stock dynamics, while Van Nieuwerburgh and Veldkamp (2010) justify
the same effect by the high informational costs associated with the monitoring of stock
portfolios. None of these papers extend their analysis to the case of fixed income assets.
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Papers directly dealing with credit diversification include Varotto (2003), who conducts
an empirical analysis of the Eurobond market, Levy and Lerman (1988), who examine
general efficient frontiers for portfolios made of stocks and bonds, Dynkin et al. (2002), who
deal with the empirical link between credit diversification and rating changes, Peta (1993),
who constructs an empirical analysis of international bond and stock diversification, and
Hunter and Simon (2004), who provide an international empirical analysis.

In the quantitative finance literature, it is possible to refer to the papers of Hofmann
and Platen (2000) and of Cerreia-Vioglio et al. (2011), who propose a general treatment
of diversification risk. The paper of Jarrow et al. (2005) deals with the diversification of
default risk based on a general modeling of the intensity of default.

Even in the recent literature, it is difficult to find references directly dealing with the
problem examined in this article. However, the reader interested in recent references can
consider the work of Saardchom (2018), which consists in an actuarial model dealing with
the aggregate loss distribution. The paper of Wu and Wu (2018), which puts forward the
interest of partially diversifying a portfolio of credit default swaps, is equally interesting.
See the work of Kurtz et al. (2018), as well, which deals with sectorial concentration, or
the paper of Konstantinov (2017), which deals with factorial concentration. Finally, take a
look at the paper of Heckel et al. (2020), which examines the use of factor models in a fixed
income context.

To construct a general framework for the diversification of credit risk, it is first neces-
sary to choose between a structural or a reduced approach to this risk. Structural models
rely on a modeling of the dynamics of the assets of a company. Starting with the work of
Merton (1974), they were expanded, e.g., by Longstaff and Schwartz (1995), who also take
into account interest rate risk, or by Leland and Toft (1996), who relies on an optimization
of the value of the company. These contributions do not allow us to deal with the optimal
level of diversification of a bond portfolio, contrary to the Vasicek structural approach (see,
for instance, Vasicek (1987, 1991, 2002)). However, the Vasicek approach shares with other
structural approaches the following weaknesses: the difficulty to calibrate in a robust way
the parameters of the asset process from stock and bond data, the even greater difficulty to
expand this procedure at the level of correlated assets, the reliance on Gaussian assumptions
for the modeling of credit risk, the difficulty to produce a market-consistent framework,
the lack of explaining power because factors are introduced in an ad hoc manner, and the
impossibility to produce formulas showing the link between the optimal number of lines
in the fixed income portfolio and the driving interest rate risk and credit risk parameters.

Given the drawbacks of structural models, the approach that is used in this paper is
reduced, which means that a modeling of the assets of bond issuers is not attempted. On
the contrary, I rely on quoted bond prices information and model the main constituents
of interest rate risk and credit risk, including recovery and dependence aspects. The risk
indicator that is constructed in this paper is market-consistent, or risk-neutral, to be able to
incorporate it in a more general solvency framework and for consistency with arbitrage
valuation procedures.

It is possible to make the following comparisons between this paper and previous
papers co-written with other authors. The paper of Allali et al. (2018) deals with the
computation of credit Solvency Capital Requirements in a Solvency 2 approach, but does
not consider diversification issues and does not make use of an interest rate model. The
paper of Le Courtois et al. (2021) provides interesting elements on the limits of market-
consistent approaches but, again, does not deal with diversification issues. Finally, the
book of Le Courtois and Walter (2014) provides a general treatment of extreme risks and
discusses diversification issues in the case of equity risk, but not of credit risk.

The only Gaussian assumptions that are made in this paper are for the interest rate
risk, where I use the Vasicek (1977) model, which has the advantages of relying on a parsi-
monious number of intuitive parameters, of being easy to implement, and of incorporating
negative interest rates. This paper shows that the force of mean reversion that appears in
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the Vasicek model, but also in other interest rate models, is a key driver of the diversification
risk of fixed income portfolios.

The risk indicator that is used in this paper is the coefficient of variation of the
portfolio’s discounted payoff. This risk indicator has the advantage of being independent
of size/price effects. It converges to zero for an asymptotically high number of bonds when
risk is fully diversifiable and to a non-null constant when interest rate risk or credit risk
cannot be fully diversified away from the portfolio. Our paper provides the asymptotic
value of this risk indicator as a function of the main interest rate and credit drivers. I also
examine the dependence of the resulting critical number of fixed income assets on the main
financial variables.

The paper is organized as follows. First, I study the diversification of interest rate risk,
that is, I consider a situation where only interest rate risk is present. Next, I extend this
study to the case of the diversification of corporate bonds, that is, to the case where both
interest rate risk and credit risk are present. The final section provides a general formula
for the critical number of fixed income assets and analyzes the dependence of this indicator
on the main interest rate (force of mean reversion, volatility) and credit (survival/default
probability, recovery, dependence) variables.

2. Diversification of Interest Rate Risk

Let us start by a study of the diversification of interest rate risk, that is, of Government
bond portfolios. This preliminary study is important for the study of the diversification of
general bond portfolios because it is not possible to study the diversification of credit risk
without first taking into account the pure interest rate component, as examined in detail in
the forthcoming part devoted to the study of the diversification of credit risk.

2.1. Notation

Let ZT denote the (random) discounted payoff of a zero-coupon bond that matures at
time T. Thus,

ZT = e−IT , (1)

where the random variable IT equals:

IT =

T∫
0

rs ds. (2)

The price of this bond is computed in the risk-neutral world as the risk-neutral
expectation of the discounted payoff:

E = P(0, T) = EQ(ZT) = EQ

(
e−IT

)
. (3)

Let us also define:
Ê = EQ

(
e−2·IT

)
. (4)

Finally, the risk-neutral variance of the discounted payoff is

v = VarQ(ZT) = VarQ

(
e−IT

)
, (5)

where it is possible to denote

s =
√

v =
√

VarQ(e−IT ). (6)

2.2. Portfolio of Independent Government Bonds

Let us start by considering a portfolio of N independent Government bonds issued
by a variety of countries. Let us also assume that all of these bonds have independent and
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identically distributed discounted payoffs. The discounted payoff associated with the total
portfolio is

ZPT =
N

∑
i=1

wi · Zi
T , (7)

where wi is the weight of bond i in the total portfolio.
Let us classically assume that

N

∑
i=1

wi = 1, (8)

and let us define:

W =

√√√√ N

∑
i=1

(
wi
)2. (9)

Note that, when all the weights are identical, so, when wi = 1
N for all i, then, W = 1√

N
.

The risk-neutral expectation of the discounted payoff of the aggregate portfolio is
equal to

EQ

(
ZPT
)
= EQ

(
N

∑
i=1

wi · Zi
T

)
=

N

∑
i=1

wi · EQ

(
Zi

T

)
=

N

∑
i=1

wi · EQ

(
Z1

T

)
(10)

because discounted payoffs are assumed to be identically distributed.
Therefore,

EQ

(
ZPT
)
=

(
N

∑
i=1

wi

)
· EQ

(
Z1

T

)
= EQ

(
e−IT

)
= E. (11)

Next, let us compute the risk-neutral variance of the discounted payoff:

VarQ

(
ZPT
)
= VarQ

(
N

∑
i=1

wi · Zi
T

)
=

N

∑
i=1

(
wi
)2
·VarQ

(
Zi

T

)
=

N

∑
i=1

(
wi
)2
·VarQ

(
Z1

T

)
. (12)

Thus,
VarQ

(
ZPT
)
= W2 ·VarQ

(
Z1

T

)
= W2 · v. (13)

Equipped with the expressions of the mean and variance of the discounted payoff,
it is possible to compute the coefficient of variation of the discounted payoff. I use this
quantity as a risk indicator because it is independent of the size of the portfolio. Indeed, this
quantity expressions the amount of fluctuation per unit of risk. An additional advantage of
using the coefficient of variation in the case of bond portfolios is that it allows us to analyze
risk independently of pricing considerations because the denominator of the coefficient of
variation is precisely the price of the bond portfolio.

In addition, note that the coefficient of variation is computed in the risk-neutral world
but not in the historical world. Indeed, it may be interesting to plug these results into a, e.g.,
Basle or Solvency 2 procedure, where market consistent (that is risk-neutral) valuations
of the institutional investor may be required, and where it could be required to simulate
in the risk-neutral world the asset portfolio of the company with an adequate number of
issuers. More generally, situations where the company invests in products with embedded
options or in interest rate options may prevail. In such situations, the natural world for
conducting analyzes is the risk-neutral world.

Clearly, all the results that are shown below in the risk-neutral world can be readily
rewritten in the historical world. For brevity, I do not report the formulas that can be
derived in this alternate situation, and I leave this modification to the reader. Further, it can
be readily shown that the same heuristics (dependency of the optimal number of issuers
based on the credit quality, for instance, studied in the forthcoming sections) are obtained
in both worlds.
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Based on the previous elements, it is possible to derive the coefficient of variation
as follows:

cvQ

(
ZPT
)
=

√
VarQ

(
ZPT
)

EQ
(
ZPT
) =

√
W2 · v

E
=

s
E
·W. (14)

When all the weights are identical, this expression becomes:

cvQ

(
ZPT
)
=

s
E
· 1√

N
, (15)

where this quantity is inversely dependent on the square root of the number N of bonds.
At the limit, it is possible to show that

lim
N→+∞

(
cvQ

(
ZPT
))

= 0. (16)

This result is important: it confirms that a portfolio of independent Government bonds
is fully diversifiable. Indeed, for an asymptotically high number of Government bonds,
risk, as measured by the coefficient of variation, completely disappears.

It is now possible to compute the critical number of lines/issuers of Government
bonds in which an institutional investor should invest. Let us compute this critical number
of issuers by ensuring that the risk indicator remains below a critical threshold.

Specifically, let µ be the critical value, chosen by the investor, of cvQ
(
ZPT
)
. The goal is

to compute the critical number of issuers Nµ that is associated with µ. To achieve this goal,
let us compute the smallest integer Nµ such that

s
E
· 1√

Nµ
≤ µ. (17)

From the previous equation, it is possible to deduce:

Nµ =

⌈
v

µ2 · E2

⌉
, (18)

where an upper rounding indicator is used to guarantee that Nµ is an integer.
The interpretation is as follows: for any number of bonds superior or equal to Nµ, the

coefficient of variation of the discounted payoff remains inferior to µ. Here, it appears that,
ceteris paribus, a higher number of issuers is necessary to keep portfolio risk unchanged
if interest rate risk (as measured by v) is higher. Next, let us examine how the above
results are modified when Government bond analytics become dependent, as is the case in
practice.

Let us finally note that the risk indicator retained in this paper, which is the coefficient
of variation, allows us to measure the risk per unit of price of the fixed income portfolio.
The goal of this approach is to compare the risks of portfolios that are identically costly.
Alternatively, one could simply consider the variance of the average discounted payoff of
the portfolio, where this alternative indicator also measures the risk per unit of size of the
portfolio (although not anymore per unit of price).

Specifically, it is possible to define λ as the critical value, chosen by the investor, of
VarQ

(
ZPT
)
. In this alternative approach, the goal is to compute the critical number of bonds

Ñλ that is associated with λ. That is, the goal is to compute the smallest integer Ñλ such that

W2 · v =
v

Ñλ
≤ λ. (19)

From this equation, one can deduce

Ñλ =
⌈v

λ

⌉
, (20)
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whose interpretation is as follows: for any number of bonds superior or equal to Ñλ, the
variance of the average discounted payoff remains inferior to λ.

2.3. Portfolio of Dependent Government Bonds

Let us now consider a portfolio of N dependent Government bonds issued by a variety
of countries. Discounted payoffs are still assumed identically distributed, but now they
are dependent, and the same amount of dependence holds between any two issuers. Let,
again, the discounted payoff of the bond portfolio be

ZPT =
N

∑
i=1

wi · Zi
T . (21)

It can be readily checked that, similar to the independent case:

EQ

(
ZPT
)
= E. (22)

The risk-neutral variance of the average discounted payoff satisfies:

VarQ

(
ZPT
)
= VarQ

(
N

∑
i=1

wi · Zi
T

)
, (23)

so that

VarQ

(
ZPT
)
=

N

∑
i=1

(
wi
)2
·VarQ

(
Zi

T

)
+ ∑

i 6=j
wi · wj ·CovQ

(
Zi

T , Zj
T

)
, (24)

or

VarQ

(
ZPT
)
=

[
N

∑
i=1

(
wi
)2
]
·VarQ

(
Z1

T

)
+

[
∑
i 6=j

wi · wj

]
·CovQ

(
Z1

T , Z2
T

)
, (25)

because of assumptions.
Let us denote the risk-neutral covariance of any two discounted payoffs as follows:

ζ = CovQ

(
Zi

T , Zj
T

)
∀ i 6= j, (26)

and let us also define:
X =

√
∑
i 6=j

wi · wj. (27)

Equipped with these definitions, let us write:

VarQ

(
ZPT
)
= W2 · v + X2 · ζ. (28)

When all the weights are identical, one can readily check that X =
√

N−1
N . Therefore,

in this situation,

VarQ

(
ZPT
)
=

v + (N − 1) · ζ
N

. (29)

Next, one can compute

cvQ

(
ZPT
)
=

√
VarQ

(
ZPT
)

EQ
(
ZPT
) =

√
v + (N − 1) · ζ√

N · E
, (30)

which yields

lim
N→+∞

(
cvQ

(
ZPT
))

=

√
ζ

E
. (31)
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It appears that, in the dependent case, interest rate risk cannot be fully diversified away
by investing in an asymptotically high number of investors because the limit in the above
expression is strictly positive. Not surprisingly, a higher residual (or systemic) amount of
risk remains when the dependence indicator ζ is higher between any two issuers.

Finally, the goal is to compute the smallest integer Nµ such that

cvQ

(
ZPT
)
≤ µ. (32)

One obtains1:

Nµ =

⌈
v− ζ

µ2 · E2 − ζ

⌉
. (33)

The next section extends Equations (18) and (33) to the case where credit risk is
considered.

3. Joint Diversification of Interest Rate and Credit Risks

Let us now examine the diversification of portfolios of corporate bonds, which include
an important credit risk component, in addition to a classic interest rate risk component.
For simplicity, I assume that all of the corporate bonds are issued in the same currency. As
in the previous section, all bonds are zero-coupon bonds with an identical maturity, which
can be viewed as a proxy of a coupon bond duration. This allows us to derive closed-form
formulas that are useful for understanding the dependence of the critical level of credit risk
diversification on the main interest rate and credit risk parameters.

General Results

The discounted payoff Zi,c
T of a credit-risky zero-coupon bond (the upperscript “i” is

for the ith bond, while the upperscript “c” is for “Credit”) can be written as follows:

Zi,c
T = e−IT 1τi>T + Ri e−IT 1τi≤T , (34)

where τi is the random default time of issuer “i”, 0 ≤ Ri ≤ 1 is its recovery rate, and we
assume that the recovery amount is paid at the initially planned maturity in case of default2.
For a portfolio of defaultable bonds,

ZP ,c
T =

N

∑
i=1

wi · Zi,c
T = e−IT ·

N

∑
i=1

wi ·
[
1τi>T + Ri 1τi≤T

]
. (35)

Therefore,

EQ

(
ZP ,c

T

)
= EQ

(
e−IT ·

N

∑
i=1

wi ·
[
1τi>T + Ri 1τi≤T

])
, (36)

or, equivalently,

EQ

(
ZP ,c

T

)
=

N

∑
i=1

wi · EQ

(
e−IT ·

[
Ri + (1− Ri) 1τi>T

])
. (37)

I use a Cox process approach, where the default intensity λi of bond “i” is a stochastic
process that may depend on r and on the default intensities of other bonds.

Let us denote by G the filtration that incorporates information about the interest rate
process r, the credit intensity processes λis, and the recovery rates Ris. Conditionally on G,
the intensity process λi becomes a deterministic function of time, and the default time τi

becomes the time of the first jump of an inhomogenous Poisson process.
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Specifically, the following two important results (see, for instance, Schönbucher (2003))
prevail:

Q
(

τi > T | GT

)
= EQ

(
1τi>T | GT

)
= e−

∫ T
0 λi

t dt = e−Ji
T (38)

and
Q
(

τi > T
)
= EQ

(
EQ
(
1τi>T | GT

))
= EQ

(
e−
∫ T

0 λi
t dt
)
= EQ

(
e−Ji

T

)
, (39)

where one defines:

Ji
T =

∫ T

0
λi

t dt. (40)

Using the tower property of conditional expectations, it is possible to rewrite Equa-
tion (37) as follows3:

EQ

(
ZP ,c

T

)
=

N

∑
i=1

wi · EQ

(
e−IT ·

[
Ri + (1− Ri) EQ

(
1τi>T | GT

)])
, (41)

or, equivalently, as follows:

EQ

(
ZP ,c

T

)
=

N

∑
i=1

wi · EQ

(
e−IT ·

[
Ri + (1− Ri) e−Ji

T

])
. (42)

When interest rate risk and credit risk are independent, it is possible to simplify
Equation (41) as follows:

EQ

(
ZP ,c

T

)
= EQ

(
e−IT

)
·

N

∑
i=1

wi · EQ

(
Ri +

(
1− Ri

)
e−Ji

T

)
. (43)

If one further assumes that the recovery rates are constant,

EQ

(
ZP ,c

T

)
= EQ

(
e−IT

)
·

N

∑
i=1

wi ·
[

Ri +
(

1− Ri
)

EQ

(
e−Ji

T

)]
. (44)

Let us further denote
Fi = EQ

(
e−Ji

T

)
, (45)

so that

EQ

(
ZP ,c

T

)
= E ·

N

∑
i=1

wi ·
[

Ri +
(

1− Ri
)

Fi
]
. (46)

Next, let us come to the study of the variance of the aggregate fixed income portfolio.
Thus, let us first write4:

VarQ

(
ZP ,c

T

)
= VarQ

(
e−IT ·

N

∑
i=1

wi ·
[
1τi>T + Ri 1τi≤T

])
, (47)

which is equivalent to

VarQ

(
ZP ,c

T

)
= VarQ

(
e−IT ·

N

∑
i=1

wi ·
[

Ri + (1− Ri) 1τi>T

])
. (48)
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The tower property of conditional expectations allows us to rewrite Equation (48) as
follows:

VarQ

(
ZP ,c
(0,T)

)
= EQ

(
VarQ

(
e−IT ·

N

∑
i=1

wi ·
[

Ri + (1− Ri) 1τi>T

]
| GT

))

+ VarQ

(
EQ

(
e−IT ·

N

∑
i=1

wi ·
[

Ri + (1− Ri) 1τi>T

]
| GT

))
. (49)

Because IT is known conditional on the information GT , it is also possible to write:

VarQ

(
ZP ,c
(0,T)

)
= EQ

(
e−2·IT ·VarQ

(
N

∑
i=1

wi ·
[

Ri + (1− Ri) 1τi>T

]
| GT

))

+ VarQ

(
e−IT · EQ

(
N

∑
i=1

wi ·
[

Ri + (1− Ri) 1τi>T

]
| GT

))
, (50)

Developing the inner terms, one obtains:

VarQ

(
ZP ,c
(0,T)

)
= EQ

(
e−2·IT ·

N

∑
i=1

(
wi
)2
·VarQ

(
Ri + (1− Ri) 1τi>T | GT

))

+ EQ

(
e−2·IT ·∑

i 6=j
wi · wj ·CovQ

(
Ri + (1− Ri) 1τi>T , Rj + (1− Rj) 1τ j>T | GT

))

+ VarQ

(
e−IT ·

N

∑
i=1

wi · EQ

(
Ri + (1− Ri) 1τi>T | GT

))
. (51)

Because the recovery rates, Ris, are known conditional on the information GT , and
because a variance (covariance) is unchanged when its argument (one of its arguments) is
shifted by a constant amount, it is also possible to write:

VarQ

(
ZP ,c
(0,T)

)
= EQ

(
e−2·IT ·

N

∑
i=1

(
wi
)2
·
(

1− Ri
)2
·VarQ

(
1τi>T | GT

))

+ EQ

(
e−2·IT ·∑

i 6=j
wi · wj ·

(
1− Ri

)
·
(

1− Rj
)
·CovQ

(
1τi>T ,1τ j>T | GT

))

+ VarQ

(
e−IT ·

N

∑
i=1

wi ·
[

Ri +
(

1− Ri
)
· EQ

(
1τi>T | GT

)])
. (52)

The inner conditional expectation in Equation (52) is already known and equal to

EQ
(
1τi>T | GT

)
= e−Ji

T . (53)

Next, let us compute the inner conditional variance term in Equation (52):

VarQ
(
1τi>T | GT

)
= EQ

((
1τi>T

)2 | GT

)
−
(
EQ
(
1τi>T | GT

))2 (54)

or
VarQ

(
1τi>T | GT

)
= EQ

(
1τi>T | GT

)
−
(
EQ
(
1τi>T | GT

))2 (55)

or
VarQ

(
1τi>T | GT

)
= e−Ji

T − e−2·Ji
T . (56)
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Finally, the inner conditional covariance term in Equation (52) can be computed as
follows:

CovQ
(
1τi>T ,1τ j>T | GT

)
= EQ

(
1τi>T · 1τ j>T | GT

)
− EQ

(
1τi>T | GT

)
· EQ

(
1τ j>T | GT

)
(57)

or

CovQ
(
1τi>T ,1τ j>T | GT

)
= C

(
e−Ji

T , e−J j
T

)
− e−Ji

T · e−J j
T , (58)

where C is a copula that relates the two default Cox processes (see, for instance, Jouanin et
al. (2001)).

Using the above developments, let us rewrite the risk-neutral variance of the fixed
income portfolio as follows:

VarQ

(
ZP ,c
(0,T)

)
= EQ

(
e−2·IT ·

N

∑
i=1

(
wi
)2
·
(

1− Ri
)2
·
(

e−Ji
T − e−2·Ji

T

))

+ EQ

e−2·IT ·∑
i 6=j

wi · wj ·
(

1− Ri
)
·
(

1− Rj
)
·
(

C
(

e−Ji
T , e−J j

T

)
− e−Ji

T · e−J j
T

)
+ VarQ

(
e−IT ·

N

∑
i=1

wi ·
[

Ri +
(

1− Ri
)
· e−Ji

T

])
. (59)

I now assume that the interest rate process r is independent from all of the sources
of credit risk and that the recovery rates, Ris, are constant. However, the λis may still be
stochastic and inter-dependent. Equation (59) becomes

VarQ

(
ZP ,c
(0,T)

)
= Ê ·

N

∑
i=1

(
wi
)2
·
(

1− Ri
)2
·
(

Fi − F̂i
)

+ Ê ·∑
i 6=j

wi · wj ·
(

1− Ri
)
·
(

1− Rj
)
·
(

Gi,j −Hi,j
)

+ v ·
(

N

∑
i=1

wi ·
[

Ri +
(

1− Ri
)
· Fi
])2

+
(

E2 + v
)
·

N

∑
i=1

(
wi
)2
·
(

1− Ri
)2
·
(

F̂i −
(

Fi
)2
)

+
(

E2 + v
)
·∑

i 6=j
wi · wj ·

(
1− Ri

)
·
(

1− Rj
)
·
(

Hi,j − Fi · Fj
)

, (60)

where the derivation of the third term in the right-hand-side of Equation (59) is provided
in Appendix A and where the following definitions are used:

F̂i
= EQ

(
e−2·Ji

T

)
(61)

and

Gi,j = EQ

(
C
(

e−Ji
T , e−J j

T

))
(62)

and also

Hi,j = EQ

(
e−Ji

T · e−J j
T

)
, (63)

where Hi,i = F̂i.
The above developments illustrate how risk indicators can be computed in a general

interest rate and credit framework. For instance, the coefficient of variation, which is used
in the subsequent illustrations, can be obtained by computing the ratio of the variance
shown in Equation (60) to the expectation shown in Equation (46). The derivation of higher
order moments is also possible but tedious in a fully closed-form way. Computing the
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skewness and kurtosis of a fixed income portfolio in a nearly fully closed-form way can be
achieved by mixing the approach shown in this section with the use of tensor products (see,
for instance, Le Courtois and Walter (2014), for an illustration of the use of tensor products
in the case of equity portfolios).

4. Analysis and Illustration

In this section, I examine the situation where the portfolio is iso-weighted and where
the default intensities are constant and identical. The recovery rates are also assumed
constant and identical. These assumptions allow us to illustrate a situation where credit
risk is decomposed into three components: survival probability, inter-default dependence,
and recovery risk. I postulate a Vasicek interest rate model and analyze the effect of the
main interest rate and credit drivers on the diversification of a fixed income portfolio.

4.1. Framework

Let us assume that the default intensity is a constant λ that is identical between issuers.
In this situation, the risk-neutral survival probability is also identical between issuers and
can be expressed as follows:

q = Q(τi > T) = EQ
(
1τi>T

)
= Fi = EQ

(
e−Ji

T

)
= e−λ T , (64)

where i can refer to any issuer. Based on this simplification and using Equation (46), the
price of an iso-weighted portfolio becomes

EQ

(
ZP ,c

T

)
= E · (R + (1− R) q). (65)

Next,
F̂i

= e−2 λ T = q2, ∀i. (66)

Using Equation (56), it is easy to check that5

VarQ
(
1τi>T

)
= EQ

(
VarQ

(
1τi>T | GT

))
= EQ

(
e−Ji

T − e−2·Ji
T

)
= q (1− q). (67)

One readily derives:

F̂i −
(

Fi
)2

= e−2 λ T − e−2 λ T = 0. (68)

It is also possible to check that

Hi,j − Fi · Fj = e−2 λ T − e−2 λ T = 0 (69)

and that6

Gi,j −Hi,j = EQ
(
CovQ

(
1τi>T ,1τ j>T | GT

))
= CovQ

(
1τi>T ,1τ j>T

)
= q (1− q) ρ, (70)

where ρ is the correlation of survival indicators.
Using the above simplifications, it is possible to rewrite Equation (60) as follows:

VarQ

(
ZP ,c
(0,T)

)
=

Ê (1− R)2 q (1− q)
N

+
Ê (N − 1) (1− R)2 q (1− q) ρ

N
+ v (R + (1− R) q)2. (71)

More simply,

VarQ

(
ZP ,c
(0,T)

)
=

Ê (1− R)2 q (1− q) [1 + (N − 1) ρ] + N v · (R + (1− R) q)2

N
. (72)
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Next, using Equations (65) and (72), it is possible to derive

cvQ

(
ZP ,c

T

)
=

√
Ê (1− R)2 q (1− q) [1 + (N − 1) ρ] + N v · (R + (1− R) q)2

√
N E (R + (1− R) q)

, (73)

which yields

lim
N→+∞

(
cvQ

(
ZP ,c

T

))
=

√
Ê (1− R)2 q (1− q) ρ + v · (R + (1− R) q)2

E2 (R + (1− R) q)2
, (74)

or, equivalently,

lim
N→+∞

(
cvQ

(
ZP ,c

T

))
=

√
Ê (1− R)2 q (1− q) ρ

E2 (R + (1− R) q)2
+

v
E2 . (75)

It appears that the amount of risk that remains after diversifying away the individual
risk contributions is a function of interest rate quantities (E, Ê, and v) and of credit-related
quantities (q, R, ρ).

Finally, the goal is to compute the smallest integer Nµ such that

cvQ

(
ZP ,c

T

)
≤ µ. (76)

One obtains the critical number of issuers Nµ, which keeps the risk indicator below
the critical threshold µ, as the following quantity7:

Nµ =

 q (1− q) (1− ρ) (1− R)2 Ê(
µ2 E2 − v

)
[R + (1− R) q]2 − q (1− q) ρ (1− R)2 Ê

. (77)

Again, this expression is a function of interest rate quantities (E, Ê, and v) and of
credit-related quantities (q, R, ρ). The next section analyzes in detail the effects of interest
rate risk and credit risk on the diversification of bond portfolios.

4.2. Vasicek Parametrization

Equation (77) above is general and can be used with a variety of interest rate models.
However, one needs to provide a specification for the parameters E, Ê, and v, where the
latter two quantities are not quoted quantities that can be easily retrieved from financial
databases.

I choose to implement a Vasicek model because it is simple, little-parametrized, its
parameters are financially intuitive, and the model allows for the possibility of negative
interest rates. As shown below, the main interest rate quantities that need to be calibrated
by actuaries to feed the formulas are the volatility σ and the force of mean reversion a of
the short term rate. These quantities can be easily calibrated using the Vasicek formula for
the yield curve, together with, e.g., Bloomberg data.

Let us model the short-term interest rate as follows:

drt = a (b− rt) dt + σ dzt. (78)

This model depends on four parameters: the initial value of the interest rate r0, the
mean-reversion (long term) level of interest rates b, the force of mean reversion a, and the
volatility of the short rate σ.

First of all, recall that the risk-neutral distribution of rt is Gaussian and characterized
by the following mean:

EQ(rt) = b + (r0 − b), e−at (79)
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and variance:

VarQ(rt) =
σ2

2a

(
1− e−2at

)
. (80)

For diversification calculations, it is necessary to compute moments related to the
integral of the short-term rate IT but not to the rate rt itself. IT , being an integral of Gaussian
contributions, is also Gaussian. It is characterized by the following mean:

EQ(IT) = b T + (r0 − b), B(0, T) (81)

and variance:

VarQ(IT) =
σ2

a2

(
T − B(0, T)− a

2
B(0, T)2

)
, (82)

where

B(0, T) =
1− e−aT

a
. (83)

It is now possible to compute

E = P(0, T) = EQ

(
e−IT

)
= e−EQ(IT)+

VarQ(IT )

2 (84)

or

E = e−r0·B(0,T) e−(T−B(0,T))·
(

b− σ2

2a2

)
− σ2

4a ·B(0,T)2
. (85)

Additionally,
Ê = EQ

(
e−2 IT

)
= e−2EQ(IT)+2VarQ(IT) (86)

or

Ê = e−2·(b T+(r0−b) B(0,T))+ 2σ2

a2 ·(T−B(0,T)− a
2 B(0,T)2). (87)

Finally,
v = VarQ

(
e−IT

)
=
(

eVarQ(It) − 1
)
· e−2EQ(IT)+VarQ(IT) (88)

or

v =

(
e

σ2

a2 ·(T−B(0,T)− a
2 B(0,T)2) − 1

)
· P(0, T)2. (89)

Equation (77) becomes:

Nµ =

 q (1− q) (1− ρ) (1− R)2(
µ2 − 1 + e−VarQ(IT)

)
[R + (1− R) q]2 − q (1− q) ρ (1− R)2

, (90)

where the interest rate quantity VarQ(IT) depends on σ and a, but not on r0 and b, as can
be seen in Equations (82) and (83).

Therefore, it appears that the critical number of issuers depends on three credit risk
parameters and on two interest rate risk parameters: the volatility and mean reversion
parameters (but not on interest rate parameters that reflect constant levels, such as r0 and b).

The next subsection examines the sensitivity of the critical number of issuers to these
five risk parameters, as well as the sensitivity to the maturity and critical threshold values.

4.3. Sensitivities

This section illustrates the sensitivity of the critical number of issuers, computed using
Equation (90) to the main driving parameters. For all of the figures of this subsection,
except when the parameters are allowed to vary in the abscissa of these figures, I make
the following assumptions8: the survival probability is equal to q = 0.98, the correlation
between the survival indicators is ρ = 0.5, the recovery rate is R = 0.65, the confidence
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looseness parameter is µ = 0.06, the force of mean reversion is a = 3.5, the volatility of
short term rates is 0.038, and the mean maturity of bonds is T = 15.

Figure 1 shows how the solution to Equation (90), namely the critical number of
issuers, varies with the confidence looseness parameter µ. This graph shows that, if one
wants to increase safety, that is, if one wants to reduce the confidence looseness parameter,
then, it is necessary to sharply increase the minimum number of issuers. Thus, achieving a
high level of safety can be expensive because investing in a high number of issuers implies
an important amount of monitoring or information recovery-related costs.

0.054 0.056 0.058 0.06 0.062 0.064 0.066

0

5

10

15

N

Figure 1. Minimum number of bonds w.r.t. confidence looseness (µ).

Let us now examine the impact of the mean bond maturity on the diversification of
credit risk. Figure 2 shows how the critical number of issuers depends on the maturity of
corporate bonds. This figure exhibits that the diversification of credit risk is more easily
achieved, i.e., is achieved with a smaller number of issuers, when the mean maturity of
corporate bonds is low.
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Figure 2. Minimum number of bonds w.r.t. mean maturity (T).

Let us now study the impact of the risk-free interest rate parameters. First, Figure 3
shows the variation of the critical number of issuers with respect to the volatility of the
short term interest rate. This figure illustrates that the diversification of credit risk is more
easily achieved, i.e., achieved with a smaller number of issuers, when the volatility of the
short term interest rate is low. This feature is reasonable: it should be easier to diversify
away a risk that is smaller, all else being kept equal.
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Figure 3. Minimum number of bonds w.r.t. short term rate volatility (σ).

Next, Figure 4 shows how the critical number of issuers varies with the second key
risk-free interest rate parameter: the force of mean reversion. This figure illustrates that the
diversification of credit risk is more easily achieved, i.e., achieved with a smaller number of
issuers, when the force of mean reversion is high.

Note that the force of mean reversion could be interpreted as the force of central bank
intervention. Indeed, the greater the frequency at which a central bank changes its target
rate or the greater its injections/retrievals of cash into/out of the economy, the more market
rates are likely to revert to an average level.
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N

Figure 4. Minimum number of bonds w.r.t. force of mean reversion (a).

Interestingly, Figure 4 tells us that the diversification of fixed income portfolios is
easier in an economy that is more monitored by central banks. At the limit, when the
economy is completely under control and when interest rates do not vary, the question of
the diversification of fixed income portfolios completely vanishes.

Next, let us examine the impact of credit parameters on the diversification of fixed
income assets. Figure 5 shows how the critical number of issuers varies with the survival
probability q of issuers. This figure shows that the diversification of credit risk is more easily
achieved, i.e., achieved with a smaller number of issuers, when the survival probability is
high.
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Figure 5. Minimum number of bonds w.r.t. survival probability (q).

Then, Figure 6 shows how the critical number of issuers varies with another key
credit risk driver: the correlation between survival indicators. This figure tells us that the
diversification of credit risk is more easily achieved, i.e., achieved with a smaller number of
issuers, when the dependence between survival indicators (or, equivalently, the dependence
between credits) is high.
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Figure 6. Minimum number of bonds w.r.t. correlation of survival indicators (ρ).

Further, Figure 7 shows how the critical number of issuers varies with the third key
credit risk driver considered in this note: the recovery rate. This figure illustrates that the
diversification of credit risk is more easily achieved, i.e., achieved with a smaller number of
issuers, when the recovery rate is high.
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Figure 7. Minimum number of bonds w.r.t. recovery rate (R).

I conclude this study with Table 1, which summarizes the main dependencies that
can be derived from Equation (90) and that are exhibited in the figures. While a higher
confidence looseness parameter, force of mean reversion, recovery rate, correlation of
survival indicators, or survival probability all have a decreasing effect on the critical
number of bonds, a higher volatility of interest rates or mean maturity of the portfolio has
an opposite effect, namely leading to an increase in the critical number of bonds. The table
recalls that both the initial level of interest rates and the mean-reversion level have no effect
on the concentration/diversification of fixed income portfolios.

Table 1. Effect of main parameters on diversification.

Effect of on Nµ

µ (Confidence Looseness) ↘

r0 (Initial Value of Risk-Free Rate) →

b (Mean Reversion Value of Risk-Free Rate) →

a (Force of Mean Reversion of Risk-Free Rate) ↘

σ (Vol of Short-Term Risk-Free Rate) ↗

T (Mean Maturity of Portfolio) ↗

R (Recovery Rate) ↘

ρ (Correlation of Survival Indicators) ↘

q (Survival Probability) ↘

5. Conclusions and Extensions

This article provides a new framework for determining the critical number of lines that
should constitute the fixed income portfolio of an institutional investor. It also analyzes the
sensitivity of this critical number of lines with respect to some of the main interest rate risk
and credit risk determinants. An important conclusion that arises from this study is that
the concentration risk of defaultable assets cannot be analyzed without also considering
interest rate risk. Then, within interest rate risk, the force of mean reversion component,
which can be related to the force of central bank intervention, plays a critical role. As far as
credit risk is concerned, it appears that more diversification is needed in the presence of
lower recovery rates, correlations, or survival probabilities.

Investors can benefit from this study in several ways. First, investors can use this
research to produce management tools providing them indications of the minimum number
of fixed income issuers that should be included into their portfolios. Investing in ten or fifty
different bonds does not involve the same amount of market analysis and bond portfolio
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manager time. Thus, algorithms that scientifically ground a reduction of the number of
lines in portfolios are useful in the sense that they reduce management time. Then, this
study is also useful in the sense that it provides tools to adapt investment strategies to the
credit or interest rate situation prevailing on the market. Indeed, equipped with our results,
it is possible to deduce whether one should increase or decrease the number of lines of
bond portfolios, depending on the evolution of the main credit or interest rate factors.

Limitations of our study naturally arise from the interest rate risk and credit risk
approaches that are retained. Thus, our study can be complemented by using a more
sophisticated interest rate model and by taking into account more credit risk aspects. One
could, for example, consider a model with two correlated factor rather than a simple Vasicek
model to represent the dynamics of interest rates. Further, a broader consideration of credit
risk could be introduced to include, for instance, ranking effects. For instance, it could be
interesting to check whether a higher level of diversification is necessary for bonds with a
lower rating.

Another possible extension of this paper could consist in the study of potential links
between the negative rates that are considered in the Vasicek model and diversification risk.
Further, one could consider portfolios of corporate bonds issued in a variety of currencies
and with a variety of maturities. Finally, incorporating this diversification framework into
a broader market-consistent framework for computing capital requirements could also be
interesting for providing a better understanding of the risk management of institutional
investors.

While the risk indicator considered in this paper is the coefficient of variation, other
risk indicators that focus on distribution tails can be chosen. An extension of this paper
could consist in examining the diversification of fixed income portfolios when the risk
indicator is the Value-at-Risk or the Tail Value-at-Risk. Without additional assumptions, the
computations in this framework will be purely numerical. However, a semi-numerical ap-
proach could be developed by assuming the comonotonicity of the stochastic contributions
(see, for instance, Dhaene et al. (2006)). In this case, the Value-at-Risk of the fixed income
portfolio can be written as follows:

N

∑
i=1

wi ·VaRα
Q

(
e−ITi · 1τi>Ti + e−I

τi · Ri · 1τi≤Ti

)
, (91)

while the expression of the Tail VaR is

N

∑
i=1

wi · TVaRα
Q

(
e−ITi · 1τi>Ti + e−I

τi · Ri · 1τi≤Ti

)
, (92)

where in these formulas the recovery payments can be made early and each bond is allowed
to have a distinct maturity. The computation of these formulas can be achieved, for instance,
by using Monte Carlo simulations, where the goal is to examine the impact of the number
of bonds on the value of the risk indicator. Let us finally note that all the bonds considered
in this paper are zero-coupon bonds. However, this is not at all a restricting assumption
because any coupon bond can be decomposed into a series of zero-coupon bonds via
stripping.
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Appendix A

Derivation of the third term in the right-hand-side of Equation (59).
Let us start by recalling that, for any two independent random variables X and Y,

Var(X ·Y) = Var(X) · E(Y)2 + Var(Y) · E(X)2 + Var(X) ·Var(Y). (A1)

Therefore,

VarQ

(
e−IT ·

N

∑
i=1

wi ·
[

Ri +
(

1− Ri
)
· e−Ji

T

])

= VarQ

(
e−IT

)
· EQ

(
N

∑
i=1

wi ·
[

Ri +
(

1− Ri
)
· e−Ji

T

])2

+
(

EQ

(
e−IT

))2
·VarQ

(
N

∑
i=1

wi ·
[

Ri +
(

1− Ri
)
· e−Ji

T

])

+ VarQ

(
e−IT

)
·VarQ

(
N

∑
i=1

wi ·
[

Ri +
(

1− Ri
)
· e−Ji

T

])
, (A2)

or, because the recovery rates are constant in this setting,

VarQ

(
e−IT ·

N

∑
i=1

wi ·
[

Ri +
(

1− Ri
)
· e−Ji

T

])

= v ·
(

N

∑
i=1

wi ·
[

Ri +
(

1− Ri
)
· Fi
])2

+
(

E2 + v
)
·VarQ

(
N

∑
i=1

wi ·
(

1− Ri
)
· e−Ji

T

)
. (A3)

Next, let us compute:

VarQ

(
N

∑
i=1

wi ·
(

1− Ri
)
· e−Ji

T

)
=

N

∑
i=1

(
wi
)2
·
(

1− Ri
)2
·VarQ

(
e−Ji

T

)
+ ∑

i 6=j
wi · wj ·

(
1− Ri

)
·
(

1− Rj
)
·CovQ

(
e−Ji

T , e−J j
T

)
, (A4)

where it is possible to recognize

VarQ

(
N

∑
i=1

wi ·
(

1− Ri
)
· e−Ji

T

)
=

N

∑
i=1

(
wi
)2
·
(

1− Ri
)2
·
(

F̂i −
(

Fi
)2
)

+ ∑
i 6=j

wi · wj ·
(

1− Ri
)
·
(

1− Rj
)
·
(

Hi,j − Fi · Fj
)

. (A5)
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Finally,

VarQ

(
e−IT ·

N

∑
i=1

wi ·
[

Ri +
(

1− Ri
)
· e−Ji

T

])

= v ·
(

N

∑
i=1

wi ·
[

Ri +
(

1− Ri
)
· Fi
])2

+
(

E2 + v
)
·

N

∑
i=1

(
wi
)2
·
(

1− Ri
)2
·
(

F̂i −
(

Fi
)2
)

+
(

E2 + v
)
·∑

i 6=j
wi · wj ·

(
1− Ri

)
·
(

1− Rj
)
·
(

Hi,j − Fi · Fj
)

. (A6)

Notes
1 The reader interested in computing the smallest integer Ñλ such that

VarQ

(
ZPT
)
≤ λ (93)

can check that

Ñλ =

⌈
v− ζ

λ− ζ

⌉
. (94)

2 This simplifying assumption can be justified by the fact that, due to the timing of legal procedures, the recovery amount is not
paid at time τ, but later on. A subsequent footnote explains how it is possible to deal with the situation where the recovery
amount is paid at the time of default.

3 When the recovery amount is paid at the time of default, it is possible to modify Equation (36) as follows:

EQ

(
ZP ,c

T

)
=

N

∑
i=1

wi · EQ

(
e−IT · 1τi>T + e−I

τi · Ri · 1τi≤T

)
, (95)

where a payment of 1 is made at time T in the absence of default, and a payment of Ri is made at time τi if a default occurs. More
specifically, when the recovery rate is constant,

EQ

(
ZP ,c

T

)
=

N

∑
i=1

wi ·
[

EQ

(
e−IT ·Q

(
τi > T | GT

))
+ Ri · EQ

(∫ T

0
e−Iu dQ(τ ≤ u | GT)

)]
, (96)

so that

EQ

(
ZP ,c

T

)
=

N

∑
i=1

wi ·
[

EQ

(
e−IT · e−Ji

T

)
+ Ri · EQ

(∫ T

0
e−Iu λ(u) e−Ji

u du
)]

. (97)

4 When recovery payments are made early, the expression of the variance becomes

VarQ

(
ZP ,c

T

)
= VarQ

(
N

∑
i=1

wi ·
[
e−IT · 1τi>T + e−I

τi · Ri · 1τi≤T

])
. (98)

The development of this formula can be achieved by expressing it as a multiple integral and by using the expression of
dQ(τ ≤ u | GT). For brevity, I omit this development here.

5 Given the current set of hypotheses, the tower property of conditional variance, which usually states that the variance equals the
expectation of the conditional variance plus the variance of the conditional expectation, simplifies to the variance being equal to
the expectation of the conditional variance. Indeed, because the conditional expectation is a function of the intensity and because
the intensity is now constant, the variance of the conditional expectation is null.

6 For this equation, it is possible to observe that, given the current set of hypotheses, the covariance reduces to the expectation of
the conditional covariance.

7 The reader interested in computing the smallest integer Ñλ such that

VarQ

(
ZPT
)
≤ λ (99)



Risks 2022, 10, 31 21 of 21

can check that

Ñλ =

⌈
q (1− q) (1− ρ) (1− R)2 Ê

λ− [R + (1− R) q]2 v− q (1− q) ρ (1− R)2 Ê

⌉
. (100)

8 Note that, while the confidence looseness parameter is arbitrarily chosen by the investor, the credit risk parameters can be
calibrated using, e.g., data from Moody’s, the interest rate risk parameters can be calibrated using, e.g., data from Bloomberg, and
the mean maturity of bonds is directly known from the portfolio of bonds owned by the investor.

References
Allali, Jeremy, Olivier Le Courtois, and Mohamed Majri. 2018. Credit risk and solvency capital requirements. European Actuarial Journal

8: 487–515. [CrossRef]
Cerreia-Vioglio, Simone, Fabio Maccheroni, Massimo Marinacci, and Luigi Montrucchio. 2011. Risk measures: Rationality and

diversification. Mathematical Finance 21: 743–74. [CrossRef]
Dhaene, Jan, Steven Vanduffel, Marc J. Goovaerts, Rob Kaas, Qihe Tang, and David Vyncke. 2006. Risk measures and comonotonicity:

A review. Stochastic Models 22: 573–606. [CrossRef]
Dynkin, Lev, Jay Hyman, and Vadim Konstantinovsky. 2002. Sufficient diversification in credit portfolios. Journal of Portfolio Management

29: 89–114. [CrossRef]
Heckel, Thomas, Zine Amghar, Isaac Haik, Olivier Laplénie, and Raul Leote de Carvalho. 2020. Factor Investing in Corporate Bond

Markets: Enhancing Efficacy Through Diversification and Purification! Journal of Fixed Income 29: 6–21. [CrossRef]
Hofmann, Norbert, and Eckhard Platen. 2000. Approximating large diversified portfolios. Mathematical Finance 10: 77–88. [CrossRef]
Hunter, Delroy M., and David P. Simon. 2004. Benefits of international bond diversification. Journal of Fixed Income 13: 57–72. [CrossRef]
Jarrow, Robert A., David Lando, and Fan Yu. 2005. Default risk and diversification: Theory and empirical implications. Mathematical

Finance 15: 1–26. [CrossRef]
Jouanin, Jean-Frédéric, Grégory Rapuch, Gaël Riboulet, and Thierry Roncalli. 2001. Modeling Dependence for Credit Derivatives with

Copulas. Working Paper. Rochester: SSRN.
Konstantinov, Gueorgui. 2017. On the Dynamics of EMU Bond Portfolios: Is the Diversification of Risk Factors Driving to Convergence

of Fund Exposure? Journal of Investing 26: 91–101. [CrossRef]
Kurtz, Cornelius, Eva Lütkebohmert, and Julian Sester. 2018. Calculating capital charges for sector concentration risk. Journal of Credit

Risk 10: 35–67. [CrossRef]
Le Courtois, Olivier, Mohamed Majri, and Li Shen. 2021. Utility-consistent valuation schemes for the own risk and solvency assessment

of life insurance companies. Asia-Pacific Journal of Risk and Insurance 15: 47–79.
Le Courtois, Olivier, and Christian Walter. 2014. Extreme Financial Risks and Asset Allocation. London: Imperial College Press.
Leland, Hayne E., and Klaus Bjerre Toft. 1996. Optimal capital structure, endogenous bankruptcy, and the term structure of credit

spreads. Journal of Finance 51: 987–1019. [CrossRef]
Levy, Haim, and Zvi Lerman. 1988. The benefits of international diversification in bonds. Financial Analysts Journal 44: 56–64. [CrossRef]
Longstaff, Francis A., and Eduardo S. Schwartz. 1995. A simple approach to valuing risky fixed and floating rate debt. Journal of Finance

50: 789–820. [CrossRef]
Markowitz, Harry. 1952. Portfolio Selection. Journal of Finance 7: 77–91.
Merton, Robert C. 1974. On the pricing of corporate debt: the risk structure of interest rates. Journal of Finance 29: 449–70.
Mitton, Todd, and Keith Vorkink. 2007. Equilibrium underdiversification and the preference for skewness. Review of Financial Studies

20: 1255–88. [CrossRef]
Peta, John L. 1993. International bond diversification. Journal of Fixed Income 3: 37–46. [CrossRef]
Saardchom, Narumon. 2018. Credit Risk Diversification as an Incentive for Japanese Bank Mergers. Academy of Strategic Management

Journal 17: 1–17.
Schönbucher, Philipp J. 2003. Credit Derivatives Pricing Models. Hoboken: Wiley Finance.
Uppal, Raman, and Tan Wang. 2003. Model misspecification and underdiversification. Journal of Finance 58: 2465–81. [CrossRef]
Van Nieuwerburgh, Stijn, and Laura Veldkamp. 2010. Information acquisition and under-diversification. Review of Economic Studies 77:

779–805. [CrossRef]
Varotto, Simone. 2003. Credit Risk Diversification: Evidence from the Eurobond Market. Working Paper No 199. London: Bank of England.
Vasicek, Oldrich Alfons. 1977. An equilibrium characterization of the term structure. Journal of Financial Economics 5: 177–88. [CrossRef]
Vasicek, Oldrich Alfons. 1987. Probability of Loss on Loan Portfolio. Hoboken: Wiley, pp. 143–46.
Vasicek, Oldrich Alfons. 1991. Limiting loan loss probability distribution. In Finance, Economics, and Mathematics. Hoboken: Wiley,

pp. 147–48.
Vasicek, Oldrich Alfons. 2002. The distribution of loan portfolio value. Risk 15: 160–62.
Wu, Dexiang, and Desheng Dash Wu. 2018. Credit Risk Control and Management using Limited Diversification. Journal of Risk Research

24: 1–14. [CrossRef]

http://doi.org/10.1007/s13385-018-0183-5
http://dx.doi.org/10.1111/j.1467-9965.2010.00450.x
http://dx.doi.org/10.1080/15326340600878016
http://dx.doi.org/10.3905/jpm.2002.319867
http://dx.doi.org/10.3905/jfi.2019.1.074
http://dx.doi.org/10.1111/1467-9965.00081
http://dx.doi.org/10.3905/jfi.2004.391028
http://dx.doi.org/10.1111/j.0960-1627.2005.00208.x
http://dx.doi.org/10.3905/joi.2017.26.2.091
http://dx.doi.org/10.21314/JCR.2018.245
http://dx.doi.org/10.1111/j.1540-6261.1996.tb02714.x
http://dx.doi.org/10.2469/faj.v44.n5.56
http://dx.doi.org/10.1111/j.1540-6261.1995.tb04037.x
http://dx.doi.org/10.1093/revfin/hhm011
http://dx.doi.org/10.3905/jfi.1993.408081
http://dx.doi.org/10.1046/j.1540-6261.2003.00612.x
http://dx.doi.org/10.1111/j.1467-937X.2009.00583.x
http://dx.doi.org/10.1016/0304-405X(77)90016-2
http://dx.doi.org/10.1080/13669877.2018.1485173

	Introduction
	Diversification of Interest Rate Risk
	Notation
	Portfolio of Independent Government Bonds
	Portfolio of Dependent Government Bonds

	Joint Diversification of Interest Rate and Credit Risks
	Analysis and Illustration
	Framework
	Vasicek Parametrization
	Sensitivities

	Conclusions and Extensions
	
	References

