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Abstract: In the actuarial literature, it has become common practice to model future capital
returns and mortality rates stochastically in order to capture market risk and forecasting risk.
Although interest rates often should and mortality rates always have to be non-negative,
many authors use stochastic diffusion models with an affine drift term and additive noise.
As a result, the diffusion process is Gaussian and, thus, analytically tractable, but negative
values occur with positive probability. The argument is that the class of Gaussian diffusions
would be a good approximation of the real future development. We challenge that reasoning
and study the asymptotics of diffusion processes with affine drift and a general noise term
with corresponding diffusion processes with an affine drift term and an affine noise term
or additive noise. Our study helps to quantify the error that is made by approximating
diffusive interest and mortality rate models with Gaussian diffusions and affine diffusions.
In particular, we discuss forward interest and forward mortality rates and the error that
approximations cause on the valuation of life insurance claims.

Keywords: forward interest rate; forward mortality rate; life insurance; stochastic diffusion
process; Gaussian approximation

1. Introduction

For the most part of the 20th century, actuaries used to model the lifespan of an insured stochastically,
but relied on a mere deterministic prognosis of capital returns and mortality rates. The past has
shown that these assumptions can vary significantly within one contract period. Especially in recent
years, financial markets have experienced increased volatility, and life expectancies have risen in many
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developed countries at an unforeseen rate. For two decades, actuaries have been increasingly using
stochastic interest rate models, and since the last decade, stochastic mortality rate models have become
more and more popular. On the one hand, the stochastic approach helps to better capture systematic risk
by offering the possibility to calculate confidence intervals. On the other hand, investors and insurance
regulators nowadays call for a market-consistent valuation of the insurers assets and liabilities, so that
concepts from financial mathematics have entered actuarial science, where the market value of a claim
is calculated as a risk-neutral expectation in a specific stochastic model.

In financial mathematics, stochastic modeling of interest rates is a common approach, and a great
variety of different interest rate models can be found in the literature. The majority of authors models
the interest rate with the help of diffusion processes. Typical short rate models are, for example, the
Vasicek model and the Cox–Ingersoll–Ross model. The evolution of forward rates is often modeled
within the Heath–Jarrow–Morton framework. Readers may refer to [1] for a comprehensive overview or
to the original works, such as [2–4]. In the nineteen nineties, these models also found their way into the
actuarial literature; see e.g., [5–11].

The uncertainty about future mortality probabilities always drew the attention of life insurance
actuaries. However, since recently, actuaries have been increasingly using stochastic models for the
mortality rate. A very popular approach is to adopt the well-known models from interest rate theory,
such as the Vasicek or the Cox–Ingersoll–Ross model. A more recent development is the concept of
forward mortality rates, which are frequently modeled by a Heath–Jarrow–Morton framework similarly
to forward interest rates. References that use diffusion process are, e.g., [12–24], just to mention a few.
Although negative mortality rates do not have a meaningful interpretation, many of those references
use diffusion models, where negative values occur with a positive probability. In particular, Gaussian
diffusion processes are frequently used. This is justified with the argument that Gaussian models would
offer a good approximation of more appropriate models.

In the present paper, we study the asymptotics of diffusions with affine drift and a general noise
term to corresponding diffusions with an affine drift term, but an affine noise term or additive noise.
In the additive case, we end up with Gaussian processes, that is, the finite-dimensional projections are
multivariate, normally distributed. The affine case is a generalization of the additive case and allows
for better approximations, but the corresponding distributions are not always analytically tractable. We
introduce a reasonable approximation concept and calculate bounds for the absolute moments of the
approximation errors. Furthermore, we calculate the error that the approximating processes imply when
valuating insurance claims. Our basic notion is to study asymptotics relative to the size of the noise term;
the smaller the noise term, the better the approximation. Our results help to better assess the quality of
Gaussian and affine approximations for interest and mortality rate models.

After introducing a basic life insurance model in Section 2, we study Gaussian approximations in
Section 3 and affine approximations in Section 4 and present theoretical results for the asymptotic
behavior. The proofs are put into their own section at the end; see Section 7. In Section 5, we discuss
the effect of the Gaussian and affine approximations on the valuation of insurance claims. A numerical
illustration is given in Section 6. In Section 8, we summarize our findings.
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2. Basic Life Insurance Framework

Assume that the lifetime of a policyholder is described by a nonnegative random variable T . Time
t measures the seniority of the policy (i.e., the time elapsed since policy issue). Policyholder’s age at
policy issue is denoted as x, so that the age at time t is x + t. Suppose that the distribution function
P [T ≤ x+ t] of the lifetime T has a representation of the form:

1− e−
∫ x+t
0 m(s)ds (1)

where m is the so-called mortality rate (or force of mortality). We consider a general life insurance
contract with both survival and death benefits. We write B(t) for the aggregated survival benefits minus
premiums on [0, t] and c(t) for the benefit payments that are due in the case of a death at time t. The
contract terminates at time ωx = ω−x < ∞, at the latest, where ω is the maximal value that T can take,
possibly infinite.

Let r(t) be the short rate. Then, the discounted sum of future benefits minus premiums for a
policyholder alive at time t is given by:

A(t) =

∫
(t,T )

e−
∫ s
t r(u)dudB(s) + e−

∫ T
t r(u)duc(T ). (2)

In classical life insurance modeling, r and m are integrable functions, B is a right-continuous function
with finite variation and c is a bounded function. Therefore, in the classical perspective, r, m, B and c

are deterministic, and the prospective reserve at time t in the active state is defined as:

V (t; r,m) = E[A(t)|T > t] (3)

and has the representation:

V (t; r,m) =

∫
(t,ωx]

e−
∫ s
t r(u)+m(x+u)dudB(s) +

∫ ωx

t

e−
∫ s
t r(u)+m(x+u)dum(x+ s)c(s)ds. (4)

In insurance practice, the functions r and m are not perfectly known for the future, but have to be
forecasted. In order to capture the corresponding uncertainty, we construct a doubly-stochastic model by
assuming that:

• (r(t))t≥0 is a stochastic process with continuous paths,
• (m(t))t≥0 is a stochastic process with continuous paths,
• (Ft)t≥0 is the natural filtration generated by the joint process, (r,m).

Let F∞ := σ
(∪

t≥0Ft

)
= σ(r(t),m(t), t ≥ 0). We can embed the classical model, where r and

m are deterministic, into the doubly-stochastic model by interpreting Formula (1) as the conditional
distribution function P [T ≤ x + t|(r(t),m(t))t≥0] := P [T ≤ x + t|F∞]. Doing that for all x + t,
Formula (1) uniquely defines a stochastic kernel (A, (r,m)) 7→ P [T ∈ A|(r(t),m(t))t≥0 = (r,m)]. The
prospective reserve according to Equation (4) is now interpreted as the conditional expectation:

V (t; r,m) = E[A(t)|T > t, (r(t),m(t))t≥0 = (r,m)]. (5)
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Moreover, B and c may here be (Ft)t≥0-adapted stochastic processes, as well. For a rigorous definition
of the integrals in Equation (4), we assume that B is a semimartingale and c, a bounded process. In the
following, we work throughout in the doubly-stochastic framework.

Suppose that we are at time s, where the information Fs is available. The forward interest rate,
(ρs(t))t≥s, is defined via a zero-coupon bond, i.e., as the Fs-measurable solution of:

E
[
e−

∫ t
s r(u)du

∣∣∣Fs

]
= e−

∫ t
s ρs(u)du, t ≥ s (6)

where the underlying probability measure represents here some market measure. In the present paper,
we suppose throughout that the underlying probability measure is given by the context of the application
and that in the following all expectations are calculated on the basis of that probability measure. For our
asymptotic approximation results, the origin of the underlying probability measure will not be relevant.
In [12,13,16,19], a forward mortality rate (µs(t))t≥s is defined as the Fs-measurable solution of:

E
[
e−

∫ t
s m(u)du

∣∣∣Fs

]
= e−

∫ t
s µs(u)du, t ≥ s. (7)

In [25], we find a spread rate concept where the forward mortality rate is either defined as the solution of:

E
[
e−

∫ t
s r(u)+m(u)du

∣∣∣Fs

]
= e−

∫ t
s ρs(u)+µs(u)du, t ≥ s (8)

or as the solution of:

E
[ ∫ t

s

e−
∫ τ
s r(u)+m(u)dum(τ)dτ

∣∣∣Fs

]
=

∫ t

s

e−
∫ τ
s ρs(u)+µs(u)du µs(τ)dτ, t ≥ s. (9)

3. Gaussian Diffusion Approximation

In this section, we discuss in some generality the approximation of diffusions with affine drift and a
general noise term by corresponding Gaussian diffusions with an affine drift term and additive noise.

Let X be a diffusion process that satisfies the stochastic differential equation

dX(t) =
(
α(t)X(t) + β(t)

)
dt+ ς σ(X(t), t)dW (t) , t ≥ 0, X(0) = x0 ∈ R (10)

where ς ∈ [0, 1] is a scaling parameter and:

(a) the column vector W (t) is a d-dimensional standard Wiener process, d ∈ N,
(b) the mapping, (x, t) 7→ α(x, t)x + β(t), which is composed of the bounded and measurable

mappings α : [0, ω] → R and β : [0, ω] → R, is jointly measurable on R× [0, ω],
(c) the mapping σ : R× [0, ω] → R1×d is jointly measurable on R× [0, ω],
(d) there exists a constant K > 0, such that

∥σ(x, t)− σ(y, t)∥ ≤ K|x− y|, ∥σ(x, t)∥2 ≤ K2(1 + |x|2)

for all x, y ∈ R, t ∈ [0, ω], where ∥ · ∥ is the Euclidean norm.

These assumptions are sufficient to ensure that the stochastic differential equation according to (10) has
a unique solution with finite moment functions of any order; see Section 4.5 in [26]. As the dt term in
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Equation (10) can be seen as an affine mapping of X(t), we say that X has an affine drift term. The
scaling parameter, ς , will be the reference parameter for studying asymptotic properties of X . For ς = 0,
we obtain the differential equation of the expectation function, E[X(t)], of X(t):

dE[X(t)] =
(
α(t)E[X(t)] + β(t)

)
dt, t ≥ 0, E[X(0)] = x0. (11)

To see that this is indeed the differential equation of the expectation function, integrate Equation (10)
from zero to t; take expectation, and then, differentiate again. Apart from a few specific choices of σ, the
distribution of X is not analytically tractable. Calculations are much easier if σ(X(t), t) is deterministic,
since then, X satisfies a stochastic differential equation with so-called additive noise, and X is a Gaussian
process, i.e., its finite dimensional projections are multivariate, normally distributed. With respect to the
mean squared error, the best deterministic substitute for σ(X(t), t) is E[σ(X(t), t)], as the following
proposition shows.

Proposition 3.1. Let the process X∗ be defined by:

dX∗(t) =
(
α(t)X∗(t) + β(t)

)
dt+ ς E[σ(X(t), t)]dW (t) , t ≥ 0, X∗(0) = x0 ∈ R (12)

and for a bounded and measurable function S : [0, ω] → R1×d, let Y be a process defined by:

dY (t) =
(
α(t)Y (t) + β(t)

)
dt+ ς S(t)dW (t) , t ≥ 0, Y (0) = y0. (13)

Then, for all choices of y0 and S, we have:

E[(X(t)−X∗(t))2] ≤ E[(X(t)− Y (t))2]. (14)

Proof. By applying Ito’s formula:

(X(t)− Y (t))2 =(x0 − y0)
2 +

∫ t

0

2(X(s)− Y (s))α(s)ds

+
1

2

∫ t

0

2ς2∥σ(X(s), s)− S(s)∥2ds+
∫ t

0

...dW (s) (15)

and taking expectations on both sides, we obtain:

E[(X(t)− Y (t))2] = (x0 − y0)
2 +

∫ t

0

2E[(X(s)− Y (s))2]α(s)ds

+

∫ t

0

ς2E[∥σ(X(s), s)− S(s)]∥2]ds. (16)

The latter integral equation has the unique solution:

E[(X(t)− Y (t))2] = e
∫ t
0 2α(s)ds

(
(x0 − y0)

2 +

∫ t

0

e−
∫ s
0 2α(u)duς2E[∥σ(X(s), s)− S(s)]∥2]ds

)
. (17)

The right-hand side is minimal if x0 equals y0 and S(s) equals E[σ(X(s), s)], since:

E[∥σ(X(s), s)− S(s)]∥2] = E[∥σ(X(s), s)− E[σ(X(s), s)]∥2] + ∥E[σ(X(s), s)]− S(s)∥2. (18)
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In the insurance applications that we have in mind, the distribution of X is difficult to get, and
so, we also have difficulties in calculating E[σ(X(t), t)]. Therefore, we suggest approximating X by
substituting σ(X(t), t) with σ(E[X(t)], t) instead of E[σ(X(t), t)], which leads to a Gaussian diffusion
X̃ , defined by:

dX̃(t) =
(
α(t) X̃(t) + β(t)

)
dt+ ς σ(E[X(t)], t)dW (t) , t ≥ 0, X̃(0) = x0. (19)

Note that the expectation functions of X̃ and X are equal and that they can be easily obtained from
Equation (11). If the difference between X(t) and E[X(t)] is small, then X̃ should be a good
approximation for X . The fluctuation of X(t) − E[X(t)] is small whenever ς is small, because a small
ς means that we have only little noise. The following theorem gives an asymptotic result on the absolute
moments of the approximation error X(t)− X̃(t).

Theorem 3.2. Assume that the properties (a) to (d) hold. Then, for each (k, l) ∈ N2
0, there exists a

constant Ckl < ∞ in such a way that:

E
[
|X(t)− X̃(t)|k|X(t)− E[X(t)]|l

]
≤ Ck,l ς

2k+l , for all t ∈ [0, ω], 0 ≤ ς ≤ 1. (20)

For the proof, see Section 7. From this theorem, we learn that approximating X(t) by its expectation
function, E[X(t)], leads to a mean absolute error of order ς1, and approximating X(t) by the
corresponding Gaussian process, X̃(t), leads to a mean absolute error of order ς2. The same is true
for the n-th roots of the n-th order moments for n ∈ N. The following example shows that the order of
convergence cannot be generally improved.

Example 3.3. Let α(t) = 1/2 and σ(t, x) = x. Following the ideas of the proof of Theorem 3.2, we can
show that:

E
[
|X(t)− X̃(t)|2

]
=

∫ t

0

E
[
|X(s)− X̃(s)|2

]
ds+ ς2

∫ t

0

E
[
|X(s)− X̂(s)|2

]
. (21)

This integral equation has the unique solution:

E
[
|X(t)− X̃(t)|2

]
= ς2

∫ t

0

e(t−s)E
[
|X(s)− X̂(s)|2

]
ds. (22)

The integral on the right-hand side is positive for each t, so the left-hand side has exactly the order ς2.

A natural question is whether approximating X by X∗ instead of X̃ leads to a faster convergence than
ς2. In the previous example, X∗ and X̃ are equivalent, so order ς2 also applies for X∗. Hence, in general,
the optimal approximation X∗ does not converge faster than the approximation X̃ .

All in all, we can conclude that in the case that interest and mortality rates are diffusion processes
of the form of Equation (10) and the noise term is ‘small’, the corresponding Gaussian diffusion,
Equation (19), approximates the moment functions quite well. In the proof of Theorem 3.2, the estimates
for the constants Ck,l increase with an increasing time interval [0, ω], function α, Lipschitz constant K
and order k of the absolute moments. The following Corollary states some bounds explicitly.
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Corollary 3.4. Under the assumptions of Theorem 3.2, for all t ∈ [0, ω] and ς ∈ [0, 1] we have

E
[
|X(t)− E[X(t)]|2

]
≤ ς2 2t exp

{
2t(K2 + sup

s∈[0,t]
|α(s)| )

}
sup
s∈[0,t]

∥σ(E[X(s)], s)∥2, (23)

E
[
|X(t)− X̃(t)|2

]
≤ ς4 2K2t2 exp

{
2t(K2 + 2 sup

s∈[0,t]
|α(s)| )

}
sup
s∈[0,t]

∥σ(E[X(s)], s)∥2. (24)

For the proof, see the details of the proof of Theorem 3.2.

4. Affine Diffusion Approximation

In the previous section, we simplified the diffusion process X by making the factor σ(X(t), t) in the
noise term of X deterministic. In this section, we study more general approximations by substituting
σ(X(t), t) with the first-order Taylor approximation:

σlin(X(t), t) := σ(E[X(t)], t) + (X(t)− E[X(t)]) ∂xσ(E[X(t)], t). (25)

Given that the partial differential ∂xσ exists, we end up with the diffusion process:

dX̂(t) =
(
α(t) X̂(t) + β(t)

)
dt+ ς σlin(X̂(t), t)dW (t) , t ≥ 0, X̂(0) = x0. (26)

As σlin is an affine mapping in X(t), we say that X̂ has an affine noise term, and we call X̂ an affine
diffusion approximation of X (recall that the drift term of X̂ is also affine). Note that the expectation
functions of X̂ and X are equal and that they can be easily obtained from Equation (11). The following
theorem shows that X̂ approximates X faster than X̃ approximates X .

Theorem 4.1. Under the assumptions (a) to (d) in Section 3 and given that ∂xxσ(x, t) exists and is
bounded by K, for each (k, l) ∈ N2

0, there exists a constant, Ckl < ∞, in such a way that:

E
[
|X(t)− X̂(t)|k|X̂(t)− E[X(t)]|l

]
≤ Ck,l ς

3k+l , for all t ∈ [0, ω], 0 ≤ ς ≤ 1. (27)

For the proof, see Section 7. According to the previous section, approximating X(t) by the Gaussian
process X̃(t) leads to a mean absolute error of order ς2. Theorem 4.1 shows that approximating X(t)

by X̂(t) leads to a mean absolute error of order ς3. The same is true for the n-th roots of the n-th order
moments for n ∈ N.

Corollary 4.2. Under the assumptions of Theorem 4.1, for all t ∈ [0, ω] and ς ∈ [0, 1], we have:

E
[
|X̂(t)− E[X(t)]|2

]
≤ ς2 2t exp

{
2t(K2 + sup

s∈[0,t]
|α(s)| )

}
sup
s∈[0,t]

∥σlin(E[X(s)], s)∥2, (28)

E
[
|X̂(t)− E[X(t)]|4

]
≤ ς4 24t2 exp

{
2t(7K2 + 3 sup

s∈[0,t]
|α(s)| )

}
sup
s∈[0,t]

∥σlin(E[X(s)], s)∥4, (29)

E
[
|X(t)− X̂(t)|2

]
≤ ς6 12K2t2 exp

{
2t(8K2 + 4 sup

s∈[0,t]
|α(s)| )

}
sup
s∈[0,t]

∥σlin(E[X(s)], s)∥4. (30)

While X̃ has a Gaussian distribution whose mean and variance can be easily calculated, the
distribution of X̂ must often be calculated numerically. In applications, the user has to decide decide
between the high speed of convergence and analytical tractability.
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5. Approximation Error When Valuating Insurance Claims

Suppose that the spot rates r and m and the forward rates ρs and µs are diffusion processes of the
form of Equation (10) and that we approximate them by Gaussian or affine diffusions. Then, the
approximation error for the corresponding moment functions can be described with the help of the
results in the two previous sections. However, in insurance practice, it is rather important to know
the approximation error that we obtain in the formulas (4) to (9). All of those valuation formulas are
based on:

e−
∫ t
s X(u)du and e−

∫ t
s X(u)duX(t). (31)

Therefore, we now study the mean approximation error in these two terms if the Gaussian and the affine
diffusion approximation are used.

Theorem 5.1. Assume that X satisfies (10) with properties (a) to (d) and that X(t) is nonnegative for
all t ≥ 0. Then, there exists a constant, C, such that:

E
[∣∣∣e− ∫ t

s X(u)du − e−
∫ t
s E[X(u)]du

∣∣∣] ≤ Cς1, (32)

E
[∣∣∣e− ∫ t

s X(u)du − e−
∫ t
s X̃(u)du

∣∣∣] ≤ Cς2 (33)

and:

E
[∣∣∣e− ∫ t

s X(u)duX(t)− e−
∫ t
s E[X(u)]duE[X(t)]

∣∣∣] ≤ Cς1, (34)

E
[∣∣∣e− ∫ t

s X(u)duX(t)− e−
∫ t
s X̃(u)duX̃(t)

∣∣∣] ≤ Cς2 (35)

for all t ∈ [0, ω]. If, additionally, E[exp{|2
∫ t

s
X̂(u)du|}] is finite, then we also have:

E
[∣∣∣e− ∫ t

s X(u)du − e−
∫ t
s X̂(u)du

∣∣∣] ≤ Cς3, (36)

E
[∣∣∣e− ∫ t

s X(u)duX(t)− e−
∫ t
s X̂(u)duX̂(t)

∣∣∣] ≤ Cς3 (37)

for all t ∈ [0, ω].

For the proof, see Section 7. From this theorem, we learn that the Gaussian and the affine diffusion
approximation lead to valuation errors of order ς2 and ς3 when valuating typical insurance claims.
Approximating X by its expectation function is also an option, but the speed of convergence is just ς1.

Remark 5.2. In the present paper, we only study two-state life insurance with the states ‘active’ and
‘dead’. However, our results can be easily generalized to multi-state life insurance whenever the
corresponding transition probabilities have explicit representations with building blocks of the form
of (31). This is typically the case for Markovian state processes with a hierarchical transition matrix, i.e.,
there are no recurrent states.
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6. Numeric Illustration

We now give a numeric example that illustrates the asymptotics of the Gaussian and the affine
diffusion approximation. Let X be a diffusion process that satisfies the stochastic differential equation:

dX(t) =
(
− 0.05X(t) + 0.2)dt+ ς arctan(X(t))dW (t), X(0) = 1. (38)

Since X starts at x0 = 1 and has a positive drift whenever X(t) ≤ 4 and limx↓0 σ(t, x) = 0, the process
X is always nonnegative. The corresponding expectation function equals:

E[X(t)] = 4− 3e−0.05 t, t ≥ 0. (39)

Figure 1. σ(t, x) in green, σ(t, E[X(t)]) in red and σlin(t, x) in blue for t = 0 (left) and
t = 10 (right).

Figure 1 shows the mappings x 7→ σ(t, x) (green curve), x 7→ σ(t, E[X(t)]) (red curve) and
x 7→ σlin(t, x), for t = 0 and t = 10. We see that σ(t, E[X(t)]) and σlin(t, x) approximate σ(t, x)

only for x close to E[X(t)] quite well. Figure 2 shows a simulated path of X (green curve), the
Gaussian approximation, X̃ (red curve) and the affine diffusion approximation X̂ (blue curve). For
all three processes, we used the same random numbers; that is, all paths correspond to the same path
of the Brownian motion, W . The smaller ς , the closer are the processes to the expectation function,
t 7→ E[X(t)]. Figure 3 shows the relative differences to the reference process X . Recall that the mean
absolute difference between X(t) and E[X(t)] is of order ς1, that the mean absolute difference between
X(t) and X̃(t) is of order ς2 and that the mean absolute difference between X(t) and X̂(t) is of order
ς3. Indeed, E[X(t)] has the greatest approximation error here. For ς = 1 and ς = 0.75, the errors of
the Gaussian and the affine diffusion approximations have about the same magnitude, but for ς = 0.25,
we can see a clear advantage for the affine approximation, because of its faster speed of convergence.
Table 1 shows the corresponding value of:

e−0.01
∫ 20
0 X(u)du (40)
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and the corresponding values of the expectation approximation, Gaussian approximation and affine
approximation:

e−0.01
∫ 20
0 E[X(u)]du, e−0.01

∫ 20
0 X̃(u)du, e−0.01

∫ 20
0 X̂(u)du. (41)

The factor 0.01 was added, because interest and mortality rates typically have magnitudes that are in
the percent range. The expectation approximation clearly produces the greatest error for all sizes of ς .
Interestingly, already for ς = 0.75, the error of the Gaussian and the affine approximation is quite small.
As predicted by the theorems in the previous sections, the smaller ς , the more does the faster convergence
speed of X̂ prevail and the greater is indeed the advantage of the affine approximation.

Figure 2. Expectation function E[X(t)] (black) and simulated paths of X(t) (green), X̃(t)

(red) and X̂(t) (blue) for ς = 1 (top left), ς = 0.75 (top right), ς = 0.5 (bottom left),
ς = 0.25 (bottom right).

Table 2 shows Monte Carlo simulations for the expectations of (40) and (41) and for the mean absolute
deviation of (41) from (40). We used 10,000 simulations. The affine approximation has the smallest
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mean absolute deviations, followed by the Gaussian approximation. This conforms with our theoretical
results from the previous section. Already for ς = 0.75 the Gaussian and the affine approximation for the
expectation of (40) work quite well. Surprisingly, for ς = 0.5, 0.25 the Gaussian approximation seems
to be closer to the true value than the affine approximation, but that may well be a random effect from
the Monte Carlo simulation.

Figure 3. Relative difference of E[X(t)] (black), X̃(t) (red) and X̂(t) (blue) with respect
to X(t) for ς = 1 (top left), ς = 0.75 (top right), ς = 0.5 (bottom left), ς = 0.25

(bottom right).
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Table 1. One-path simulation for (40) and its corresponding expectation approximation,
Gaussian approximation and affine approximation.

Valuation w.r.t. the Single Simulated Path ς = 1 ς = 0.75 ς = 0.5 ς = 0.25

true value 0.37988 0.43749 0.50274 0.57575
expectation approximation 0.65644 0.65644 0.65644 0.65644
(relative error) 0.72804 0.50046 0.30573 0.14016
Gaussian approximation 0.39773 0.44968 0.50926 0.57768
(relative error) 0.04700 0.02785 0.01296 0.00336
affine approximation 0.41127 0.45185 0.50731 0.57635
(relative error) 0.08264 0.03283 0.00910 0.00105

Table 2. Monte Carlo simulation for the expectations of (40) and (41) and for the mean
absolute deviation of (41) from (40).

Valuation w.r.t. 10,000 Simulations ς = 1 ς = 0.75 ς = 0.5 ς = 0.25

true value 0.68733 0.67571 0.66712 0.65827
expectation approximation 0.65644 0.65644 0.65644 0.65644
(mean absolute deviation) 0.16151 0.13076 0.09186 0.04839
Gaussian approximation 0.70483 0.68155 0.66873 0.65835
(mean absolute deviation) 0.10065 0.05486 0.02272 0.00500
linear noise approximation 0.70280 0.68152 0.66875 0.65839
(mean absolute deviation) 0.04802 0.02486 0.00863 0.00113

7. Proofs

Proof of Theorem 3.2. For a shorter notation, define:

Ek,l
t := E

[
|X(t)− X̃(t)|k|X(t)− E[X(t)]|l

]
(42)

and X t := E[X(t)]. The twice continuously differentiable function:

gε : R → (0,∞) , x 7→

{
|x| for |x| ≥ ε

− 1
8ε3

x4 + 3
4ε
x2 + 3ε

8
for |x| < ε

(43)

is for any ε > 0 a majorant of x 7→ |x| on R. Thus, property (20) holds if for an ε > 0, there exists a
constant, Ck,l,ε < ∞, with:

Ek,l
t ≤ Ek,l,ε

t := E
[
gε
(
(X(t)− X̃(t))k(X(t)−X(t))l

)]
≤ Ck,l,ε ς

2k+l , ∀ t ∈ [0, ω]. (44)

In contrast to x 7→ |x|, the function gε is differentiable at zero, which allows us to apply Ito’s formula.
We prove the theorem by induction. For (k, l) = (0, 0), we can choose C0,0 = 1. The sequence of
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induction steps is tricky here. At first, induction arguments are presented; then, we explain the sequence
of induction steps. In order to avoid case differentiations, we define < z > := max{z, 0} and Ek,l

t := 0

for all (k, l) ∈ Z2 \ N2
0. Applying Ito’s formula, we get:

gε
(
(X(t)− X̃(t))k(X(t)−X(t))l

)
− gε(0)

=

∫ t

0

g′ε
(
(X(s)− X̃(s))k(X(s)−X(s))l

)
(k + l) (X(s)− X̃(s))k(X(s)−X(s))l α(s)ds

+
1

2

∫ t

0

ς2g′ε
(
(X(s)− X̃(s))k(X(s)−X(s))l

)
×

(
k(k − 1)(X(s)− X̃(s))<k−2>(X(s)−X(s))l

∥∥σ(X(s), s)− σ(X(s), s)
∥∥2

+ 2kl(X(s)− X̃(s))<k−1>(X(s)−X(s))<l−1>
(
σ(X(s), s)− σ(X(s), s)

)
σ(X(s), s)T

+ l(l − 1)(X(s)− X̃(s))k(X(s)−X(s))<l−2>
∥∥σ(X(s), s)

∥∥2
)

ds

+
1

2

∫ t

0

ς2g′′ε
(
(X(s)− X̃(s))k(X(s)−X(s))l

)
×

(
k2(X(s)− X̃(s))2<k−1>(X(s)−X(s))2l

∥∥σ(X(s), s)− σ(X(s), s)
∥∥2

+ 2kl(X(s)− X̃(s))<2k−1>(X(s)−X(s))<2l−1>
(
σ(X(s), s)− σ(X(s), s)

)
σ(X(s), s)T

+ l2(X(s)− X̃(s))2k(X(s)−X(s))2<l−1>
∥∥σ(X(s), s)

∥∥2
)

ds

+

∫ t

0

. . . dWs. (45)

Taking expectations on both sides makes the last integral zero, since its integrand is square integrable (to
see that, apply Theorem 4.5.4 in [26] and Hölders inequality). Since:

• we have −1 ≤ g′ε(x) ≤ 1 and 0 ≤ x g′′ε (x) ≤ 3/2 for all x ∈ R,
• the continuous function, α, has a finite bound, |α(t)| ≤ αmax, on [0, ω],
• the mapping, σ(x, t), is Lipschitz-continuous in x with Lipschitz constant K,
• ∥σ(X(s), s)∥ ≤ ∥σ(X(s), s)− σ(X(s), s)∥+ ∥σ(X(s), s)∥ ≤ K|X(s)−X(s)|+ ∥σ(X(s), s)∥

for all s,
• ∥σ(X(s), s)∥2 ≤ 2K2|X(s)−X(s)|2 + 2∥σ(X(s), s)∥2 for all s,
• the continuous function t 7→ ∥σ(X(t), t)∥ has a finite bound σmax on [0, ω],

the expectation of the left-hand side has for k ̸= 1 and l ̸= 1 an upper bound of:

E
[
gε
(
(X(t)− X̃(t))k(X(t)−X(t))l

)]
− 3

8
ε

≤
∫ t

0

(k + l)Ek,l
s αmaxds

+
ς2

2

∫ t

0

(
k(k − 1)Ek−2,l+2

s K2 + 2kl Ek−1,l+1
s K2 + 2kl Ek−1,l

s Kσmax

+ 2l(l − 1)Ek,l
s K2 + 2l(l − 1)Ek,l−2

s σ2
max

)
ds
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+
ς2

2

∫ t

0

3

2

(
k2Ek−2,l+2

s K2 + 2kl Ek−1,l+1
s K2 + 2kl Ek−1,l

s K σmax

+ 2l2Ek,l
s K2 + 2l2Ek,l−2

s σ2
max

)
ds. (46)

Hence, since we assumed that ς ≤ 1, we obtain:

Ek,l
t ≤ Ek,l,ε

t ≤ 3

8
ε+

∫ t

0

(
constEk,l

s + const ς2
(
Ek−2,l+2 + Ek−1,l+1 + Ek−1,l + Ek,l−2

))
ds. (47)

If inequality (20) holds for {(k − 2, l + 2), (k − 1, l + 1), (k − 1, l), (k, l − 2)}, then we can show that:

Ek,l
t ≤ 3

8
ε+

∫ t

0

constEk,l
s ds+ const ς2

(
ς2k−4+l+2 + ς2k−2+l+1 + ς2k−2+l + ς2k+l−2

)
. (48)

For ε → 0 and with Gronwall’s inequality (cf. Lemma 4.5.1 in [26]), we get:

Ek,l
t ≤ const ς2

(
ς2k−4+l+2 + ς2k−2+l+1 + ς2k−2+l + ς2k+l−2

)
≤ const ς2k+l (49)

for all (k, l) ∈ N2
0 with k ̸= 1 and l ̸= 1.

Let now k = 1 and/or l = 1. Then, analogously to the above, but additionally using that
0 ≤ g′′ε (x) ≤ 3/(2ε) for x ∈ R, we can show that:

Ek,l
t ≤ Ek,l,ε

t ≤3

8
ε+

∫ t

0

constEk,l
s ds

+ const ς2
(
ς2k−4+l+2 + ς2k−2+l+1 + ς2k−2+l + ς2k+l−2 +

1

ε
δk1 ς

2l+2 +
1

ε
δl1 ς

4k
)

(50)

if inequality (20) holds for {(k − 2, l + 2), (k − 1, l + 1), (k − 1, l), (k, l − 2)}, where δij is defined as
one if i equals j and zero, else. Setting ε = ς2k+l and applying Gronwall’s inequality, we can conclude
that:

Ek,l
t ≤ const ς2

(
ς2k+l−2 + ς2k+l−1

)
≤ const ς2k+l (51)

whenever k = 1 and/or l = 1.
By using Inequalities (49) and (51), we do the induction steps along the lines:

{(0, 0), (0, 1), (0, 2), ...}, {(1, 0), (1, 1), (1, 2), ...}, {(2, 0), (2, 1), (2, 2), ...} and so forth, which ensures
that being at (k, l), we already have been at {(k − 2, l + 2), (k − 1, l + 1), (k − 1, l), (k, l − 2)}.

Proof of Theorem 4.1. The proof is completely analogous to the proof of Theorem 3.2, apart from the
fact that the terms:

∥σ(X(s), s)− σ(X(s), s)∥2,
(
σ(X(s), s)− σ(X(s), s)

)
σ(X(s), s)T , ∥σ(X(t), t)∥2 (52)

have to be substituted by the terms:

∥σ(X(t), t)− σlin(X̂(t), t)∥2, (σ(X(t), t)− σlin(X̂(t), t))σlin(X̂(t), t)T , ∥σlin(X̂(t), t)∥2 (53)

and that the upper estimates for ∥σ(X(s), s)− σ(X(s), s)∥ and ∥σ(X(t), t)∥ have to be replaced by the
upper estimates:

∥σ(X(t), t)− σlin(X̂(t), t)∥ ≤ ∥σ(X(t), t)− σ(X̂(t), t)∥+ ∥σ(X̂(t), t)− σlin(X̂(t), t)∥
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≤ K|X(t)− X̂(t)|+ 1

2
∥∂xxσ(ξ(t), t)∥|X̂(t)−X(t)|2 (54)

≤ K|X(t)− X̂(t)|+ 1

2
K|X̂(t)−X(t)|2 (55)

for ξ(t) between X(t) and X̂(t), and:

∥σlin(X̂(t), t)∥ ≤ sup
s

∥σ(E[X(s)], s)∥+K|X̂(t)−X(t)| (56)

since |∂xσ(x, t)| ≤ K, because of the Lipschitz continuity of x 7→ σ(x, t). Furthermore, we have to set
ε = ς3k+l instead of ε = ς2k+l. The order of the induction steps stays the same.

Proof of Theorem 5.1. Taylor’s theorem applied on the function x 7→ exp{−x} yields:

exp{x0 + h} = exp{x0}
(
1 + ...+

1

k!
hk +

1

(k + 1)!
hk+1 exp{ξ}

)
(57)

for k ∈ N and a proper ξ between zero and h. Setting k = 0, x0 = −
∫ t

s
E[X(u)]du and

x0 + h = −
∫ t

s
X(u)du, we get:

E
[∣∣∣e− ∫ t

s X(u)du − e−
∫ t
s E[X(u)]du

∣∣∣] ≤ e−
∫ t
s E[X(u)]duE

[∣∣∣eξ ∫ t

s

X(u)− E[X(u)]du
∣∣∣] (58)

for ξ between zero and −
∫ t

s
X(u) − E[X(u)]du. Since X is nonnegative, the random variable, ξ, is

bounded by
∫ t

s
E[X(u)]du. Applying Theorem 3.2, we obtain (32). Applying inequality (32) and using

the fact that the continuous function t 7→ E[X(t)] is bounded on [0, ω], inequality (34) is equivalent to
having an upper bound of order ς1 for:

E
[∣∣∣e− ∫ t

s X(u)du(X(t)− E[X(t)])
∣∣∣]. (59)

Since X is nonnegative, we can bound the previous term by:

E
[
|X(t)− E[X(t)]|

]
≤ const ς1. (60)

Thus, we showed inequality (34). Applying Taylor’s formula with k = 1, we get:

e−
∫ t
s X(u)due

∫ t
s E[X(u)]du = 1−

∫ t

s

X(u)− E[X(u)]du+
1

2

(∫ t

s

X(u)− E[X(u)]du
)2

eξ. (61)

Analogously, we can show that:

e−
∫ t
s X̃(u)due

∫ t
s E[X(u)]du = 1−

∫ t

s

X̃(u)− E[X(u)]du+
1

2

(∫ t

s

X̃(u)− E[X(u)]du
)2

eξ̃ (62)

for ξ̃ not greater than the absolute of
∫ t

s
X̃(u)−E[X(u)]du. Taking the difference of the two equations,

we obtain:

E
[∣∣∣e− ∫ t

s X(u)du − e−
∫ t
s X̃(u)du

∣∣∣]e∫ t
s E[X(u)]du

≤
∫ t

s

E[|X(u)− X̃(u)|]du+
1

2
E
[( ∫ t

s

X(u)− E[X(u)]du
)2

eξ
]
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+
1

2
E
[( ∫ t

s

X̃(u)− E[X(u)]du
)2

eξ̃
]
. (63)

According to Theorem 3.2, the first addend on the right-hand side is of order ς2. Since exp{ξ} has a
deterministic upper bound and:

E
[( ∫ t

s

X(u)− E[X(u)]du
)2]

=

∫ t

s

∫ t

s

Cov(X(u), X(v))dudv (64)

≤
∫ t

s

∫ t

s

√
Var(X(u))

√
Var(X(v))dudv (65)

≤ const ς2. (66)

The second addend on the right-hand side of inequality (63) is also of order ς2. Using Hölder’s inequality,
the third addend on the right-hand side of inequality (63) has an upper bound of:(

E
[
e2ξ̃

])1/2(
E
[( ∫ t

s

X̃(u)− E[X(u)]du
)4])1/2

≤ const
(∫ t

s

∫ t

s

∫ t

s

∫ t

s

(E[|X̃(u1)− E[X(u1)]|4])1/4...(E[|X̃(u4)− E[X(u4)]|4])1/4du1...du4

)1/2

(67)

≤ const ς2 (68)

because of Theorem 4.1. Note that E[exp{2ξ̃}] has a finite upper bound, since the absolute of ξ is
bounded by the absolute of

∫ t

s
X̃(u) − E[X(u)]du, where the latter term has a normal distribution, as

the process X̃ has a stochastic differential equation with additive noise. Hence, inequality (33) holds.
Applying inequality (33) yields that inequality (35) is equivalent to having an upper bound of order ς2

for:

E
[∣∣∣e− ∫ t

s X(u)−E[X(u)]du(X(t)− E[X(t)]
)
− e−

∫ t
s X̃(u)−E[X(u)]du(X̃(t)− E[X(t)]

)∣∣∣]. (69)

With Taylor’s approximation for k = 0, the previous term has an upper bound of:

E
[∣∣X(t)− E[X(t)]

∣∣∣∣∣ ∫ t

s

X(u)− E[X(u)]du
∣∣∣eξ]

+ E
[∣∣X̃(t)− E[X(t)]

∣∣∣∣∣ ∫ t

s

X̃(u)− E[X(u)]du
∣∣∣eξ̃]. (70)

Using the fact that exp{ξ} has a deterministic upper bound and by applying Hölder’s inequality, the first
addend has an upper bound of:

(
E
[∣∣X(t)− E[X(t)]

∣∣2])1/2(E[( ∫ t

s

X(u)− E[X(u)]du
)2])1/2

const

≤ (const ς2)1/2(const ς2)1/2const (71)

and the second addend has an upper bound of:

(
E
[∣∣X̃(t)− E[X(t)]

∣∣3])1/3(E[( ∫ t

s

X̃(u)− E[X(u)]du
)3])1/3(

E
[
e3ξ̃

])1/3
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≤ const (const ς3)1/3(const ς3)1/3 const. (72)

Thus, we showed inequality (35). Now, we look at inequality (36), which we prove analogously to
inequality (33). Applying Taylor’s inequality for k = 2, we obtain:

E
[∣∣∣e− ∫ t

s X(u)du − e−
∫ t
s X̂(u)du

∣∣∣]e∫ t
s E[X(u)]du

≤
∫ t

s

E[|X(u)− X̂(u)|]du+
1

2
E
[∣∣∣( ∫ t

s

X(u)− E[X(u)]du
)2

−
(∫ t

s

X̂(u)− E[X(u)]du
)2∣∣∣]

+
1

6
E
[( ∫ t

s

X(u)− E[X(u)]du
)3

eξ
]
+

1

6
E
[( ∫ t

s

X̃(u)− E[X(u)]du
)3

eξ̂
]
.

(73)

According to Theorem 3.2, the first addend on the right-hand side is of order ς3. With the help of the
Binomial theorem and Hölder’s inequality, the second addend has an upper bound of:

1

2
E
[∣∣∣ ∫ t

s

X(u)− X̂(u)du
∣∣∣ ∣∣∣ ∫ t

s

X(u)− E[X(u)] + X̂(u)− E[X(u)]du
∣∣∣]

≤ 1

2

(
E
[( ∫ t

s

X(u)− X̂(u)du
)2])1/2 (

E
[( ∫ t

s

X(u)− E[X(u)] + X̂(u)− E[X(u)]du
)2])1/2

.

(74)

The first factor is of order ς3, while the second factor has a finite upper bound. Similarly to the estimates
for the second and third addend on the right-hand side of inequality (63), we can show that the third and
fourth addend on the right-hand side of inequality (73) have upper bounds of order ς3. Thus, we showed
inequality (36). Applying inequality (36) yields that inequality (37) is equivalent to having an upper
bound of order ς3 for:

E
[∣∣∣e− ∫ t

s X(u)−E[X(u)]du(X(t)− E[X(t)]
)
− e−

∫ t
s X̂(u)−E[X(u)]du(X̂(t)− E[X(t)]

)∣∣∣]. (75)

With Taylor’s approximation for k = 1, the previous term has an upper bound of:

E[|X(t)− X̂(t)|]

+ E
[∣∣∣ ∫ t

s

X(u)− E[X(u)]du
(
X(t)− E[X(t)]

)
−
∫ t

s

X̂(u)− E[X(u)]du
(
X̂(t)− E[X(t)]

)∣∣∣]
+

1

2
E
[( ∫ t

s

X(u)− E[X(u)]du
)2∣∣X(t)− E[X(t)]

∣∣eξ]
+

1

2
E
[( ∫ t

s

X̂(u)− E[X(u)]du
)2∣∣X̂(t)− E[X(t)]

∣∣eξ̂]. (76)

The first addend is of order ς3. The second addend has an upper bound of:

E
[∣∣∣ ∫ t

s

X(u)− E[X(u)]du
∣∣∣∣∣X(t)− X̂(t)

∣∣]+ E
[∣∣∣ ∫ t

s

X(u)− X̂(u)du
∣∣∣∣∣X(t)− E[X(t)]

∣∣] (77)

which has an order of ς4. To see that, apply Hölder’s inequality, Theorem 3.2 and Theorem 4.1. The
fourth and fifth addend of the term above have an order of ς3, which can be verified similarly to the
estimates for the second and third addend on the right-hand side of inequality (63).
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8. Conclusions

Because of nice analytical features, in the actuarial literature, stochastic models for interest and
mortality rates often have the form of Gaussian diffusions with an affine drift term and additive noise.
The Gaussian diffusion framework is justified with the argument that it would reasonably approximate
the true development of interest and mortality rates. We studied approximation errors if appropriate
models for interest and mortality rates have the form of diffusions with affine drift, but a general noise
term. We calculated theoretical bounds for absolute moments and valuation formulas, showing the speed
of convergence. A numerical study illustrates the approximation error, confirming the theoretical results.
Our results indicate that approximation errors are reasonable if the noise term is not too large. In
particular, that might be the case when modeling the mortality intensity, since demographic changes
of mortality typically happen slowly, but steadily.

We generalized the Gaussian diffusion approximation with additive noise by introducing an affine
diffusion approximation with an affine noise term. We found that with an affine noise term instead of
additive noise, the speed of convergence can be improved from ς2 to ς3. However, we lose the nice
analytical features of the Gaussian approach.

All in all, we identified a large class of diffusion processes that can be well approximated by Gaussian
diffusions with additive noise or by affine diffusions with affine noise terms. As a consequence, we can
say that modeling interest and mortality rates by Gaussian diffusions is well justified if there is evidence
that the true developments of future interest and mortality rates have the form of diffusion processes with
an affine drift term and an arbitrary, but small, noise term.

In the present paper, we measured approximation quality by point-wise moment errors and by
mean absolute errors for some specific insurance claims. Future research should consider also other
approximation measures.
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