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Abstract: The thermally responsive hydrogel N,N'-methylenebisacrylamide-cross-linked 

poly(N-isopropylacrylamide) (PNIPAM) was developed and evaluated as a reagent storage 

and delivery system for microfluidic paper-based analytical devices (microPADs). PNIPAM 

was shown to successfully deliver multiple solutions to microPADs in specific sequences or 

simultaneously in laminar-flow configuration and was found to be suitable for delivering 

four classes of reagents to the devices: Small molecules, enzymes, antibodies and DNA. 

PNIPAM was also able to successfully deliver a series of standard glucose solutions to 

microPADs equipped to perform a colorimetric glucose assay. The results of these tests were 

used to produce an external calibration curve, which in turn was used to determine the 

concentration of glucose in sample solutions. Finally, PNIPAM was used to store the enzyme 

horseradish peroxidase for 35 days under ambient conditions with no significant loss of 

activity. The combination of PNIPAM and microPADs may allow for more complex assays 

to be performed on paper-based devices, facilitate the preparation of external calibration 

curves in the field, and extend the shelf life of microPADs by stabilizing reagents in an  

easy-to-use format. 
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1. Introduction 

Paper-based fluidic devices (microPADs) have been developed over the past eight years as a new 

platform for simple, portable and low cost diagnostic tests [1,2]. These devices have the potential to 
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allow for the qualitative and quantitative analysis of a variety of analytes—pathogens, toxins, hazardous 

chemicals, or biomarkers—in resource-limited settings such as remote areas in developed and 

developing countries. MicroPADs share many common features with other types of paper-based 

diagnostic devices such as dipstick assays and lateral-flow assays in that the devices are inexpensive, 

easy to use, and the results of the assays are usually reported as color changes [2,3]. What sets 

microPADs apart from other types of paper-based devices is that they incorporate networks of channels 

patterned into one or multiple pieces of paper that can transport fluids via capillary wicking [3]. These 

networks of channels can be used to perform multiple assays simultaneously or complex fluid handling 

steps so that more complex assays involving multiple steps could be performed on microPADs while 

still maintaining simplicity and low cost for the end user [2]. Some of the challenges faced by 

microPADs as a diagnostic platform are that multiple pipetting steps of sample and reagent solutions are 

still required for multistep assays, reagents are often not stable for extended periods of time when stored 

in dry form on the devices under ambient conditions, and freshly prepared external calibration curves 

are still required for quantitative analysis of the results, which means calibration standard solutions 

would have to be transported into the field so that external calibration assays could be conducted side-

by-side with any test [4–8]. In an effort to overcome some of these limitations, we developed a 

convenient system for storing and then delivering reagent solutions to microPADs using the thermally-

responsive hydrogel N,N'-methylenebisacrylamide-cross-linked poly(N-isopropylacrylamide) (PNIPAM). 

Gels are unique polymer systems that are formed by cross-linking polymer chains to create a single 

large molecule [9]. Gels are classified into three major types depending on their physical properties: 

hydrogels, organogels and xerogels [9,10]. As the name suggests, hydrogels are compatible with aqueous 

solutions, which makes these gels particularly attractive for work with microPADs. We chose to focus 

on a specific class of hydrogels called thermally-responsive hydrogels. These gels incur conformational 

changes when subjected to temperature changes, which can be used to tune the water content of the  

gels [9–12]. PNIPAM is a hydrogel with a lower critical solution temperature (LCST) meaning this gel 

will collapse and expel aqueous solutions from its matrix when heated above its LCST [11–13]. This 

process is reversible, so a solution can be expelled from a PNIPAM gel at high temperatures, and the gel 

can then be loaded with a new solution by immersing the gel in the solution at low temperatures. In this 

way, PNIPAM gels can be used to store and then deliver reagent solutions to microPADs in response to 

temperature changes. 

Hydrogels have long been associated with microfluidic devices. Microfluidic devices have been used 

to synthesize hydrogels, microfluidic devices have been fabricated out of hydrogels, and hydrogels have 

been incorporated into microfluidic devices to form valves, to form scaffolds for cell culture, and to trap 

or deliver analytes [14–20]. An article published recently by Niedl and Beta in Lab on a Chip introduced 

the use of hydrogels as fluid reservoirs for use with microPADs [21]. We had been developing the same 

concept concurrently without any knowledge of Niedl and Beta’s work. While the work presented here 

and the work by Niedl and Beta both focus on the same general idea of combining hydrogels with 

microPADs, we have demonstrated different capabilities and applications, and, in many ways, the two 

articles complement each other. The article by Niedl and Beta focuses primarily on the use of hydrogels 

to deliver water to microPADs in order to drive sequential reactions with the reagents being pre-dried 

on the device. Our work involved a more detailed study of the use of hydrogels for storing and then 

delivering reagents in solution to microPADs. 
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The experimental plan guiding this work had four primary objectives: (i) optimization of the PNIPAM 

gels for use with microPADs, (ii) characterization of the delivery of aqueous solutions from PNIPAM 

to microPADs, (iii) characterization of the delivery of reagents from PNIPAM to microPADs, and  

(iv) characterization of the storage of reagents, specifically enzymes, in PNIPAM for extended periods 

of time under ambient conditions. In terms of optimizing the PNIPAM gels for use with microPADs, we 

looked to synthesize gels that were durable, could be handled easily and could also be fabricated with 

reproducible dimensions. The cross-linker to monomer ratio was varied to produce a gel with the desired 

mechanical properties, and different types of molds were explored to control the dimensions of the gels. 

To characterize the delivery of aqueous solutions from PNIPAM gels to microPADs, we explored the 

delivery of a single solution to a device and also the delivery of multiple solutions either simultaneously 

or in a sequence to a device. Once the fluid-delivery of PNIPAM to microPADs was characterized, the 

ability of PNIPAM to deliver reagents to microPADs was assessed. This work focused on four major 

classes of reagents relevant to point-of-care diagnostic assays: water-soluble small molecules, enzymes, 

antibodies and DNA. There were three primary goals for this portion of the project: (i) to determine if 

PNIPAM was able to deliver the reagents to microPADs, (ii) to determine if PNIPAM had any effect on 

the concentration of the reagent it was delivering by either retaining or excluding it from the gel matrix, 

and (iii) to determine if PNIPAM could deliver the reagent accurately and precisely enough to construct 

an external calibration curve for a colorimetric assay. Finally, PNIPAM was assessed as a storage system 

for enzymes by measuring the activity of the enzyme horseradish peroxidase after being stored in 

PNIPAM gels for extended periods of time. 

2. Experimental Section  

2.1. Reagents and Materials 

All reagents were purchased from commercial sources unless otherwise stated. The following 

chemicals were used: N-isopropylacrylamide (NIPAM, Sigma Aldrich), N,N'-methylenebisacrylamide 

(BIS, Fisher Bioreagents), potassium persulfate (KPS, Sigma Aldrich), tetramethylethylenediamine 

(TEMED, Fisher Bioreagents), food coloring (Durkee), glucose (Sigma Aldrich), horseradish peroxidase 

(HRP, MP Biomedical), glucose oxidase (GOX, MP Biomedical), fluorescein tagged DNA (a 20 base 

pair-long oligonucleotide, Biosearch Technologies), fluorescein tagged rabbit anti-sheep IgG (Thermo 

Scientific), 2,2'-azino-bis(3-ethylbenzothioazoline-6-sulfonic acid) diammonium salt (ABTS, Alfa 

Aesar), and 1-StepTM ABTS (a proprietary solution of ABTS and H2O2, Thermo Scientific). A phosphate 

buffered saline solution (1XPBS) was prepared from 10XPBS (Fisher Scientific) with in-house nanopure 

water obtained from a nanopure dispenser (Thermo Scientific D13661). The following materials were 

obtained from commercially available sources and were used in the experiments: chromatography paper 

(Whatman No. 1), thermal laminating pouches (3 M, Scotch), and poly(ethylene) (PE) straws of three 

diameters: 11.03 mm (Karat), 7.24 mm (Crystal Ware), and 5.35 mm (Starbucks Coffee Company). 
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2.2. Fabrication of MicroPADs 

MicroPADs were fabricated by the method of wax patterning [22]. The patterns for the microPADs 

were designed in AutoCAD and then printed onto chromatography paper using a solid-ink printer (Xerox 

Phaser 8560). The paper was then baked in a convection oven (MTI Compact Forced Air) for 15 min at 

145 °C and then cooled to room temperature under ambient conditions. The devices were stored in plastic 

petri dishes until they were used. 

After patterning the channels, some devices were enclosed with lamination sheets. Enclosing the 

devices was advantageous because it protected the channels from contamination and minimized 

evaporation of fluids from the channels. Hot lamination was performed by inserting the microPAD in a 

thermal laminating pouch and running the pouch through a thermal laminator (APACHE AL-12P, set to 

the 250 °F setting). 

2.3. Digital Image Colorimetry 

The results from colorimetric assays conducted on microPADs were quantified via digital image 

colorimetry (DIC) [7,23,24]. The devices were first scanned using a desktop scanner (Epson Perfection 

V300) using the following settings: 48-bit Color image type, 300 dpi resolution, and reflective document 

type. Images were analyzed using ImageJ 1.46r, open source analysis software. The images were split 

into three color-channels: red, green and blue. The green and blue channels were discarded. The red 

channel was inverted, and the color intensity of the test zones was measured using a microarray profile 

plugin [25]. The mean intensity values obtained were analyzed in Excel. 

2.4. Synthesis of PNIPAM 

Poly(N-isopropylacrylamide) (PNIPAM) was synthesized via free radical solution polymerization. 

The synthesis was performed at room temperature using three purged vials. Molar ratios of monomer 

(NIPAM) to cross-linker (BIS) of 1:1, 3:1, 4:1, 5:1, 6:1, 7:1, 8:1, and 10:1 were tested. The following 

procedure is described for a monomer to cross-linker molar ratio of 5:1. Vial 1 contained NIPAM (1.209 g, 

10.68 mmoles) and BIS (0.3294 g, 2.14 mmoles) in DI H2O (15 mL). Vial 2 contained the KPS (0.009 g, 

0.03 mmoles), a radical initiator, in DI H2O (2.0 mL). Vial 3 contained TEMED (71 μL, 0.06 g,  

0.47 mmoles), a radical generator accelerator, in DI H2O (2.0 mL). Each vial was capped with a rubber 

septum, which was fastened with copper wire and then purged with nitrogen gas (N2) for 20 min under 

atmospheric pressure. After purging, the contents of Vials 2 and 3 were added to Vial 1. Vial 1 was then 

taken off the nitrogen purge line, shaken thoroughly and allowed to react to completion at room 

temperature for 24 h. The polymerization was considered to be complete when an opaque gel had 

solidified in Vial 1. This occurred typically within 10 min of combining the contents of the three vials, 

but the gel was left over night to ensure that the polymerization had gone to completion. 

In order to create samples of PNIPAM with a defined surface area, PE straws with diameters of  

5.37 mm, 7.24 mm, and 11.03 mm were used as inexpensive molds for PNIPAM. The straws were placed 

into Vial 1 prior to purging and retrieved with molded PNIPAM once the reaction was complete. To 

produce varying lengths of sample, the length of the straws were varied as well as the size of the vial. 
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Regardless of the size of the vial, molar ratios of the reagents were kept constant (i.e., NIPAM (5): BIS 

(1): TEMED (0.22): KPS (0.016)) and solvent volumes were scaled proportionally. 

After 24 h, the reaction vial (Vial 1) was etched with a glass cutter above the level of the gel. The 

rubber septum was then removed, and the vial was immersed in a liquid nitrogen bath for approximately 

45 s, ensuring that the entire etched path was exposed to liquid nitrogen. Immediately after liquid 

nitrogen exposure, the vial was shattered along the etch line using channel-lock pliers. The vial was 

covered with an aluminum foil sheet to contain the shattered glass. The straw-encased PNIPAM 

hydrogel samples were then retrieved from the PNIPAM mass. 

The hydrogels were thermocycled to purify the polymer matrix by removing any residual reagents 

(Figure S1). The thermocycling procedure involved the following steps: (i) the PNIPAM was submerged 

in a vial containing DI H2O and heated for 10 minutes at 60 °C in a silicon oil bath, (ii) the water was 

decanted and the samples were rinsed in the vial with fresh portions of DI H2O two times, (iii) the vial 

was filled with fresh DI H2O and placed in an ice-water bath (0 °C) for 20 min, (iv) the vial was removed 

from the ice-water bath and allowed to warm to room temperature. The cycle was repeated a total of  

6 times for each hydrogel. 

2.5. Characterization of Fluid Delivery from PNIPAM 

To determine the amount of fluid that could be released by PNIPAM upon heating, we heated samples 

of PNIPAM of each of the three diameters for 12 min on a digital hotplate set to 40 °C and recorded the 

initial and final mass of the samples. The duration of the heating step (12 min) was an arbitrary amount 

of time selected because we believe it is a reasonable time scale for the operation of microPADs in the 

real world. The temperature of 40 °C was chosen because it is achievable using a HotHands®’s hand 

warmer, which is an inexpensive, commercially available and portable heat source, and it is conceivable 

that a health professional could use this type of product in the field to perform a paper-based diagnostic 

assay with PNIPAM as a fluid source. Several other instrument-free approaches for controlling 

temperature of paper microfluidic devices have also been described and could be used with PNIPAM [26]. 

Using the same approach, we also studied the effect of heating time at 40 °C on the amount of fluid 

expelled by PNIPAM gels. 

2.6. Loading Reagents into PNIPAM  

To load reagents or dyes into the hydrogel, the gel was first heated to expel all fluid, then transferred 

to a vial with the desired reagent solution and allowed to equilibrate at room temperature for 24 h. The 

gel was heated by submerging it in DI H2O in a glass vial, and then placing the vial into a silicone oil 

bath set to 60 °C. The temperature of the oil bath was increased by 10 °C every 30 min to a final 

temperature of 80 °C, and the final temperature was held for 30 min. 

2.7. Delivery of Fluids from PNIPAM to MicroPADs 

PNIPAM gels (7.24-mm in diameter and 1-cm in length) were loaded with aqueous dye solutions and 

placed on microPADs to study fluid delivery to paper. One microPAD was used to measure the rate of 

wicking for fluids delivered to paper-based devices via PNIPAM at room temperature and at 40 °C. This 
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device consisted of a single circular sample addition zone with a diameter of 7.3 mm leading into a  

6-cm-long and 2-mm-wide channel with markings every centimeter along both sides of the channel. For 

comparison, the same experiment was carried out by adding 45 µL of solution in three 15-μL aliquots 

directly to the sample inlet using a micropipette. A second microPAD was used to demonstrate that 

PNIPAM could deliver fluids in laminar flow. This device had three circular sample addition zones all 

with a diameter of 7.3 mm that were situated at one end of the device and were equidistant from the 

point of entry into a single channel that led to a waste zone. A third microPAD was used to demonstrate 

that PNIPAM could deliver fluids to a reaction zone in a specific sequence. This device had three 

staggered circular sample addition zones all with a diameter of 7.3 mm leading into a single channel that 

emptied into a waste zone. All three devices were laminated, and the lamination over the sample addition 

and waste zones was cut out and removed using a razor blade to allow for sample introduction and for 

fluids to evaporate from the waste zone. For the second and third devices, PNIPAM gels, loaded with 

red dye, blue dye and water respectively, were placed in the three sample addition zones at the same 

time, and the device was heated to 40 °C to observe the delivery of fluid from the gels to the devices. 

2.8. Delivery of Reagents from PNIPAM to MicroPADs 

PNIPAM was used to deliver four distinct, clinically-relevant classes of analytes to microPADs: small 

molecules (glucose), enzymes (HRP), antibodies (fluorescein-labeled IgG) and DNA (fluorescein-

labeled 20 base pair oligonucleotide). 

A paper-based 96-well plate with 5-mm-diameter circular reaction zones was used to demonstrate the 

delivery of glucose from a PNIPAM gel to a microPAD [27]. The PNIPAM gels used for these experiments 

had a diameter of 7.24 mm and length of approximately 4 cm. The concentration of glucose delivered to 

the reaction zones was quantified using a colorimetric glucose assay based on a coupled enzymatic 

reaction using GOX, HRP, and ABTS, which produced a blue-green color in the reaction zones. 

Glucose solutions of the following concentrations were prepared in duplicate: 0 mM (DI H2O), 1 mM, 

2 mM, 2.5 mM, 3 mM, 3.5 mM, 4 mM, and 5 mM. One set of the glucose solutions was loaded into 

PNIPAM gels. The other set was used as external solutions for comparison. Ultimately, three different 

types of glucose samples were prepared: glucose loaded into PNIPAM (PNIPAM), the excess glucose 

solutions remaining in the vials after loading the PNIPAM gels (PNIPAM solution), and the external 

glucose solutions (solution). A reaction mixture was prepared consisting of GOX (75 kU·L−1), HRP  

(250 kU·L−1) and ABTS (6.25 mM) in 1XPBS. A volume of 1 μL of reaction mixture was spotted in the 

reactions zones of a paper-based 96-well plate and dried for 30 min under ambient conditions. The 

PNIPAM samples were placed in the wells for 60 s and then removed. For the PNIPAM loading solution 

and the external glucose solutions, 3 µL of each solution was added to the reaction zone using a 

micropipette. Three replicates were performed for each concentration. The colorimetric assays were 

allowed to develop for 30 min before being imaged and analyzed. Two calibration standard glucose 

solutions with concentrations of 2.5 mM and 3.5 mM, respectively, were also tested using the same 

colorimetric assay to evaluate the accuracy and precision of the assay. 

To evaluate the delivery of fluorescein tagged antibody and DNA, devices with a circular sample 

addition zone and a circular test zone, both with a diameter of 7.25 mm, connected by a single channel 

(length 2 mm and width 2.2 mm) were used. Two sets of solutions with concentrations of 750 mg/L and 



Chromatography 2015, 2 442 

 

93.8 mg/L of fluorescein-labeled rabbit anti-sheep IgG were prepared in 1XPBS. One set of the solutions 

was loaded into 7.24-mm PNIPAM gels with an average mass of 0.1504 g, and the other set of solutions 

was used as external solutions for comparison. The PNIPAM gels were placed upon the sample addition 

zone of the microPADs at room temperature until the solution completely filled the test zone. The 

external solutions were tested by adding 10 µL of solution to the sample addition zone. All devices were 

dried for 20 min. Once the devices were dry, they were imaged using a fluorescent scanner (Typhoon 

TRIO+, Amersham Biosciences) and quantified in ImageJ. 

Two sets of solutions of fluorescein tagged DNA (20 base-pair-long oligonucleotide) with concentrations 

of 7.95 µM and 0.994 µM were prepared in 1XPBS. One set of solutions was loaded into 7.24-mm 

PNIPAM gels with an average mass of 0.1389 g, and the other set of solutions was used as external 

solutions for comparison. Samples were tested by the same method as the fluorescein-labeled IgG samples. 

2.9. Storage of Reagents in PNIPAM 

PNIPAM was assessed for its ability to deliver an enzyme, HRP, by passive wicking to a microPAD 

using a paper-based 96-well plate. The effects of PNIPAM on the activity of HRP were also investigated. 

PNIPAM samples with a 7.24-mm diameter and length of approximately 4 cm were prepared for loading 

with HRP solution. A working HRP solution was prepared with a concentration of 550 kU·L−1 in 

1XPBS. A portion of this solution was loaded into eight PNIPAM gels. PNIPAM gels loaded with 

1XPBS were used as negative controls to account for any background signal from the assay. The 

remaining HRP solution was used as a control solution. After the PNIPAM gels were loaded with the 

HRP solution, they were divided into two groups: four gels were stored in dry, empty vials (dry storage), 

and the other four gels were stored in the HRP solution (solution storage). The dry storage gels, solution 

storage gels, and the HRP solution were all prepared on the same day (day 0) and then stored in a drawer 

at room temperature for the duration of the experiment. The activity of the HPR stored under the three 

conditions was monitored on select days up to day 35. 

The activity of the HRP in the three samples was monitored using a colorimetric assay with ABTS. 

The PNIPAM samples (3-mm sections of the gels) were placed on reaction zones of a paper-based  

96-well plate for 10 min to ensure delivery of HRP. For comparison, 1 µL of the HRP solution was 

added to separate reaction zones. Immediately after adding the HRP solutions, 3 µL of 1 Step ABTS 

was added to each reaction zone. The color from the assay was allowed to develop for 30 min under 

ambient conditions, and then the results were imaged and quantified. 

As an additional experiment we assessed if a single PNIPAM gel could deliver reproducible amounts 

of HRP in sequential trials. The PNIPAM samples were placed in a reaction zone for 10 min for each 

trial. After 10 min, the samples were transferred directly to a new reaction zone. This process was repeated 

four times. The activity of the HRP delivered to the test zones was determined using the ABTS assay. 
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3. Results and Discussion 

3.1. Synthesis and Characterization of PNIPAM 

The synthesis of PNIPAM was optimized to produce a hydrogel that could be handled easily  

(Figure 1). It was determined that a monomer to cross-linker molar ratio of 5:1 was optimal for producing 

PNIPAM that was easy to handle and cut. Gels synthesized with ratios of monomer to cross-linker 

greater than 5:1 were too soft to handle effectively, while the gels with a lower ratio were too brittle. 

The ability to handle the material was crucial in this project, because it allowed for the gels to be cut into 

discrete masses efficiently, and for the segments to be manipulated while maintaining their shape and 

size. The monomer to cross-linker ratio of 5:1 was used throughout the work described in this article. 

 

Figure 1. (a) Synthesis of PNIPAM from NIPAM monomer and BIS cross-linker. (b) Three 

reaction vials containing cylindrical PNIPAM gels in the three diameters of 11.03 mm,  

7.24 mm, and 5.35 mm, respectively, stored in DI H2O. (c) An unsheathed PNIPAM sample 

with a diameter of 11.03 mm followed by sheathed samples of PNIPAM with diameters of 

11.03 mm, 7.24 mm, and 5.35 mm, respectively. 

The use of straws proved to be an effective method of molding PNIPAM into cylinders of 

reproducible diameters (Figure 1b,c). We chose to work with straws that were commercially available, 

but this method of synthesis could presumably be used to prepare PNIPAM samples in a variety of 

shapes as long as the appropriate plastic casing was available. 

The mass of fluid delivered by PNIPAM gels was found to be strongly dependent on the surface area 

of the PNIPAM exposed to the heat source (Figure S2). For PNIPAM samples of the same initial mass, 

the sample with the largest diameter—and therefore the largest surface area in contact with the heat 

source—consistently expelled the most fluid. We also observed that the amount of fluid delivered 

eventually reached a plateau as the initial mass of the sample was increased. This result suggests that the 

amount of fluid delivered by a gel is limited by the area of the gel exposed to the heat source. Fortunately, 

most microPADs require only small volumes (5–50 µL) of fluid to operate, and these volumes can be 

delivered using the 11.03-mm and 7.24-mm diameter PNIPAM gels. Longer heating times were also 
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shown to increase the amount of fluid expelled from the PNIPAM gels (Figure S3). The results of these 

characterization experiments could be useful for predicting the mass of fluid that could be delivered by 

a given PNIPAM sample when heated to 40 °C. When delivering fluids to microPADs, it is important 

that the PNIPAM gel be able to deliver an excess of fluid compared to the amount of fluid required to 

fill the particular device. This way the volume of fluid delivered to the device will be controlled by the 

dimensions of the device and not by the PNIPAM gel, and thus the volume of fluid delivered to the 

device will be reproducible from one experiment to the next [5]. 

3.2. Delivery of Fluids from PNIPAM to MicroPADs  

We found that PNIPAM can effectively deliver fluids to microPADs via a traditional circular sample 

inlet zone, but with a slightly different wicking profile compared to when solution is delivered directly 

to the microPAD’s inlet zone (Figure 2a,b). An interesting and unexpected observation was that the 

PNIPAM gels delivered fluid to the microPAD even at room temperature, which was below the LCST 

of the polymer. The gels were only observed to expel fluid at room temperature when in contact with 

paper. Fluid delivery from the gels to paper at room temperature is suspected to occur due to the fluid 

interacting favorably with paper and thus being wicked out of the PNIPAM matrix. When the PNIPAM 

sample was heated to 40 °C, fluid was delivered more rapidly to the device, and the wicking rate 

increased compared to room temperature conditions. These results suggest that PNIPAM and 

temperature could be used to tune the wicking rate and total mass of fluid delivered to a microPAD, 

which could be useful for controlling the movement of fluids in a device. This temperature control over 

wicking rate may allow for fluids to be delivered in a specific sequence from various PNIPAM samples 

on the same device by selectively heating the gels. 

Once the basic delivery of fluids from PNIPAM to microPADs was demonstrated, we demonstrated 

that PNIPAM could deliver fluids in two classic microfluidic configurations: laminar flow and plug-

reagent delivery (Figure 2c,d). We see these experiments as a first step toward developing higher-level 

functionality of microPADs with PNIPAM. The device shown in Figure 2c demonstrates that PNIPAM 

can deliver fluids simultaneously from neighboring sample zones into a single channel and that the fluids 

wick across the channel in laminar flow. A gradient of both blue and red dye may be seen across the 

width of the channel after 60 min. This result suggests that the simultaneous addition of fluids could be 

used to produce gradients of reagents in microPADs. The device shown in Figure 2d demonstrates 

PNIPAM’s ability to add fluids to a microPAD as plugs with minimal mixing and in a defined sequence. 

This sequential addition of reagents could be useful for performing a multi-step assay such as an ELISA [28]. 

3.3. Delivery of Reagents from PNIPAM to MicroPADs 

PNIPAM was used successfully to store and then deliver glucose, fluorescein-labeled rabbit anti-

sheep IgG, fluorescein-labeled DNA, and HRP to microPADs. These reagents are representative of four 

major classes of analytes that are interesting for diagnostic purposes: small molecules, antibodies, DNA, 

and enzymes. 
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Figure 2. (a) A sequence of images documenting the delivery of an aqueous blue dye 

solution from a PNIPAM gel to a microPAD heated to 40 °C. (b) A plot of the distance 

wicked by fluid in the microPAD shown in (a) versus time for fluids delivered by PNIPAM 

gels either at 40 °C or room temperature (20 °C) or delivered by micropipette. Data points 

represent the mean of three trials, and error bars represent one standard deviation from the 

mean. (c) A sequence of images documenting the simultaneous delivery of three solutions 

from PNIPAM gels to a microPAD. The fluids participate in laminar flow. (d) A sequence 

of images documenting the delivery of three solutions from PNIPAM gels to a microPAD 

in distinct plugs. Dye diffusion is minimal between the different solutions. 

The results for the delivery of glucose from PNIPAM gels to microPADs are shown in Figure 3. 

These results demonstrate that PNIPAM can deliver glucose to microPADs in a concentration-dependent 

fashion, that loading glucose into PNIPAM has no significant effect on the concentration of glucose in 

the loading solution, and that delivering glucose to microPADs from PNIPAM has no significant effect 

on the concentration of glucose in solution. The results indicate that glucose is not retained by or 

excluded from the PNIPAM matrix when it is loaded into the gel. This is promising first evidence that 

small molecules, at least of similar polarity to glucose, could be loaded into PNIPAM and delivered to 

microPADs without any effect on their concentration. The results also suggest that PNIPAM samples 

loaded with standard solutions could be taken into the field and used to prepare external calibration 

curves at the point-of-care. 
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Figure 3. (a) Scanned image of the results of glucose assays performed in paper-based test 

zones. The intensity of the color produced in the test zone increases as the concentration of 

glucose increases. The glucose solution was delivered to the test zone either from a PNIPAM 

gel or as a solution using a micropipette. (b) Plot of color intensity versus concentration of 

glucose. Data points represent the mean of three measurements, and error bars represent one 

standard deviation from the mean.  

The results from the PNIPAM-delivered glucose solutions were fit with a linear trendline and used 

as a calibration curve to determine the concentrations of glucose in two calibration standard solutions 

delivered both from a PNIPAM gel and by pipette (Table 1). The determined concentrations of all four 

glucose samples were found to be within one standard deviation of their true concentrations. The relative 

standard deviations of the measurements were all within 15%. The accuracy and precision of these 

results is comparable to the results obtained typically for microPADs using pipet-delivered solutions [7]. 

These results support the idea that PNIPAM gels loaded with external standard solutions could be used 

for preparing external calibration curves with microPADs, and also suggest that samples could be 

collected in the field and stored for later testing by loading them into PNIPAM gels. 

Table 1. Results for the determination of the concentration of glucose in calibration standard 

solutions. Results are reported as the mean of three measurements, and uncertainties are 

reported as one standard deviation from the mean. 

Concentration of Glucose 
in Calibration Standard 

Source of Calibration 
Standard  

Determined Concentration 
of Glucose 

2.5 mM 
PNIPAM 2.6 ± 0.5 mM 

Pipette 2.5 ± 0.2 mM 

3.5 mM 
PNIPAM 3.6 ± 0.4 mM 

Pipette 3.4 ± 0.5 mM 
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PNIPAM was also shown to deliver a fluorescein-labeled antibody and fluorescein-labeled DNA to 

microPADs with concentration dependence and with no significant difference in signal compared to the 

same analytes delivered using micropipettes (Figure 4 and Table S1). These results suggest that 

antibodies and DNA could also be delivered to microPADs from PNIPAM gels to prepare external 

calibration curves or for testing samples in the field. 

 

Figure 4. (a) Plot of the normalized fluorescence intensity versus concentration for 

PNIPAM-delivered fluorescein-labeled antibody (PNIPAM) and pipette-delivered 

fluorescein-labeled antibody (solution). (b) Plot of the normalized fluorescence intensity 

versus concentration for PNIPAM-delivered and pipette-delivered fluorescein-labeled DNA. 

The height of each bar represents the mean of three measurements, and the error bars 

represent one standard deviation from the mean. 

3.4. Storage of Reagents in PNIPAM 

PNIPAM was first shown to deliver HRP to paper via passive wicking (Figure 5). The appearance of 

the blue-green color in the test zones upon addition of the ABTS reagent solution confirmed that the 

enzyme was delivered to the paper test zone and was still active. Once the ability to deliver HRP was 

confirmed, the PNIPAM samples were reused three more times producing consistent signals. The signals 

from the PNIPAM-delivered samples were also consistently larger than the signals from the pipette-

delivered samples, but this is probably because more HRP solution was delivered to the test zone from 

the PNIPAM gels. The results suggest that PNIPAM gels loaded with specific reagents could be used 

for several assays without any loss in effective concentration of the reagent delivered. An end-user could 

potentially work with one set of reagent-loaded PNIPAM gels for an extended period of time, reusing 

them for multiple assays. 

Figure 5b compares the activity of HRP for three different storage conditions as a function of time. 

The first storage condition was HRP in PNIPAM and stored in a dry vial (dry storage). The second was 

HRP in PNIPAM and stored in a vial full of HRP solution (solution storage). The third was HRP in 

solution (solution). The activity of HRP for all three conditions was found to be comparable on each day 

of the 35-day trial. These results indicate that PNIPAM has no effect on the stability of HRP, and that 

PNIPAM has the potential to be used as a storage matrix for sensitive biological reagents. HRP is only 

able to retain its activity for a few days when stored on paper in dry form [5,6]. PNIPAM keeps the 
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enzyme stable for at least 35 days and probably longer considering that the signal for the assay had 

shown no significant decrease from the signal on day 0. These results suggest that reagents for assays 

could be loaded into PNIPAM gels, transported into the field at room temperature, and then delivered to 

microPADs just prior to conducting an assay at the point-of-care. 

 

Figure 5. (a) Plot of the mean intensity of the colorimetric signal measured from the test 

zones versus the number of times each PNIPAM sample was used to deliver HRP to test 

zones. The height of each bar represents the mean of three measurements and error bars 

represent one standard deviation from the mean. (b) Plot of mean intensity of the colorimetric 

signal versus time for HRP stored under three different conditions. Data points represent the 

mean of three measurements, and error bars represent one standard deviation from the mean. 

4. Conclusions 

We introduced a straightforward method for synthesizing PNIPAM gels with reproducible 

dimensions and of the appropriate size for use with microPADs. PNIPAM was shown to be a promising 

fluid delivery system for use with microPADs. When combined with PNIPAM gels, microPADs may 

be capable of relatively complex fluidic operations with minimal input from the user. PNIPAM also 

showed great potential as a material for storing and delivering clinically relevant reagents to microPADs 

in a concentration dependent manner. Since PNIPAM provides a convenient platform for storing 
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solutions of reagents, we believe PNIPAM gels loaded with reagents could be transported into the field 

and then used to produce external calibration curves at the point-of-care without the need for pipettes. 

Furthermore, the synthesis and processing of PNIPAM is simple, inexpensive, and scalable making it a 

plausible candidate for use in low-cost diagnostics for the developing world.  
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Supplementary materials can be accessed at: http://www.mdpi.com/2227-9075/2/3/436/s1. 
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