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Abstract: In recent decades, pubertal onset in girls has been considered to occur at an earlier age than
previously. Exposure to endocrine-disrupting chemicals (EDCs) has been associated with alterations
in pubertal timing, with several reports suggesting that EDCs may have a role in the secular trend
in pubertal maturation, at least in girls. However, relevant studies give inconsistent results. On the
other hand, the majority of girls with idiopathic precocious or early puberty present the growth
pattern of constitutional advancement of growth (CAG), i.e., growth acceleration soon after birth.
Herein, we show that the growth pattern of CAG is unrelated to exposure to endocrine-disrupting
chemicals and is the major determinant of precocious or early puberty. Presented data suggest that
EDCs, at most, have a minor effect on the timing of pubertal onset in girls.

Keywords: puberty; endocrine-disrupting chemicals; girls; precocious puberty; early puberty; consti-
tutional advancement of growth

1. Introduction

Pubertal timing is multifactorial involving a predominant effect of genetic and epige-
netic factors and to a lesser—but still significant—extent, environmental factors. Although
genetic factors are considered to explain 50–80% of the onset of puberty [1], genes that have
been found to play a role in pubertal onset have a minor role in the onset of puberty of the
population. Gene mutations, e.g., ESR1, KISS1, KISSR1, MKRN3, are rarely identified as
the cause of disordered pubertal timing; thus, these genes do not seem to determine the
timing of puberty nor menarche in the female population [2]. Recently, it was shown that
the onset of puberty is regulated by epigenetic mechanisms, Kiss1 expression is negatively
regulated by two polycomb group proteins (Cbx7 and Eed) [3].

Environmental factors are major determinants of the onset of puberty and the age at
menarche. Nutrition of the mother or/and of the infant [4], chronic diseases and chronic
somatic stress, like strenuous exercise or psychological stress, e.g., violence exposure [5], or
adoption of a girl from an underprivileged environment, exert a major influence on the
timing of the pubertal events. Although environmental factors may result in epigenetic
modifications in an organism, the epigenetic effects of the environment on the hypothalamic
regulation of puberty are still to be discovered.

In girls, when pubertal onset occurs before the age of 8 years, it is considered pre-
cocious and when it occurs after 8 years but before 9 years of age, it is considered early.
Precocious puberty (PP) when it is gonadotropin dependent is called central or true PP
and when it is gonadotropin independent is called peripheral PP. The causes of central
precocious puberty may be organic, e.g., due to tumors of the central nervous system (CNS)
or most commonly idiopathic, i.e., no etiological factor is identified with appropriate imag-
ing of the CNS. Obviously, it is important to differentiate between organic or idiopathic
precocious puberty (IPP) because the former may have dire health consequences. On the
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other hand, early puberty lies on the extreme of normal variation of timing of pubertal
onset [6].

In recent decades, there have been reports from several countries detailing that the
onset of puberty in girls occurs at a younger age than previously [7,8]. At the same time,
endocrine-disrupting chemicals (EDC) have been suggested as affecting the age of pubertal
onset, especially in girls. Hence, researchers were led to hypothesize that increasing
exposure to EDC had a role in the secular trend for earlier sexual maturation. Moreover, it
was suggested that early puberty manifesting in immigrants from developing countries
was the result of previous exposure to organochloride pesticides [9].

Constitutional advancement of growth (CAG) is the growth pattern of early growth
acceleration, which is present in the majority of girls with idiopathic precocious puberty,
and in girls with early puberty [6,10]. Herein, we show that CAG is unrelated to EDC
exposure and we maintain that EDCs have, at most, a minor role on female pubertal timing.

2. Endocrine-Disrupting Chemicals

Endocrine-disrupting chemicals are compounds that can interfere with the activity
of endocrine systems. EDCs action is exerted by imitating or blocking hormone signal-
ing through the relevant hormonal receptor. EDCs may also modulate the synthesis,
metabolism, and binding of natural hormones.

EDCs are usually used by industry, as plastics (bisphenol A (BPA)), plasticizers (phtha-
lates), solvents/lubricants (polybrominated biphenyls (PBBs), polychlorinated biphenyls
(PCBs), dioxins), pesticides (chlorpyrifos, dichlorodiphenyltrichloroethane (DDT), methoxy-
chlor), fungicides (vinclozolin) and also as flame retardant additives in manufactured ma-
terials and pharmaceutical agents, e.g., diethylstilbestrol (DES), a non-steroidal synthetic
estrogen [11].

EDCs may also be made by nature, e.g., phytoestrogens, which interfere with en-
dogenous endocrine function, are produced by plants and act primarily through estrogen
receptors [12].

The abundance of EDCs and their ability to interfere with the endocrine system
combined with the secular trend for earlier onset of puberty has led many researchers to
associate EDCs with early puberty, especially since some EDCs have estrogenic activity.

3. Association between Exposure to Endocrine-Disrupting Chemicals and Timing
of Puberty

Commonly used and studied EDCs are phthalates, bisphenol, pesticides and
flame retardants.

Phthalates are mainly used as plasticizers, i.e., substances added to plastics to increase
their flexibility, transparency, durability, and longevity. They are used primarily to soften
polyvinyl chloride (PVC). Human exposure to phthalates [13] is extremely prevalent, and it
may occur through multiple routes: i.e., oral (via phthalate-contaminated food, water and
other liquids and in children through mouthing of toys and teethers), dermal (via cosmetics
and other personal care products), inhaled (from breathing phthalate particles in the air)
(https://www.cdc.gov/biomonitoring/Phthalates_FactSheet.html accessed 5 June 2021).
Phthalates may have anti-androgenic activity [14], and also possess some estrogenic activ-
ity [15]. In Puerto Rico, high phthalate levels have been linked to premature thelarche [16],
a normal variant of female premature sexual development. In a study of Danish schoolgirls,
high phthalate excretion in urine was associated with delayed pubarche, but not thelarche,
which suggests anti-androgenic actions of phthalate [17]. Similar results were obtained in a
study of US girls [18]. Some studies reporting early/precocious puberty associated with
phthalate exposure [19,20], whereas in a US study on girls with central precocious puberty,
such an association was not found [21]. In contrast to the previous reports, in a Chinese
study performed in boys, elevated levels of phthalates were associated with constitutional
delay of growth and puberty [22]. Furthermore, a recent Korean study showed that phtha-
late metabolites in girls with central precocious puberty were significantly lower than the
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prepubertal control girls [23]. Therefore, more studies are warranted to explore the effect
of phthalate exposure on pubertal timing.

BPA (bisphenol A) is found in plastics (e.g., bottles, Tupperware, etc.), and in epoxy
resins coating the inside of beverage and food cans, and humans are exposed mainly
through food contamination from plastic and can packaging. BPA is the most commonly
found estrogen-like endocrine disruptor in the environment. In experimental animals, it
has been shown that BPA advances puberty [24], but on the other hand, it also has been
shown it has no effect on pubertal timing [25]. Similar to the experimental animals, results
of BPA on human puberty are inconsistent. In a US study of girls, Wolff et al. reported that
BPA had no influence on breast development [26], however in studies performed in Turkey
and in Thailand, idiopathic central precocious puberty was associated with higher levels
of BPA than in control girls [27,28]. Watkins et al. studied the in-utero and peripubertal
exposure to phthalates and BPA in relation to sexual maturation and did not find any
association between BPA and sexual maturation, although in utero phthalate exposure
impacted on earlier timing of sexual maturation [29].

Pesticides are classified into various classes, e.g., insecticides, herbicides and fungi-
cides. Pesticides enter the human body through water, air, food, and also, they can pass
from mother to fetus via the placenta and to the infant through mother’s milk. Most of
these substances are lipophilic and accumulate in adipose tissue, where they remain for
long periods of time. The most widely studied pesticide compounds are dichlorodiphenyl-
trichloroethane (DDT) and its metabolite dichlorodiethyldichloroethane (DDE). Although
the agricultural use of DDT has been banned worldwide, in some developing countries, it
is still used against mosquitos. In a study performed in Denmark, mothers who worked
in greenhouses in the first trimester of pregnancy were prenatally categorized as exposed
or unexposed to pesticides. Female offspring of exposed mothers had decreased age of
breast development at 8.9 years, compared with 10.4 years in the unexposed, and 10.0 years
in a Danish reference population [30]. Other researchers reported decreased menarcheal
age to girls exposed in utero to DDE [31]. However, the significance of the association
disappeared when weight at menarche was controlled for. Adopted or immigrant girls in
Belgium, who presented central precocious puberty (CPP), had increased plasma levels of
pesticides (DDE), thus CPP could be attributed to pesticide exposure [9]. However, other
studies did not find an association between DDE levels and the timing of menarche [32].
Additionally, in inner-city girls, DDE, Pb, and dietary intakes of phytoestrogens were not
significantly associated with breast stage [33]. In a study examining prenatal DDT exposure
in relation to anthropometric and pubertal measures in adolescent males, no associations
between prenatal exposure to any of the DDT compounds and any pubertal measures were
noted [34].

Flame-retardant chemicals are added to manufactured materials (plastics, textiles,
surface finishes and coatings) intended to prevent or slow the further development of igni-
tion with their physical and chemical properties. Among them, organohalogen compounds
such as polybrominated diphenyl ethers (PBDEs) are lipophilic persistent endocrine dis-
ruptors exhibiting estrogenic as well as androgenic properties. It has been proposed that
PBDEs might alter pubertal timing resulting in later menarche in girls [35,36] but earlier
pubarche in boys [36]. Curiously, girls with idiopathic central precocious puberty, par-
ticularly those with higher body mass index (BMI) have been found with higher serum
concentrations of PBDEs [37].

Thus, the inconsistency of the results of the various studies examining the association
of endocrine disruptor chemicals with the onset of puberty [38] makes it imperative that
more studies on the subject are performed.

4. Constitutional Advancement of Growth

Constitutional advancement of growth (CAG) is a growth pattern characterized by
early growth acceleration [10]. Children with CAG are born with an average length but
present growth acceleration soon after birth, reaching a zenith centile in the first 2 to
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4 years of life. Then, the child grows along this centile until the onset of puberty, which
is usually early. The growth pattern of CAG is the mirror image of the well-established
growth pattern of constitutional delay of growth (CDG), which is characterized by growth
deceleration in the first 2 to 3 years of life, although birth length is usually average. As
a result of the growth deceleration, the child’s height may fall to a nadir centile, which
is at or below the third centile, depending on parental height. Then, growth resumes at
a normal rate, and the child grows along this centile until the onset of puberty, which is
usually delayed.

For a child to be considered as presenting the growth pattern of CAG, his/her Height
Standard Deviation Score (SDS) should be ≥1.5 than Target Height (TH) SDS and other
conditions that lead to early growth acceleration, such as genetic tall stature, overfeeding,
and intrauterine growth restraint have to be excluded. In the case of a typical girl, the
growth pattern of CAG is depicted in Figure 1.
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Figure 1. This girl presented at the clinic at the age of 8.1 years with a Tanner stage 2 breast and pubic
hair development. Breast developed at the age of 7.4 years and pubic hair at the age of 7.8 years.
Before the appearance of any signs of puberty, her height SDS (HSDS) was +1.84 SDS (lines in growth
chart represent height standard deviations marked as SD) well above her Target Height (TH) of
+0.25 SDS. She was born with an average birth length of 0.0 SDS, but soon after birth, she presented
growth acceleration reaching a zenith percentile (close to HSDS + 2 SDS) at about 3 years of age.
She continued to grow along this percentile until she entered puberty presenting a further growth
acceleration thereafter. At the age of 8.2 years, her bone age was 10.3 years compatible with the
biological age in which girls enter puberty. Predicted adult height was within TH. No treatment was
considered necessary.

Red bullets depict actual height, orange squares depict bone age. Target Height (TH)
derived from the heights of the mother (yellow dot) and father (blue dot) is shown on the
right-hand side of the figure and as a blue line within the graph.

5. Constitutional Advancement of Growth and Early Puberty

Based on the observation that girls with precocious puberty (i.e., with breast devel-
opment before 8 years of age) are tall for age, and also taller for TH, even at the onset
of pubertal development, we examined the growth of 47 girls with IPP from birth until
diagnosis [39]. The vast majority, i.e., 79%, of the girls with IPP manifested the growth
pattern of CAG. Thus, we suggested that this pattern may be used as an additional clue
in favor of idiopathic precocious puberty in the differential diagnosis of precocious pu-
berty [10], a claim that was supported by the fact that all girls with CAG presented no CNS
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abnormalities in brain magnetic resonance imaging (MRI) [39]. We also observed a similar
growth pattern in girls with early puberty, i.e., with breast development at an age between
8 and 9 years [40]. The greater the difference HSDS-THSDS is above +1.5 SD the greater
the possibility for the girl to present precocious than early puberty.

6. Is There an Association between EDC Exposure and CAG?

Since CAG is associated with early growth acceleration, if there was an association
between EDCs and CAG it would be related to fetal exposure during pregnancy or early
postnatal exposure.

Several studies have examined the association of fetal exposure to EDCs, especially
phthalates and BPA, and fetal growth. These compounds, besides hormonal perturbations,
may cause oxidative stress and epigenetic modifications that might have a deleterious effect
on fetal growth [41–43]. Most relevant studies were cross-sectional, measurements of length
and weight were performed at delivery [44] and the results were inconsistent [45–47]. In a
longitudinal study that examined the relationship between average exposure measures and
fetal growth [48], researchers observed inverse associations between head and abdominal
circumferences, femur length, and estimated fetal weight and Di (2-ethylhexyl) phthalate
(DEHP) metabolites. However, no consistent associations were observed for other phthalate
metabolites or for BPA. Taken together, these data indicate that it is unlikely EDC exposure
in utero has a substantial adverse effect on fetal growth. In our studies on CAG girls, there
was no difference in birth weight or length compared to control girls.

What about the effect of postnatal exposure on growth? In a study in which chlorde-
cone (an organochlorine insecticide with estrogenic properties) was measured at cord blood
and in breast milk at the age of 3 months, postnatal exposure in girls was associated with
lower height at 3, 8 and 18 months [49].

Taking into account that girls with CAG present growth acceleration soon after birth,
it is unlikely that growth acceleration is induced by estradiol. In neonatal life and early
infancy increased estrogen levels are experienced by all normal girls. Estradiol levels
peak around the second month after birth and reach levels characteristic of early- to mid-
puberty, hence the period of the first 6 months of life is termed as mini-puberty. Despite
increased estradiol levels, mini-puberty is not associated with growth acceleration contrary
to puberty occurring during childhood.

How could the early growth acceleration characteristic of CAG be explained? Clinical
evidence suggests that after the age of 2 to 3 months growth hormone (GH) is necessary
for normal growth [50]. However, the majority of small for gestational age (SGA) infants
present catch-up growth in length since early postnatal life placing them at or above the 3d
percentile for length by 6 months of age [51]. Catch-up growth in these children is mostly
attributed to overnutrition, thereby increasing insulin levels, a hormone with growth-
promoting properties. However, from the 3d day of life SGA neonates present functional
hypersomatotropism, i.e., increased GH and insulin growth factor 1 (IGF-1) levels relative
to appropriate for gestational age neonates, suggesting that the somatotropic axis is fully
operational since the first days of life [52,53]. In line with a functional GH/IGF-1 axis from
the first days of life is the observation that, in healthy full-term neonates, the postnatal
growth velocity is positively related to a spurt in immediate postnatal life IGF-1 levels [54].
It is noteworthy that the increased IGF-1 levels may persist in later years [55].

SGA children presenting catch-up growth are more prone to insulin resistance and
development of metabolic syndrome [56]. Recently a study on Sprague–Dawley rats
examined whether a post-receptor crosstalk of GH and insulin signaling might affect insulin
resistance in catch-up growth SGA animals [57]. The authors demonstrated that catch-up
growth SGA rats exhibit increased insulin resistance associated with an impaired IRS-1-
PI3K-AKT signaling pathway, which resulted from GH signaling-induced upregulation
of SOCS3 expression. Thus, these data suggest a link between increased GH levels and
insulin resistance in catch-up growth.
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Constitutional advancement of growth presents similarities to catch-up growth only
that the CAG children are, auxologically, appropriate for gestational age. Accordingly, they
are susceptible to developing obesity during childhood, therefore we suggested that the
growth pattern of CAG may be a predictor, not only of early puberty, but of childhood
obesity as well [10]. Moreover, it has been reported that earlier menarche was associated
with greater height, adiposity, and significantly increased serum IGF-1 at 8 years of age,
even after adjustment for height and BMI [58]. Thus, these data allow us to speculate that
the growth pattern of CAG is induced by the early activation of the GH/IGF-1 axis.

7. Concluding Remarks

The secular trend of pubertal onset in girls as reflected by the age at menarche has
started since the early 20th century with the improvement of the socioeconomic and hy-
gienic conditions. This trend, however, has levelled off in many countries of the developed
world [59] and it seems that it has reached the age range of menarche occurrence in the
paleolithic female [60], suggesting that human females evolved to enter puberty at a
young age.

There is a growing body of evidence that some EDCs alter the metabolic set-points
and increase the risk of obesity [61], and that EDC exposure during fetal life is associated
with breast cancer [62]. It is of interest that the increase in obesity prevalence coincides
with increases in endocrine-disrupting chemical production and exposures [63]. The rapid
increase in the prevalence of obesity in the last three decades suggests that environmental
factors are major players in the obesity epidemic. The association between EDCs and early
onset of puberty not only is inconsistent but is complicated by the fact that, at least in girls,
pubertal events may be advanced by obesity [64].

Undoubtedly, there is a great need for the EDC effects on the human body systems
to be studied thoroughly. However, from the data presented in this review, it is clear that
the major determinant of early puberty, at least in girls, is the presentation of the growth
pattern of constitutional advancement of growth, which is unrelated to EDC exposure.
Therefore, if there is a role of EDCs on female pubertal timing it seems, at the most, to be a
minor one.
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