Author, Year	Purpose, Aim	Study Design	Total	n per	Age	%	Disease	Relevant	Relevant Findings
	or Questions		Sampl	group	(mean	Female	Duration	Outcomes	
			e (N)		and SD)		(mean		
		~ 1		~	~	~	SD, yrs)		
Pakpoor et al.	To determine	Case-control	768	Case		Case	10.8	1. Block Kids	• Covariate adjusted model
2017	the association			312 Control	15.1(3.3)	62.5 Control	(10.2)	Food Screener	(age, sex, ethnicity, race,
[14]	diotomy factors				$\begin{array}{c} \textbf{Control} \\ 14.4.(2.7) \end{array}$			(BKFS) 2 DMI	BMI, and socioeconomic
	and POMS			430	14.4 (3.7)	52.9			lovels below PDA was
	natients								associated with an
	putients.								increased risk of POMS
									(odds ratio (OR) = 1.80.
									95% confidence intervals
									(Cl) 1.24-2.62, <i>p</i> < 0.01).
									• Individuals with POMS
									had higher BMIs (M=25.3,
									SD 7.1) than controls
									(M=22.1, SD 5.7; p <
									0.001).
Azary et al.	To investigate	Prospective	219	N/A	15.1 (3.3)	61.2	0.9 (0.9)	1. BKFS	• After adjusting for age,
2017	the effects of	cohort						2. Time to	sex, race, ethnicity, disease
[21]	diet on relapse							relapse (post	duration, BMI, total energy
	rate in POMS							enrollment to	intake, use of disease
	youth.							end of study)	modifying therapies, and
									baseline vitamin D levels,
									only vegetable and
									saturated fat intake were
									in POMS A 10% increase
									in caloric intake of
									saturated fats led to a
									tripling of the relapse risk
									(adjusted hazard ratio (HR):
									3.22, 95% CI 1.26 – 8.17,
									p=0.014) Whereas, the
									same increase in caloric

									intake in vegetables cut relapse risk in half (adjusted HR: 0.53, 95% CI 0.28 – 0.98, <i>p</i> =0.043).
McDonald et al. 2016 [26]	To investigate the association between dietary salt intake and POMS risk.	Case-control	501	Case 170 Control 331	Case 15.2 (3.5) Control 14.0 (3.7)	Cases 62.9 Control 48.6	1.0 (1.2)	1. BKFS	• No association was found between risk of POMS and higher salt intake (OR=1.00, 95% CI 0.98, 1.02; p=0.93) or excess salt intake (OR=1.05,95% CI 0.67,1.64; p=0.84).
Nourbakhsh et al. 2016 [25]	To determine if dietary salt intake is associated with time to relapse in individuals with POMS and CIS.	Prospective cohort	174	N/A	15.0 (3.3)	64.9	Not reported	1. BKFS 2. Time to relapse (post enrollment to end of study)	• No associations were found between sodium intake and time to next relapse. Patients with higher sodium intake had a HR of 0.69 (95% CI 0.37 to 1.30, <i>p</i> =0.25) whereas patients with low intake had an HR of 1.37 (95% CI 0.74 to 2.51, <i>p</i> =0.32).
Brenton et al. 2014 [20]	To determine the prevalence of vitamin D insufficiency and deficiency in POMS and adult-onset MS.	Retrospective cohort	116	POMS 24 Young Adult- onset MS 33 Adult- onset MS 59	Age of onset POMS 14.6 range (7-17) Young Adult- onset MS 19.7 range (18-21) Adult- onset MS 28.9	POMS 71 Young Adult- onset MS 73 Adult- onset MS 69	Not reported	1. Levels of 25- hydroxyvitamin D3: (within 12 months before or after the established diagnosis was made) Insufficient less than 30 ng/ml; deficient less than 20 ng/ml 2. BMI (within a 3 month period of the vitamin D	• No differences were found between age groups, however both groups had high percentage of individuals that were vitamin D deficient (50%) and insufficient (84%).

					range (22-57)			level draw) Overweight: BMI above 25-30 Obese: BMI above 30	
Yamamoto et al. 2018 [19]	To describe the POMS patient population from one center over 13 years.	Retrospective cohort	60	N/A	15.7 (2.9)	68	Not reported	1. Annualize relapse rate 2. 25(OH)- vitamin D Low levels were set at below 30 ng/ml 3. BMI	 63% of individuals with POMS in this study had low serum vitamin D levels. 49% of the cohort were overweight or obese, as determined by the BMI.
Yilmaz et al. 2017 [23]	To describe the features of POMS youth in Turkey.	Retrospective cohort	193	193	13.47 (2.88)	63.7	Not Reported	1. Serum 25- hydroxyvitamin D levels	• 68% of the Turkish cohort had low serum vitamin D levels.
Banwell et al. 2011 [27]	To determine the impact of vitamin D insufficiency, at first demyelinating event, on risk of POMS development.	Prospective cohort	302	Case 63 Mono- ADS) 239	Age at onset Case 12.0 (3.8) Mono- ADS 8.85 (4.5)	Case 65 Mono- ADS 48	Not reported	 Serum 25- hydroxyvitamin (samples taken within 40 days of symptom onset and categorized seasonally) MS diagnosis 	 Over half (68%) of the participants had serum vitamin D levels lower than 75 nmol/L. A 10 nmol/L decrease in vitamin D was associated with an increased risk of POMS (HR=0.89, 95% CI 0.80–0.98, p=0.006).

Mowry et al. 2010 [28]	To investigate if vitamin D status, is associated with relapse rate in POMS.	Prospective cohort	110	N/A	15.0 (3.0)	65%	Mean: 1 IQR (0.1- 8.3)	1. Relapse rate (number of relapses from blood draw to last follow-up) 2. Serum 25- hydroxyvitamin D (samples were deseasonalized and stratified by race and ethnicity)	After adjusteing for race, season and ethnicity, baseline vitamin D status was associated with a 33% increase in risk of relapse with each 10 ng/ml decrease (incidence rate ratio 0.66, 95% CI 0.46 – 0.95, p = 0.02).
Graves et al. 2016 [30]	To determine if genetic ancestry, sex, HLA- DBRB1*14, vitamin D levels, and non-HLA GRS are associated with rate of relapse in POMS youth.	Prospective cohort	181	N/A	Age at onset 13.1 (4.2)	65.8	Not reported	1. Levels of 25- hydroxyvitamin D3 (baseline serum samples) 2. Annualized relapse rate 3. HLA-DRB1* 15.01 or 15.03 (Presence)	• A 10ng/ml higher level of vitamin D only led to decreased relapse risk if individuals had at least one copy of either identified allele (HR = 0.73, 95% CI = 0.60–0.89, p= 0.001), while adjusting for DMT and sex.
Gianfrancesco et al. 2017 [18]	To estimate the causal association between low serum vitamin D levels, high BMI, and POMS using genetic risk scores.	Case-control with mendelian randomizatio n	16,820	US Case 394 US Control 10875 Sweden Case 175 Sweden control 5376	Age at Onset USA 14.05 (3.3) Sweden 14.91 (2.67)	USA 75.0 Sweden 71.4	Not reported	 Vitamin D Genetic Risk Factor (GRS) BMI GRS 	 SNPs that were associated with higher levels of serum vitamin D were associated with a reduced risk of POMS (OR 0.72 95% CI 0.55-0.9, <i>p</i>= 0.02). SNPs associated with obesity were associated with increased risk of POMS (OR: 1.17, 95% CI 1.05, 1.30; p = 0.01).

									• BMI and vitamin D levels act independently to alter disease risk in POMS.
Mowry et al. 2011 [29]	To investigate if vitamin D status is associated with antibody levels to common childhood viruses and whether these associations differ based on POMS status.	Retrospective cohort	140	POMS 120 CIS 20	POMS 15.0 (3.5) CIS 13.8 (3.9)	POMS 63 CIS 60	Mean:1.2 IQR (0.1- 8.3)	1. Levels of 25- hydroxyvitamin D3 in baseline serum samples 2. Viral assays Batched EBV viral capsid antigen (VCA), cytomegalovirus (CMV), and herpes simplex virus (HSV)-1 and -2 assays (IgG)	 POMS/CIS individuals with vitamin D sufficiency (over 30 ng/mL), had higher antibody levels to Epstein-Barr nuclear antigen-1 (coefficient=0.49, 95% CI 0.02, 0.97, p=0.043) than controls. This sufficiency was also associated with higher CMV antibody levels in POMS/CIS subjects (coefficient 1.04, 95% CI 0.36, 1.73, p=0.004) but lower CMV antibody levels in controls (coefficient -1.10, 95% CI -2.44, 0.25, p=0.11). Higher vitamin D levels were also associated with higher titers to HSV-2 in MS/ CIS patients (coefficient 0.05, 95% CI 0.01, 0.09, p=0.030) but not controls.
Tremlett et al. 2016 [33]	To explore the gut microbiota in early onset POMS compared to controls.	Case-control	35	Case 18 Control 17	Case 12.5 (4.44) Control 13.5 (3.08)	Case 56 Control 53	10.6 months (6.34)	 Alpha diversity expressed as evenness, richness and faith phylogenic diversity metric Beta diversity measured using 	 Significant differences were found at the levels of the phylum. MS cases had a significant enrichment in relative abundance for members of the <i>Desulfovibrionaceae</i> and depletion in

								Canberra distance matrix	<i>Lachnospiraceae</i> and <i>Ruminococcaceae</i> (all P and $q < 0.000005$). Microbial genes involved in glutathione metabolic pathway were more abundant in cases versus controls (Mann-Whitney, p=0.017).
Tremlett et al. 2016 [31]	To explore the association between gut microbiota in early POMS and relapse risk.	Prospective cohort	17	17	12.5 (4.57)	59%	10.3 months (6.6)	1. Relapse rate - (determined via structured forms and chart review by abstractors) 2. Gut Microbiome Profiles	 Low levels or an absence of <i>Fusobacteria</i> (<i>p</i>=0.001, log-rank test), higher levels of <i>Firmicutes</i> (<i>p</i>=0.003), and a presence of <i>Archaea Euyarchaeota</i> (<i>p</i>=0.037) were associated with a shorter time to relapse. Absence of <i>Fusobacteria</i> was associated with a 76% (95% CI: 55%-90%) risk of an earlier relapse (HR=3.2, 95% CI; 1.2-9, p = 0.024), which remained significant after covariate adjustment (age and immunomodulatory drug exposure).
Tremlett et al. 2016 [32]	To explore associations between the gut microbiota and blood immunological markers POMS cases early in their disease course compared to	Case-control	24	Case 15 Control 9	Case 11.9 (4.64) Control 13.8 (3.19)	MS 53 Control 78	10.0 months range 2–23 months	1. Microbiota Diversity 2. Phylum level abundances 3. Immune markers Treg frequency and intracellular cytokine	• Measurable differences were found between blood immune host markers and gut microbiota between cases and controls.

	healthy controls.							production by T- cell	
Langer-Gould et al. 2013 [34]	To examine if childhood obesity is associated with the risk of developing POMS or CIS.	Case-control	91317 2	Case 75 Control 913,097	Case 2-11 28% 12-18 72% Control 2-11 49.1% 12-18 50.0%	Case 54.7 Control 49.7	Not reported	1. BMI WHO definition for weight classes	 50.7% of cases were overweight or obese. Increased BMI was associated with increased risk of POMS/CIS in girls (OR = 3.76, 95% CI = 1.54 - 9.16, <i>p</i>< 0.005) but not boys.
Chitnis et al. 2016 [35]	To determine the relative contributions of BMI and pubertal measures for risk and age of onset of pediatric MS.	Case-control	674	Case 254 Control 420	Case 14 (3.4) Control 14 (3.7)	Case 63 Control 49	Less than 4 years	1. BMI (within 1 year of MS onset) Obesity defined as BMI above the 85th or 95th percentiles for age. 2. Sexual maturity measurements: Tanner Staging	 Increased BMI was associated with increased risk of POMS in post-pubertal girls (adjusted OR = 1.60, 95% CI: 1.12–2.27, <i>p</i>=0.009) but not in prepubertal girls. Sample size was insufficient to assess preand post-pubertal boys separately, but assessed together, high BMI also increased risk of POMS (adjusted OR = 1.43, 95% CI 1.08–1.88, <i>p</i>=0.011). Age of onset was 0.91 years earlier in overweight or obese girls (95% CI: 0.14–1.67, <i>p</i>=0.022).

Grover et al. 2015 [38]	To examine the association between physical activity (PA) and MS disease activity, depression, and fatigue in children with MS and monophasic acquired demyelinating syndrome (mono-ADS).	Cross- sectional cohort	110	Case 31 Mono- ADS 79	Case 15.91 (2.36) Mono- ADS 13.91 (4.43)	Case 81 Mono- ADS 54	<i>Median</i> (<i>IQR</i>) Case 1.64 (4.22) Mono- ADS 3.06 (5.03)	 Annualized relapse rate Fatigue Varni PedsOL multidimensiona fatigue scale (PedsQL MFS) Depression Centre for Epidemiological studies of Depression Scale for Children (CES-DC) Physical activity Godin Leisure- Time Exercise Questionnaire (GLTEQ) Disease burden and T2 lesion load on MRI 	 POMS youth engage in less strenuous physical activity (median 0.0, IQR 27.0) than mono-ADS patients (median 27.0, IQR 36.0; <i>p</i>=0.0012). Only 45.2% of POMS patients participated in strenuous activity as compared to those with Mono-ADS ADS (82.3%, <i>p</i>=0.0003). PA levels were negatively correlated with depression and fatigue. Higher strenuous PA was correlated with lower T2 lesion load (r=-0.66, <i>p</i>=0.006) and ARR (r=66, p=0.006).
Grover et al. 2016 [39]	To examine PA levels in youth with POMS and mono-ADS, compared with healthy controls and to determine factors that lead to engaging in PA.	Case control	106	MS 27 Mono- ADS 41 Control 37	<i>Median</i> (<i>IQR</i>) MS 16.0 (4.0) Mono- ADS 14.0 (4.0) Control 15.0 (3.0)	MS 67 Mono- ADS 46 Control 68	<i>Median</i> (<i>IQR</i>) MS 2.0 (2.0) Mono- ADS 4.0 (7.0)	1. Physical Activity GLTEQ 2. Fatigue PedsQL MFS 3. Depression CES-DC 4. Self-efficacy Physical Activity Self-Efficacy Scale (PASES) 5. Goal Setting The Exercise Goal-Setting	 PA goal setting was associated with engagement in vigorous PA, as assessed by accelerometry (<i>p</i>=0.0003), GLTEQ (<i>p</i>=0.006) in POMS patients. PA self-efficacy was associated with engagement in vigorous PA, as assessed by accelerometry (<i>p</i>=0.02) in POMS patients. POMS patients engaged in less moderate (<i>p</i>=0.009)

								Scale (EGS) 6. Sports Participation short questions about sport engagement	 and strenuous (p= 0.048) PA than patients with mono-ADS and healthy controls. A lower proportion of POMS patients (65%) participated in strenuous activity than did the other two groups (85-89%; p= 0.02) PASES and EGS were positively associated with PA levels
Kinnett- Hopkins et al. 2016 [40]	To examine the validity of GLTEQ as a measure of PA in POMS.	Validity study	72	Case 27 Control 45	<i>Median</i> (<i>IQR</i>) Case 15.73 (3.2) Control 14.76 (3.8)	Case 66.7 Control 66.7	Median (IQR) 2.03 (2)	1. Physical activity GLTEQ and accelerometer data	• A strong correlation was found between GLTEQ and accelerometer for measuring physical activity in individuals with POMS. This positive correlation reached significance for vigorous PA (r=0.736, <i>p</i> =0.001), and nearly met significance from moderate (r=0.319, p=0.053).
Toussaint- Duyster et al. 2017 [22]	To examine the interaction between exercise capacity, motor performance, neurological	Cross- sectional	38	MS 22 Post- ADEM 16	Median (IQR) MS 14 (13- 15) Post- ADEM	MS 82 Post- ADEM 44	<i>Median</i> (<i>IQR</i>) (<i>months</i>) MS 10.2 (4.6- 21.5) Post- ADEM	 Fatigue PedsQL MFS 2. Exercise Capacity Bruce protocol 3. Motor performance Movement Movement	• Findings showed a decrease in exercise capacity (Mean SDS= -1.37 (1.09), p < 0.001) and motor skills of POMS patients (Mean SDS= 13 (35.1), $p < 0.001$), particularly in balance

	status, fatigue				4.5 (2.3-		40.1	Assessment	subscales (Mean SDS=12
	and health				5.9)		(11.4-	Battery for	(32.4), <i>p</i> < 0.001).
	related quality						63.5)	Children second	• Further, decreased
	of life in youth							edition	exercise capacity was
	with MS and							(MABCII)	correlated with decreased
	post-ADEM.							4. Health-	participation in organized
								related quality	sports ($r = 0.365$, $p=0.034$).
								of life	
								Pediatric quality	
								of life inventory	
								4.0 (PedsOl-	
								HROoL)	
Zafar et al.	To examine if	Case-control	132	Case	Case	Case	2.6 (2.4)	1. Fatigue	• Individuals with POMS
2012	POMS			30	16.10	73	~ /	PedsOL MFS	were found to have better
[48]	patients have			Matched	(1.37)	Μ		2. Sleep quality	sleep hygiene, particularly
	more sleep			Control	Matched	Control		Adolescent	in relation to sleep stability
	disturbances.			52	Control	65		Sleep-Wake	(p=0.0052), greater
	fatigue, and			Historic	16.10	Historic		Scale (ASWS)	frequency of adherence to a
	davtime			Control	(1.71)	Control		2. Sleep hygiene	usual sleep time throughout
	sleepiness			52	Historic	77		Adolescent Sleep	the week and also less
	compared to				Control			Hygiene Scale	daytime sleepiness than
	controls				10.40			3. Davtime	controls $(n=0.0061)$
	c ontrolls.				(14 45)			sleeniness	controns (p=0.0001).
					(1110)			Modified	
								Epsworth	
								Sleepiness Scale	
								(mESS)	
Carroll et al.	To explore	Qualitative	28	POMS	Median	POMS	Median	Experience of	• Children with POMS
2016	experiences of	methods were		15	(range)	53	(range)	fatigue and how	reported that daytime
[49]	fatigue in	employed		Parents	POMS	Parents	2.9	it relates to sleep	fatigue often led to
	paediatric MS	using in-		of POMS	15.2	of	(1-11)	patterns.	napping, which disrupted
	and gain	depth semi-		youth	(9-18)	POMS			their sleep patterns and led
	insight into	structured		13	Parents	youth			to poor sleep quality.
	how POMS	interviews.			of POMS	85			* * * * *
	youth and their				youth				
	parents deal				46.8				
	with fatigue.				(32-52)				