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Abstract: Over 30,000 patients are permanently dependent on Total Parenteral  

Nutrition (TPN) for survival with several folds higher requiring TPN for a prolonged 

duration. Unfortunately, it can cause potentially fatal complications. TPN infusion results 

in impairment of gut mucosal integrity, enhanced inflammation, increased cytokine expression 

and trans-mucosal bacterial permeation. It also causes endotoxin associated down regulation of 

bile acid transporters and Parenteral Nutrition Associated Liver Disease (PNALD), which 

includes steatosis, disrupted glucose metabolism, disrupted lipid metabolism, cholestasis and 

liver failure. Despite multiple theories, its etiology and pathophysiology remains elusive and 

is likely multifactorial. An important cause for TPN related pathologies appears to be a 

disruption in the normal enterohepatic circulation due to a lack of feeding during such 

therapy. This is further validated by the fact that in clinical settings, once cholestasis sets 

in, its reversal occurs when a patient is receiving a major portion of calories enterally. There 

are several other postulated mechanisms including gut bacterial permeation predisposing to 

endotoxin associated down regulation of bile acid transporters. An additional potential 

mechanism includes toxicity of the TPN solution itself, such as lipid mediated hepatic toxicity. 

Prematurity, leading to a poor development of bile acid regulating nuclear receptors and 

transporters has also been implicated as a causative factor. This review presents the current 

controversies and research into mechanisms of TPN associated injury. 
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1. Introduction 

Although use of Total Parenteral Nutrition (TPN) is lifesaving, it is responsible for significant 

complications resulting in both morbidity and mortality [1–3]. TPN administration is known to cause 

the well-characterized Parenteral Nutrition Associated Liver Disease (PNALD), which includes liver 

steatosis, inflammation, fibrosis, cholestasis, associated glucose intolerance and dyslipidemia. Animal 

studies have shown that TPN administration is also associated with significant gut mucosal  

atrophy [4–7]. Unfortunately, there are no established ameliorative strategies for TPN associated 

pathology. 

The mechanisms of TPN related injury are likely multifactorial [8] and remain a major research 

focus in gastroenterology and hepatology. This manuscript seeks to review the current evidence as it 

relates to the postulated mechanisms involved with TPN related pathology. 

2. Bile Acid Mediated Farnesoid X Receptor (FXR) Induction of FGF19 

In clinical settings, TPN related injury does not develop if enteral nutrition is provided. In fact, it is 

well established that once cholestasis sets in, its reversal occurs when a patient is receiving all or a 

majority of calories via the enteral route. A study reviewed 172 neonates on TPN and noted significant 

differences in the development of cholestasis based on the day enteral feeding was started [9]. 

Recent insights from cell culture and animal models show that enteral bile acids activate a nuclear 

receptor, Farnesoid X Receptor (FXR) in intestinal epithelial cells [10,11]. Such activation stimulates 

production of a growth factor, Fibroblast Growth Factor-19 (FGF19) and its delivery via the portal 

circulation to the liver [12,13]. FGF19 functions as a secretory signal to the liver, regulating bile acid 

synthesis via repression of CYP7A1 (Cholesterol 7 alpha-hydroxylase—rate limiting step) [14]. 

Additionally, in obese mice, intravenous FGF19 prevented or reversed diabetes, improved glycemic 

control, improved lipid control, reduced hepatic triglyceride levels and reduced hepatic steatosis [15–17].  

It is thus predicted that hepatic bile acid synthesis, lipid and glucose metabolism is modulated via 

intestinal FXR signaling [18–20]. We have previously published significantly reduced FGF19 levels 

with TPN use. When animals on TPN were treated with an FXR agonist (Chenodeoxycholic Acid), 

there was elevation in FGF19 level [21]. 

Thus, based on current literature, it seems possible that PNALD result from an altered FXR-FGF19 

signaling. It is particularly important to note that while, Ursodeoxycholic acid (UDCA) has been used 

in patients with PNALD with inconsistent results [22–24], unlike CDCA, UDCA has minimal activity 

for FXR [10,20]. 

3. TGR5 and Glucagon Like Peptides 

Animal studies indicate that intestinal mucosal atrophy occurs upon TPN infusion, however the 

mechanisms remain unknown. Rodent studies show that feeding bile acids induces mucosal 

proliferation [6,25]. A rather interesting result from our recent publication indicates a robust gut growth 
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and near normalization of such atrophy upon treatment with bile acid receptor agonists [21]. It has also 

been reported that there is a significantly enhanced expression of Glucagon Like 

Peptides (GLPs) with bile acid treatment in animal models [21]. Data suggests that the Glucagon  

Like Peptide-1 (GLP-1) regulates insulin, glucose homeostasis and hepatic steatosis [26]. GLP-1 is 

increasingly recognized as one of the key gut hormones responsible for enhancing the insulin response 

to nutrient ingestion a phenomenon known as the ‘incretin effect’ [27]. Glucagon Like 

Peptide-2 (GLP-2) is one of the most important, well-established, gut-trophic factors [25]. 

GLP-1 and GLP-2 secretion by enteroendocrine cells is under regulation of the bile acid activated G 

protein-coupled receptor TGR5 [28,29]. TGR5 is highly localized in crypts and is known to modulate 

gut trophic effects [30,31]. This leads to a thought provoking idea that a disrupted TGR5 signaling and 

thus decreased GLP levels during TPN administration could additionally contribute to TPN injury. 

4. Gut Microbiota, Inflammation and FXR, TGR5 

Hepatic steatosis, inflammation, fibrosis, glucose intolerance and dyslipidemia are noted with TPN liver 

injury [7,32]. Intriguingly these phenotypes overlap with Nonalcoholic steatohepatitis (NASH) [33,34]. 

New data from human and animal studies point to an increasing evidence of a cross talk between 

the gut and the liver; with modulation of disease pathology by the gut microbiota [35,36]. Though an 

average person has only a small percentage of body weight attributable to bacteria (approximately two 

to five pounds of live bacteria) [37], in real cell numbers we are about 90% bacterial and 10%  

human. [38] Additionally, the microbial genome exceeds the human genome by two orders of 

magnitude making us genetically 99% bacterial and 1% human [38,39]. 

Indeed, some recent studies have shown significant changes in gut microbiota with evolving liver 

cirrhosis. An increased dysbiosis in the form of greater abundance of bacterial colonies of gram 

negative organisms like Bacteroidaceae and Enterobacteriaceae have been reported with advancing 

liver dysfunction and cirrhosis [40]. In rodent studies, cecal microbiota from ob/ob mice when 

introduced into germ free wild mice resulted in modest fat gain and increased food calorie extraction 

when compared to mice receiving gut microbiota from lean donors [41]. Methods to exogenously 

modify gut microbiota have also been tested with encouraging results. When adult patient with biopsy 

proven hepatic dysfunction were treated with a combination of orally administered Lactobacillus 

bulgaricus and Streptococcus thermophilus for three months, there was a significant decrease in ALT, 

AST and gamma glutamyl transferase (GGT) levels compared to controls [42]. 

Animal studies have demonstrated an increase in Bacteroidetes compared to Firmicutes in TPN 

infused animals and that colonization with Bacteroidetes leads to intestinal inflammation [43,44]. Such 

bacterial colonization can also result in increased intestinal permeability [45,46]. Increased bacterial 

infiltration across the gut causes endotoxin and cytokine mediated down regulation of bile acid 

transporters and ultimately hepatic injury [47–49]. Significantly higher Tumor Necrosis Factor (TNF) 

and Interleukin-6 (IL-6) levels have been noted in animals on TPN [50–52]. Multiple investigators 

have reported a decrease in inflammation induced liver injury in rats upon initiation of oral antibiotics, 

suggesting a role of bacteria in the development or exacerbation of PNALD [53–55].  
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5. FXR and TGR5 Regulated Gut Integrity 

Emerging data points to a gut protective role of FXR agonists. Mice lacking FXR have been shown 

to have increased ileal levels of bacteria and a compromised epithelial barrier and it has been 

implicated that FXR agonists may prevent epithelial deterioration and bacterial translocation [56,57]. 

Recent data from experimental colitis, implicates modulation of the intestinal barrier and immune 

responses by TGR5, postulating the noted effects being secondary to a change in the gut microbiota [58]. 

One of the most notable FXR modulated gene is inducible nitric oxide synthase (iNOS) [56,59]. 

Other FXR regulated genes include those coding for angiogenin (ANG1), a part of the acute phase 

response to infection, which has potent antibacterial actions. Carbonic anhydrase 12 (CAR12), 

involved in antibacterial defense by regulating luminal pH and ion balance is also modulated by  

FXR [60,61]. TGR5 activation is known to lower pro-inflammatory cytokines interleukin-1α (IL-1α), 

IL-1β, IL-6 and tumor necrosis factor-α (TNF-α) [62]. 

Therefore it remains plausible that a dysbiotic clonal expansion during TPN therapy causes 

increased gut permeability and hence endotoxin, cytokine mediated injury, which could be potentially 

prevented by FXR and TGR5 agonists. 

6. Role of the Lipid Emulsion 

The exact mechanisms of lipid induced liver injury remain poorly understood. Due to their rich content 

of essential fatty acids, traditionally, vegetable oils have been used as a source of lipids during 

parenteral nutrition. The primary source for lipids thus has been soybean oil derivatives [63]. As 

opposed to the soybean derived emulsions, with a predominance of ω-6fatty acids, fish oil based 

emulsions are higher is ω-3fatty acids [64]. Several studies have shown beneficial metabolic effects  

of ω-3fatty acid based lipid solutions in preventing or attenuating hepatic steatosis and cholestasis [65,66]. 

A study in neonatal piglets compared hepatic outcomes when using parenteral nutrition containing a 100% 

soy based emulsion (ω-6:ω-3 PUFA: 7:1) or a mixed lipid emulsion containing soy oil, medium-chain 

triglycerides (MCTs), olive oil, and fish oil (ω-6:ω-3 PUFA: approximately 2.5:1). Prevention of liver 

disease and a reduction in systemic inflammation was noted with the higher ω-3 based formulation [67]. 

In another study using neonatal piglets assessing if fish oil based lipid formulations could prevent 

PNALD, animals were given parenteral nutrition containing 100% soybean oil, 100% fish oil or a lipid 

mixture (soy oil, MCTs, olive and fish oil). After 14 days of treatment plasma levels of direct bilirubin, 

GGT and bile acids were significantly lower in animals receiving fish oil based emulsions with a 

greater reduction in direct bilirubin in animals on 100% fish oil [68]. 

Data from human studies using fish oil based emulsions have also been encouraging. Significant 

reduction in mortality and the need for liver transplantation has been noted in pediatric patients 

receiving fish oil based emulsions in comparison to those given plant derived emulsions [69,70]. 

While there have been concerns for essential fatty acid deficiency with 100% fish oil based 

emulsions, recent studies have shown otherwise [71,72]. There is emerging data that indicates that fish 

oil based monotherapy results in platelet dysfunction [73], which may be of clinical relevance in the 

context of human TPN administration with such emulsions. Additionally, a recent publication suggests 
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that improvement noted with a commercial ω-3 based emulsion may be due to significantly higher 

levels of Vitamin E, however further studies elucidating mechanistic links may be needed [74]. 

High ω-6fatty acid based emulsions are known to impact immune function by increasing cytokine 

production by activating the nuclear factor-kB pathway, which disrupts hepatobiliary transport leading 

to cholestasis [75]. Additionally high ω-6fatty acids accentuate lipid perioxidation and deplete levels of 

anti-oxidant tocopherols [70,76]. Prospective studies have noted improvement in systemic 

inflammation, as well as improvement in parenteral nutrition associated liver disease with use of fish 

oil based lipids [67,77]. 

There is also emerging evidence of the inhibitory effects of phytosterols found in soy-based lipids 

on bile acid secretion and excretion. Preterm infants on soy based lipid emulsions have significantly 

higher levels of phytosterols compared to controls and poorly developed mechanisms eliminating 

phytosterols have been implicated in their vulnerability to PNALD [78]. It has been postulated that 

phytosterols augment hepatic inflammation through TLR4 (Toll Like Recptor 4) macrophage 

activation. Addition of stigmasterol (a phytosterol) to PN solutions has been associated with 

proinflammatory hepatic macrophage activation [79,80]. Phytosterols also exert an inhibitory effect on 

FXR [81–84] In fact stigmasterol antagonizes the bile acid activated FXR target genes Bile salt export 

pump (BSEP) and the orphan nuclear receptor Short heterodimer partner (SHP) in FXR +/+ mice but 

fails to do so in FXR −/− mice hepatocytes [82]. The disrupted FXR signaling secondary to 

phytosterols has been additionally implicated in the metabolic dysregulation of bile acid pathways 

contributing to hepatic injury. 

There have also been studies evaluating the role of the amount of the lipid provided as a contributor 

to PNALD. Though traditionally lipids have been provided at 2–3 grams/kg/day, there have been studies 

demonstrating a reduction in the incidence of PNALD with a lipid dosed at ≤1 gram/kg/day [85,86]. 

Though this strategy has merits, there have been concerns for deleterious effects due to a lack of lipids 

in the growing infant. A higher Triene:Tetraene ratio has been noted in infants on lipid restricted 

parenteral nutrition indicating a trend towards a deficiency of essential fatty acids [85,87,88]. 

7. Toxicity of TPN Solution 

Data suggests that toxicity as well as relative deficiencies of parenteral nutrition components can 

lead to TPN associated injury. Aluminum, chromium and manganese have all been implicated. 

Aluminum present in the TPN solution is known to cause metabolic bone disease as well as 

neurological impairment [89]. In infant studies plasma concentration of aluminum has been shown to 

be several fold higher in patients receiving TPN vs. those on enteral nutrition [90]. 

Concerns have also been raised for organ damage secondary to chromium delivery during parenteral 

nutrition. Chromium plays a role in regulation of the action of insulin. Additionally, peripheral 

neuropathy, weight loss as well as kidney damage have been reported in patients receiving TPN. Over 

the past several years there has been an effort to decrease chromium concentration in parenteral 

nutrition solutions [91]. 

Anemia, cholestasis as well as neurotoxicity have been noted with manganese provided as part of 

TPN. Recent guidelines recommend monitoring of manganese levels if TPN has been provided for 

longer than 30 days. However, controversy exists in the method for assessing manganese stores as a 
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biomarker of manganese associated toxicity. Whole blood levels of manganese are highly variable and 

do not stringently correlate with manganese toxicity [92]. Reduction in manganese levels in TPN 

solution has been shown to reduce intra organ manganese deposition and thus may help in preventing 

toxicity [93]. 

Diets with carbohydrate excess have also been noted to enhance liver injury during parenteral 

nutrition [94]. Even though dextrose is not considered directly hepatotoxic, it has been speculated that 

there is enhanced insulin release and a resulting upregulation of enzymes regulating fatty acid 

synthesis with excessive carbohydrates. This causes hepatic steatosis leading to inflammatory hepatic 

damage [95–97]. 

8. Prematurity 

Clinical evidence points to significantly higher incidence of TPN associated pathology in premature 

babies in comparison to older individuals [98]. The mechanistic basis for such differences are not 

clearly delineated, however, it is postulated that immaturity in bile acid transporters regulating  

entero-hepatic circulation may be key contributors [99]. The expression of multidrug resistance  

protein 3, which is involved in phospholipid excretion in bile, was significantly less in human fetal 

livers in comparison to adult livers. The study also found significantly reduced levels of the 

Sodium/bile acid co-transporter protein, which is a key glycoprotein involved in normal entero-hepatic 

circulation [100–102]. Additionally, the expression of BSEP, which modulates the rate-limiting step of 

bile salt transport driving the enterohepatic circulation, though noted in early gestation, gradually 

increases with gestation age [101,102]. 

9. Conclusions 

TPN infusion is associated with significant morbidity and mortality. Though several postulated 

mechanism have been noted and extensively researched, there appears to be a broad support for the 

hypothesis that TPN associated pathology results from an alteration of the normal enterohepatic circulation. 

Several other mechanisms as detailed in this review are likely contributors to varying degrees. 
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