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Abstract

:

Generative artificial intelligence, especially with regard to the generative adversarial network (GAN), is an important research area in radiology as evidenced by a number of literature reviews on the role of GAN in radiology published in the last few years. However, no review article about GAN in pediatric radiology has been published yet. The purpose of this paper is to systematically review applications of GAN in pediatric radiology, their performances, and methods for their performance evaluation. Electronic databases were used for a literature search on 6 April 2023. Thirty-seven papers met the selection criteria and were included. This review reveals that the GAN can be applied to magnetic resonance imaging, X-ray, computed tomography, ultrasound and positron emission tomography for image translation, segmentation, reconstruction, quality assessment, synthesis and data augmentation, and disease diagnosis. About 80% of the included studies compared their GAN model performances with those of other approaches and indicated that their GAN models outperformed the others by 0.1–158.6%. However, these study findings should be used with caution because of a number of methodological weaknesses. For future GAN studies, more robust methods will be essential for addressing these issues. Otherwise, this would affect the clinical adoption of the GAN-based applications in pediatric radiology and the potential advantages of GAN could not be realized widely.
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1. Introduction


Artificial intelligence (AI) is a popular topic in radiology such as for rapid disease (e.g., COVID-19) detection on various platforms including mobile devices [1,2,3,4,5,6,7,8,9,10,11,12]. Additionally, the number of AI research articles in radiology has grown exponentially over recent years [1,2]. Various commercial AI products have been available for applications in clinical practice such as radiological examination dose optimization [13,14,15,16,17,18,19,20,21,22,23,24,25,26], computer-aided detection and diagnosis (CAD) [27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48], and medical image segmentation [49,50,51,52,53]. Predominantly, these applications in radiology are based on deductive AI techniques [1,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54]. However, generative AI, especially the generative adversarial network (GAN) which focuses on the creation of new and original content, has started attracting the attention of radiology researchers and clinicians as evidenced by a number of literature reviews on the role of GAN in radiology published in the last few years [54,55,56,57,58,59,60,61,62].



The GAN was devised by Goodfellow et al. in 2014 [56,59,62,63]. Its basic form (also known as Vanilla GAN) consists of two models, a generator and a discriminator. Development of this GAN model requires training the generator to produce fake images while the discriminator is responsible for determining whether the image produced by the generator is fake or real. The training is completed upon the discriminator unable to indicate the generator’s output images are fake, and hence the generator becomes capable of producing high-quality fake images close to the real ones [56,59,62,63,64,65]. This capability is highly relevant to medical imaging and therefore radiology [64,65]. Its current applications in radiology include image synthesis and data augmentation [1,55,56,57,59,60,61,62], image translation (e.g., from one modality to another one [1,55,56,58,59,60,61,62], from normal to abnormal [1,55,62], etc.), image reconstruction (e.g., denoising [1,55,59,60,61], artifact removal [1,56,58,61], super-resolution (image spatial resolution improvement) [1,55,56,57,59,61,64,65], motion unsharpness correction [61], etc.), image feature extraction [55,57,60,61], image segmentation [1,55,56,57,60,61,62], anomaly detection [55,56,60], disease diagnosis [55,57,60], prediction [55,56,61] and prognosis [55,57,60,61], and image registration [1,55,60,61].



Pediatric radiology is a subset of radiology [26,28,29,66,67]. The aforementioned review findings may not be applicable to pediatric radiology [28,29,55,56,57,58,59,60,61,62,67]. For example, the application of GAN for prostate cancer segmentation appears not relevant to children [60,68]. Although several literature reviews about AI in pediatric radiology have been published, none of them focused on the GAN [26,28,29,67]. Given that the GAN is an important topic area in radiology and the recent literature reviews focused on its applications in this discipline, it is timely to conduct a systematic review of its applications in pediatric radiology [29,55,56,57,58,59,60,61,62]. The purpose of this article is to systematically review published original studies to answer the question “What are the applications of GAN in pediatric radiology, their performances, and methods for their performance evaluation?”.




2. Materials and Methods


This systematic review of the GAN in pediatric radiology was carried out according to the PRISMA guidelines and patient/population, intervention, comparison, and outcome (PICO) model (Table 1) [26,29,69]. Four major processes, literature search, article selection, and data extraction and synthesis were involved [26,29].



2.1. Literature Search


The electronic scholarly publication databases, EBSCOhost/Cumulative Index of Nursing and Allied Health Literature (CINAHL) Ultimate, Ovid/Embase, PubMed/Medline, ScienceDirect, Scopus, SpringerLink, Web of Science, and Wiley Online Library were used for literature search on 6 April 2023 to identify articles about the GAN in pediatric radiology and publication year was not restricted. The search statement, (“Generative Adversarial Network” OR “Generative Artificial Intelligence”) AND (“Pediatric” OR “Children”) AND (“Radiology” OR “Medical Imaging”) was used. The review focus was used to derive the search keywords [26,29].




2.2. Article Selection


Article selection was conducted by one reviewer with a literature review experience of more than 20 years [26,29,70]. Table 2 shows the article’s inclusion and exclusion criteria.



The exclusion criteria of Table 2 were established because of: 1. unavailability of well-developed methodological guidelines for appropriate grey literature selection; 2. Incomplete study information given in conference abstracts; 3. a lack of primary evidence in editorials, reviews, perspectives, opinions, and commentary; and 4. unsubstantiated information given in non-peer-reviewed papers [26,29,62,71]. The detailed process of the article selection is shown in Figure 1 [26,29,69]. Duplicate papers were first removed from the database search results. Subsequently, article titles, abstracts, and full texts were assessed against the selection criteria. Each non-duplicate paper in the search results was kept unless a decision on its exclusion could be made. Additionally, relevant articles were identified by checking reference lists of the included papers [26,29,71].




2.3. Data Extraction and Synthesis


Three systematic reviews on the GAN for image classification and segmentation in radiology [62], AI for radiation dose optimization [26] and CAD in pediatric radiology [29], and one narrative review about the GAN in adult brain imaging [56] were used to develop a data extraction form (Table 3). The data, author name and country, publication year, imaging modality, GAN architecture (such as cycle-consistent GAN (CycleGAN)), study design (either prospective or retrospective), patient/population (e.g., 0–10-year-old children), dataset source (such as public cardiac magnetic resonance imaging (MRI) dataset by Children’s Hospital Los Angeles, USA) and size (e.g., total: 33 scans-training: 25; validation: 4; testing: 4, etc.), any sample size calculation, application area (such as image synthesis and data augmentation), model commercial availability, model internal validation type (e.g., 4-fold cross-validation, etc.), any model external validation (i.e., any testing of model based on dataset not used in internal validation and obtained from different setting), reference standard for establishing ground truth (such as expert consensus), any comparison of performance of model with clinician, and key findings of model performance (e.g., area under receiver operating characteristic curve (AUC), sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), accuracy, and F1 score, etc.) were extracted from every article included [26,29,56,62]. For facilitating GAN model performance comparison, improvement figures such as improvement percentages when the GAN was used were synthesized (if not reported) based on the available absolute figures (if feasible) [26]. When a study reported performances for more than one GAN model, only the best-performing model performance values were shown [29,72]. Meta-analysis was not performed as this systematic review included a range of GAN applications, resulting in high study heterogeneity which would affect its usefulness [29,73,74,75]. The quality assessment tool for studies with diverse designs (QATSDD) was used to determine quality percentages for all included papers [26,71,76]. <50%, 50–70%, and >70% represented low, moderate, and high qualities of study, respectively [26,71].





3. Results


Thirty-seven papers that met the selection criteria were included in this review. These study characteristics are shown in Table 3. All identified articles were published over the last five years and the publication number increased every year with the highest number in 2022 [77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113]. This increasing trend was in line with the one in radiology [1,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113]. About half of the articles (n = 17) were journal papers [77,78,82,84,87,90,92,97,98,99,100,101,102,103,105,109,111]. Around two-thirds of these (n = 11) were determined as being of high quality [82,84,87,90,92,97,102,103,105,109,111]. All low-quality ones were conference papers (n = 12) [79,80,81,83,85,86,91,93,94,95,104,108]. The GAN was commonly applied to MRI (n = 18) [77,78,83,84,87,90,97,101,103,104,105,106,108,109,110,111,112,113] and X-ray (n = 13) [79,80,89,91,92,94,95,96,98,99,100,102,107], and the others included computed tomography (CT) (n = 4) [82,86,93,97], ultrasound (n = 2) [85,88] and positron emission tomography (PET) (n = 1) [81]. Although the basic GAN architecture was still popular among the included studies (n = 11) [77,78,80,82,83,84,89,94,97,99,106], its variant, cycle-consistent GAN (CycleGAN), was the second most common (n = 10) [101,102,103,104,107,108,109,110,111,112].
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Table 3. Characteristics of generative adversarial network (GAN) studies in pediatric radiology (grouped by their applications).
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Author, Year & Country

	
Modality

	
GAN Architecture

	
Study Design

	
Patient/Population

	
Dataset Source

	
Dataset Size

	
Sample Size Calculation

	
Application Area

	
Commercial Availability

	
Internal Validation Type

	
External Validation

	
Reference Standard

	
AI VS Clinician

	
Key Findings






	
Disease Diagnosis




	
Kuttala et al. (2022)—Australia, India, and the United Arab Emirates [77]

	
MRI

	
GAN

	
Retrospective

	
Children (median ages: 12.6 (baseline) and 15.0 (follow-up) years

	
Public brain MRI dataset (Autism Brain Imaging Data Exchange II)

	
Total: 70 scans-training: 24; testing: 46

	
No

	
Autism diagnosis based on brain MRI images

	
No

	
NR

	
No

	
NR

	
No

	
158.6% accuracy (U-Net: 0.370; GAN: 0.957) and 114.3% AUC (U-Net: 0.420; GAN: 0.900) improvements for autism diagnoses, respectively




	
Kuttala et al. (2022)—Australia, India, and the United Arab Emirates [78]

	
MRI

	
GAN

	
Retrospective

	
Children (median ages: 12 (baseline) and 15 (follow-up) years

	
Public brain MRI datasets (ADHD-200 and Autism Brain Imaging Data Exchange II)

	
Total: 265 scans-training: 48; testing: 217

	
No

	
ADHA and autism diagnosis based on brain MRI images

	
No

	
NR

	
No

	
NR

	
No

	
29.6% and 39.7% accuracy improvements for ADHD and autism diagnoses (3D CNN: 0.659 and 0.700; GAN: 0.854 and 0.978), respectively. GAN AUC: 0.850 (ADHD) and 0.910 (autism)




	
Motamed and Khalvati (2021)—Canada [79]

	
X-ray

	
DCGAN

	
Retrospective

	
1–5-year-old children

	
Public CXR dataset by Guangzhou Women and Children’s Medical Center, China

	
Total: 4875 images-training: 3875; testing: 1000

	
No

	
Pneumonia diagnosis based on CXR

	
No

	
NR

	
No

	
NR

	
No

	
3.5% AUC improvement (Deep SVDD: 0.86; DCGAN: 0.89)




	
Image Reconstruction




	
Dittimi and Suen (2020)—Canada [80]

	
X-ray

	
GAN

	
Retrospective

	
1–5-year-old children

	
Public CXR dataset by Guangzhou Women and Children’s Medical Center, China

	
Total: 5863 images

	
No

	
CXR image reconstruction (super-resolution)

	
No

	
70:30 random split

	
No

	
Original CXR images

	
No

	
19.1% SSIM (SRCNN: 0.832; SRCNN-GAN: 0.991) and 46.5% PSNR (SRCNN: 26.18; SRCNN-GAN: 38.36 dB) improvements




	
Fu et al. (2022)—China [81]

	
PET

	
TransGAN

	
Retrospective

	
Children

	
Private brain PET dataset by Hangzhou Universal Medical Imaging Diagnostic Center, China

	
Total: 45 scans

	
No

	
Brain PET image reconstruction (denoising)

	
No

	
10-fold cross-validation

	
No

	
Original full-dose PET images

	
No

	
10.3% SSIM (U-Net: 0.861; TransGAN-SDAM: 0.950) and 29.9% PSNR (U-Net: 26.1; TransGAN-SDAM: 33.9 dB) improvements with 67.7% VSMD reduction (U-Net: 0.133; TransGAN-SDAM: 0.043)




	
Park et al. (2022)—Republic of Korea [82]

	
CT

	
GAN

	
Retrospective

	
3 groups of children (mean ages (years): 6.2 ± 2.2; 7.2 ± 2.5; 7.4 ± 2.2)

	
Private abdominal CT dataset

	
Total: 3160 images-training: 1680; validation: 820; testing: 660

	
No

	
Low-dose abdominal CT image reconstruction (denoising)

	
No

	
NR

	
Yes

	
Consensus of 1 pediatric and 1 abdominal radiologist (6 and 8 years’ experiences), respectively.

	
Yes

	
42.7% noise reduction (LDCT: 12.4 ± 5.0; SAFIRE: 9.5 ± 4.0; GAN: 7.1 ± 2.7), and 39.3% (portal vein) and 45.8% (liver) SNR (LDCT: 22.9 ± 9.3 and 13.1 ± 5.7; SAFIRE: 30.1 ± 12.2 and 17.3 ± 7.6; GAN: 31.9 ± 13.0 and 19.1 ± 7.9) and 30.9% (portal vein) and 32.8% (liver) CNR (LDCT: 16.2 ± 7.5 and 6.4 ± 3.7; SAFIRE: 21.2 ± 9.8 and 8.5 ± 5.0; GAN: 21.2 ± 10.1 and 8.5 ± 4.3) improvements when compared with LDCT images, respectively.




	
Pham et al. (2019)—France [83]

	
MRI

	
3D GAN

	
Retrospective

	
Neonates

	
Public (Developing Human Connectome Project) and private brain MRI datasets by Reims Hospital, France

	
Total: 40 images-training: 30; testing: 10

	
No

	
Brain MRI image reconstruction (super-resolution) and segmentation

	
No

	
NR

	
Yes

	
NR

	
No

	
1.39% SSIM (non-DL: 0.9492; SRCNN: 0.9739; GAN: 0.9624) and 3.42% PSNR (non-DL: 30.70 dB; SRCNN: 35.84 dB; GAN: 31.75 dB) improvements for super-resolution and 12.4% DSC improvement for segmentation (atlas-based: 0.788; intensity-based: 0.818; GAN: 0.886) when compared with non-DL approaches, respectively




	
Image Segmentation




	
Decourt and Duong (2020)—Canada and France [84]

	
MRI

	
GAN

	
Retrospective

	
2–18-year-old children

	
Private cardiac MRI dataset by Hospital for Sick Children in Toronto, Canada

	
Total: 33 scans-training: 25; validation: 4; testing: 4

	
No

	
Cardiac MRI image segmentation

	
No

	
Cross-validation

	
Yes

	
Manual segmentation by clinicians

	
No

	
2.4% mean DSC improvement (U-Net: 0.85; GAN: 0.87) with 3.8% mean HD reduction (U-Net: 2.55 mm; GAN: 2.46 mm)




	
Guo et al. (2019)—China [85]

	
US

	
DNGAN

	
NR

	
0–10-year-old children

	
Private echocardiography dataset by a Chinese hospital

	
Total: 87 scans-training: 1765 images; testing: 451 images

	
No

	
Echocardiography image segmentation

	
No

	
NR

	
No

	
NR

	
No

	
4.6% mean DSC (U-Net: 0.88; DNGAN: 0.92), 7.6% mean Jaccard index (U-Net: 0.80; DNGAN: 0.86) and 8.5% mean PPV (U-Net: 0.86; DNGAN: 0.94) improvements but with 0.9% mean sensitivity reduction (U-Net: 0.93; DNGAN: 0.92)




	
Kan et al. (2021)—USA [86]

	
CT

	
AC-GAN

	
NR

	
1–17-year-old children

	
Private abdominal CT dataset by Medical College of Wisconsin, USA

	
Total: 64 scans

	
No

	
Abdominal CT image segmentation

	
No

	
4-fold cross-validation

	
No

	
NR

	
No

	
3.9% and 0.7% mean DSC improvements (U-Net: 0.697 and 0.923; GAN: 0.724 and 0.929) with 35.0% and 13.3% mean HD reductions (U-Net: 1.090 and 0.390 mm; GAN: 0.709 and 0.338 mm) for uterus and prostate segmentations, respectively




	
Karimi-Bidhendi et al. (2020)—USA [87]

	
MRI

	
DCGAN

	
Retrospective

	
2–18-year-old children

	
Public cardiac MRI datasets by Children’s Hospital Los Angeles, USA, and ACDC

	
Total: 159 scans-training: 41; testing: 118

	
No

	
Cardiac MRI image segmentation

	
No

	
80:20 random split

	
Yes

	
Manual image segmentation by a pediatric cardiologist sub-specialized in cardiac MRI

	
No

	
34.5% mean DSC (cvi42: 0.631; U-Net: 0.782; DCGAN: 0.848), 38.5% Jaccard index (cvi42: 0.556; U-Net: 0.702; DCGAN: 0.770), 53.2% R2 (cvi42: 0.629; U-Net: 0.871; DCGAN: 0.963), 30.8% sensitivity (cvi42: 0.666; U-Net: 0.775; DCGAN: 0.872), 0.1% specificity (cvi42: 0.997; U-Net: 0.998; DCGAN: 0.998), 34.0% PPV (cvi42: 0.636; U-Net: 0.839; DCGAN: 0.852) and 0.4% NPV (cvi42: 0.995; U-Net: 0.997; DCGAN: 0.998) improvements with 24.7% mean HD (cvi42: 11.0 mm; U-Net: 11.0 mm; DCGAN: 8.3 mm) and 31.6% MCD reductions (cvi42: 4.4 mm; U-Net: 4.5 mm; DCGAN: 3.0 mm) when compared with cvi42




	
Zhou et al. (2022)—Canada [88]

	
US

	
pix2pix GAN

	
Prospective

	
Children

	
Private wrist US dataset by University of Alberta Hospital, Canada

	
Total: 57 scans-training: 47; testing: 10

	
No

	
Wrist US image segmentation

	
No

	
NR

	
No

	
Manual segmentation by radiologist and sonographer with 18 and 7 years’ experience, respectively

	
No

	
7.5% sensitivity improvement (U-Net: 0.642; GAN: 0.690) but with 5.6% DSC (U-Net: 0.698; GAN: 0.659), 8.6% Jaccard index (U-Net: 0.548; GAN: 0.501) and 17.8% PPV (U-Net: 0.783; GAN: 0.644) reductions




	
Image Synthesis and Data Augmentation




	
Banerjee et al. (2021)—India [89]

	
X-ray

	
GAN

	
Retrospective

	
1–5-year-old children

	
Public CXR dataset by Guangzhou Women and Children’s Medical Center, China

	
Total: 5863 images

	
No

	
CXR image synthesis and data augmentation for DL-CAD model training

	
No

	
NR

	
No

	
NR

	
No

	
13,921 images were generated for training the DL-CAD model for pneumonia with 6.3% accuracy improvement (with and without GAN: 0.986 and 0.928), respectively




	
Diller et al. (2020)—Germany [90]

	
MRI

	
PG-GAN

	
Retrospective

	
Children with a median age of 15 years (IQR: 12.8–19.3 years)

	
Private cardiac MRI dataset by German Competence Network for Congenital Heart Defects

	
Total: 303 scans

	
No

	
Cardiac MRI image synthesis and data augmentation

	
No

	
NR

	
No

	
Ground truth determined by researchers

	
Yes

	
Mean rates of PG-GAN generated images identified by clinicians being fake: 70.5% (3 cardiologists) and 86.7% (2 cardiac MRI experts)




	
Guo et al. (2021)—China [91]

	
X-ray

	
AC-GAN

	
Retrospective

	
1–5-year-old children

	
Public CXR dataset by Guangzhou Women and Children’s Medical Center, China

	
Total: 5856 images-training: 1500; testing: 4356

	
No

	
CXR image synthesis and data augmentation for DL-CAD model training

	
No

	
NR

	
No

	
NR

	
No

	
250 pneumonia and 250 normal images generated for DL-CAD model training with 0.6% accuracy improvement (with and without AC-GAN: 0.913 and 0.907), respectively




	
Guo et al. (2022)—China [92]

	
X-ray

	
AC-GAN

	
Prospective

	
2–14-year-old children

	
Private CXR dataset by Quanzhou Women’s and Children’s Hospital, China

	
Total: 6442 images-training: 3600

	
No

	
CXR image synthesis and data augmentation for DL-CAD model training

	
No

	
NR

	
No

	
NR

	
No

	
2000 images generated with 7.7% and 13.5% differences between ground truth (IS: 2.08) and AC-GAN generated normal (IS: 1.92) and pneumonia (IS: 1.80) images, respectively. The use of AC-GAN images for training the DL-CAD model improved sensitivity (with and without AC-GAN: 0.86 and 0.62), specificity (with and without AC-GAN: 0.97 and 0.90), and accuracy (with and without AC-GAN: 0.91 and 0.76) by 38.7%, 7.8%, and 19.7%, respectively




	
Kan et al. (2020)-USA [93]

	
CT

	
AC-GAN

	
NR

	
1–18-year-old children

	
NR

	
Total: 5 scans

	
No

	
Pancreatic CT image synthesis and data augmentation

	
No

	
NR

	
No

	
NR

	
No

	
AC-GAN was able to generate high-resolution pancreas images with fine details and without any streak artifact and irregular pancreas contour when compared with DCGAN




	
Khalifa et al. (2022)-Egypt [94]

	
X-ray

	
GAN

	
Retrospective

	
1–5-year-old children

	
Public CXR dataset by Guangzhou Women and Children’s Medical Center, China

	
Total: 624 images

	
No

	
CXR image synthesis and data augmentation for DL-CAD model training

	
No

	
80:20 random split

	
No

	
Specialist consensus

	
No

	
5616 images generated for training the DL-CAD model for pneumonia with 6.7% accuracy improvement (with and without GAN: 0.990 and 0.928), respectively




	
Kora Venu (2021)-USA [95]

	
X-ray

	
DCGAN

	
Retrospective

	
1–5 years old children

	
Public CXR dataset by Guangzhou Women and Children’s Medical Center, China

	
Total: 5856 images-training: 4684; testing: 1172

	
No

	
CXR image synthesis and data augmentation for DL-CAD model training

	
No

	
80:20 random split

	
No

	
NR

	
No

	
2152 images generated for training DL-CAD model for pneumonia with 2.6% AUC (with and without DCGAN: 0.993 and 0.968), 6.5% sensitivity (with and without DCGAN: 0.993 and 0.932), 13.5% PPV (with and without DCGAN: 0.990 and 0.872), 6.4% accuracy (with and without DCGAN: 0.987 and 0.928) and 10.0% F1 score improvements (with and without DCGAN: 0.991 and 0.901), respectively




	
Li and Ke (2022)-USA [96]

	
X-ray

	
DCGAN

	
Retrospective

	
1–5 years old children

	
Public CXR dataset by Guangzhou Women and Children’s Medical Center, China

	
Total: 5910 images-training: 4300; validation: 724; testing: 886

	
No

	
CXR image synthesis and data augmentation for DL-CAD model training

	
No

	
90:10 random split

	
No

	
NR

	
No

	
2700 images generated for training DL-CAD model for pneumonia with 13.7% accuracy (with and without DCGAN: 0.960 and 0.844) and 1.1% AUC (with and without DCGAN: 0.994 and 0.983) improvements, respectively




	
Prince et al. (2020)-Canada and USA [97]

	
CT and MRI

	
GAN

	
Retrospective

	
Children

	
Public (ATPC Consortium) and private brain CT-MRI datasets by Children’s Hospital Colorado and St. Jude Children’s Research Hospital, USA

	
Total: 86 CT-MRI scans-training: 53; testing: 33

	
No

	
Brain CT-MRI image synthesis and data augmentation for DL-CAD model training

	
No

	
60:40 random split and 5-fold cross-validation

	
No

	
Histology

	
Yes

	
2000 CT and 2000 MRI images generated for training DL-CAD model for adamantinomatous craniopharyngioma with 0.890 (CT) and 0.974 (MRI) accuracy. 17.0% AUC improvement for MRI (radiologists: 0.833; GAN: 0.975) but 1.6% AUC reduction for CT (radiologists: 0.894; GAN: 0.880).




	
Su et al. (2021)-China [98]

	
X-ray

	
WGAN

	
Retrospective

	
1–19 years old children

	
Public hand X-ray dataset (RSNA Pediatric Bone Age Challenge)

	
Total: 14,236 images-training: 12,611; validation: 1425; testing: 200

	
No

	
Hand X-ray image synthesis and data augmentation, and bone age assessment

	
No

	
NR

	
No

	
Manual assessment by expert clinicians

	
No

	
11,350 images generated with 7.9 IS, 17.3 FID and 20.0% MAE reduction (CNN: 5.29 months; WGAN: 4.23 months)




	
Szepesi and Szilágyi (2022)-Hungary and Romania [99]

	
X-ray

	
GAN

	
Retrospective

	
1–5 years old children

	
Public CXR dataset by Guangzhou Women and Children’s Medical Center, China

	
Total: 5856 images-training: 4099; validation: 586; testing: 1171

	
No

	
CXR image synthesis and data augmentation for DL-CAD model training

	
No

	
10-fold cross-validation

	
No

	
Expert clinicians

	
No

	
2152 images generated for training DL-CAD model for pneumonia with 0.9820 AUC, 0.9734 sensitivity, 0.9740 PPV, 0.9721 accuracy, and 3.9% F1 score improvement (CNN: 0.9375; GAN: 0.9740)




	
Vetrimani et al. (2023)-India [100]

	
X-ray

	
DCGAN

	
Retrospective

	
1–8 years old children

	
Public CXR datasets by Guangzhou Women and Children’s Medical Center, China and from various websites such as Radiopaedia

	
Total: 987 images-training: 645; validation: 342

	
No

	
CXR image synthesis and data augmentation for DL-CAD model training

	
No

	
NR

	
No

	
NR

	
No

	
Additional images generated by DCGAN for training DL-CAD model for laryngotracheobronchitis with 0.8791 sensitivity, 0.854 PPV, 0.8832 accuracy and 0.8666 F1 score.




	
Image Translation




	
Chen et al. (2021)-China and USA [101]

	
MRI

	
3D CycleGAN

	
Retrospective

	
Neonates

	
Private brain MRI datasets by Xi’an Jiaotong University, China and University of North Carolina, USA

	
Total: 40 images

	
No

	
Image translation (for domain adaptation in brain MRI image segmentation)

	
No

	
NR

	
No

	
NR

	
No

	
1.2% mean DSC improvement (with and without 3D CycleGAN: 0.86 and 0.85) with 12.8% mean HD (with and without 3D CycleGAN: 13.03 and 14.94 mm) and 16.0% MSD (with and without 3D CycleGAN: 0.23 and 0.27 mm) reductions, respectively




	
Hržić et al. (2021)-Austria, Croatia and Germany [102]

	
X-ray

	
CycleGAN

	
Retrospective

	
Children (mean age: 11 ± 4 years)

	
Private wrist X-ray dataset by Medical University of Graz, Austria

	
Total: 9672 images- training: 7600; validation: 636; testing: 1436

	
No

	
Wrist X-ray image translation (cast suppression)

	
No

	
NR

	
No

	
Real castless wrist X-ray images

	
No

	
Real castless and CycleGAN generated cast suppressed image histogram similarity scores: 0.998 (correlation) and 222,503 (intersection) with difference values: 59,451 (chi-square distance) and 0.147 (Hellinger distance)




	
Kaplan et al. (2022)-USA and Germany [103]

	
MRI

	
3D CycleGAN

	
Prospective

	
Neonates (mean PMA: 41.1 ± 1.5 weeks) and infants (mean age: 41.2 ± 1.9 weeks)

	
Private brain MRI datasets by Washington University and ECHO Program, USA

	
Total: 137 scans-training: 107; testing: 30

	
No

	
Brain MRI image translation (T1w-to-T2w)

	
No

	
NR

	
Yes

	
Real T2w MRI images acquired from same patients

	
No

	
9.7% and 7.9% SSIM and DSC improvements (Kaplan-T2w: 0.72 and 0.76; CycleGAN: 0.79 and 0.82) with 18.8% relative MAE reduction (Kaplan-T2w: 6.9; CycleGAN: 5.6) and no statistically significant CNR difference (Kaplan-T2w: 0.76; CycleGAN: 0.63; original images: 0.62), respectively




	
Khalili et al. (2019)-The Netherlands [104]

	
MRI

	
CycleGAN

	
NR

	
Neonates (mean PMA: 30.7 ± 1.0 weeks)

	
Private brain MRI dataset by University Medical Center Utrecht, The Netherlands

	
Total: 80 scans-training: 35; testing: 45

	
No

	
Brain MRI image translation between motion blurred and blurless ones for training DL-segmentation model

	
No

	
NR

	
No

	
NR

	
No

	
6.7% DSC improvement (with and without CycleGAN: 0.80 and 0.75) with 32.4% HD (with and without CycleGAN: 25.0 and 37.0 mm) and 60.5% MSD reductions (with and without CycleGAN: 0.5 and 1.3 mm) for segmentation, respectively. Median subjective image quality and segmentation accuracy ratings (scale 1–5): before (2 and 3) and after motion unsharpness correction (3 and 4), respectively




	
Maspero et al. (2020)-The Netherlands [105]

	
MRI

	
2D CGAN

	
Retrospective

	
2.6–19 (mean: 10 ± 5) years old children

	
Private brain CT and T1w MRI dataset by University Medical Center Utrecht, The Netherlands

	
Total: 60 CT and MRI scans-training: 30; validation: 10; testing: 20

	
No

	
Brain MRI image translation to CT for radiation therapy planning

	
No

	
4-fold cross-validation

	
No

	
Real CT images acquired from same patients

	
No

	
DSC: 0.92; MAE: 61 HU for CT images generated from MRI images by CGAN




	
Peng et al. (2020)-China, Japan and USA [106]

	
MRI

	
3D GAN

	
Retrospective

	
6–12 months old children

	
Public brain MRI dataset (Infant Brain Imaging Study)

	
Total: 578 scans-training: 462; validation: 58; testing: 58

	
No

	
Brain MRI image translation between images acquired 6 months apart

	
No

	
NR

	
No

	
Real MRI images acquired from same patient 6 months apart

	
No

	
1.5% DSC improvement (U-Net: 0.809; GAN: 0.821) and 7.5% MSD reduction (U-Net: 0.577 mm; GAN: 0.534 mm) but with 16.8% RVD increase (U-Net: 0.0424; GAN: 0.0495)




	
Tang et al. (2019)-China and USA [107]

	
X-ray

	
CycleGAN

	
Retrospective

	
1–5 years old children and adult

	
Public CXR datasets by Guangzhou Women and Children’s Medical Center, China and from RSNA Pneumonia Detection Challenge

	
Total: 17,508 images-training: 16,884; testing: 624

	
No

	
Image translation (for domain adaptation of DL-CAD)

	
No

	
5-fold cross-validation

	
No

	
NR

	
No

	
7.8% AUC (with and without CycleGAN: 0.963 and 0.893), 11.1% sensitivity (with and without CycleGAN: 0.929 and 0.836), 12.7% specificity (with and without CycleGAN: 0.911 and 0.808), 12.8% accuracy (with and without CycleGAN: 0.931 and 0.825) and 8.1% F1 score (with and without CycleGAN: 0.930 and 0.860) improvements, respectively




	
Tor-Diez et al. (2020)-USA [108]

	
MRI

	
CycleGAN

	
NR

	
Children

	
Private brain MRI datasets by Children’s National Hospital, Children’s Hospital of Philadelphia and Children’s Hospital of Colorado, USA

	
Total: 18 scans

	
No

	
Image translation (for domain adaptation in brain MRI image segmentation)

	
No

	
Leave-one-out cross-validation

	
No

	
NR

	
No

	
18.3% DSC improvement for anterior visual pathway segmentation (U-Net: 0.509; CycleGAN: 0.602)




	
Wang et al. (2021)-USA [109]

	
MRI

	
CycleGAN

	
Retrospective

	
2 groups of children (median ages: 8.3 and 6.4 years; ranges: 1–20 and 2–14 years), respectively

	
Private brain CT and T1w MRI datasets by St Jude Children’s Research Hospital, USA

	
Total: 132 CT and MRI scans-training: 125; testing: 7

	
No

	
Brain MRI image translation to CT for radiation therapy planning

	
No

	
NR

	
No

	
Real CT images acquired from same patients

	
No

	
SSIM: 0.90; DSC of air/bone: 0.86/0.81; MAE: 65.3 HU; PSNR: 28.5 dB for CT images generated from MRI images by CycleGAN




	
Wang et al. (2021)-USA [110]

	
MRI

	
CycleGAN

	
Retrospective

	
1.1–21.3 years old children and adult

	
Private brain and pelvic CT and MRI datasets by St Jude Children’s Research Hospital, USA

	
Total: 141 CT and MRI scans; training: 136; testing: 5

	
No

	
Pelvic MRI image translation to CT for radiation therapy planning

	
No

	
NR

	
No

	
Real CT images acquired from same patients

	
No

	
Mean SSIM: 0.93 and 0.93; MAE: 52.4 and 85.4 HU; ME: −3.4 and −6.6 HU; PSNR: 30.6 and 29.2 dB for CT images generated from T1w and T2w MRI images by CycleGAN, respectively




	
Wang et al. (2022)-USA [111]

	
MRI

	
CycleGAN

	
Retrospective

	
1.1–20.3 (median: 9.0) years old children and adult

	
Private brain CT and MRI datasets by St. Jude Children’s Research Hospital, USA

	
Total: 195 CT and MRI scans-training: 150; testing: 45

	
No

	
Brain MRI image translation to CT and RPSP images for radiation therapy planning

	
No

	
NR

	
No

	
Real CT images acquired from same patients

	
No

	
SSIM: 0.92 and 0.91; DSC of air/bone: 0.98/0.83 and 0.97/0.85 MAE: 44.1 and 42.4 HU; ME: 8.6 and 18.8 HU; PSNR: 32.6 and 31.5 dB for CT images generated from T1w and T2w MRI images by CycleGAN, respectively




	
Zhao et al. (2019)-China and USA [112]

	
MRI

	
CycleGAN

	
Retrospective

	
0–2 years old children

	
Public brain MRI dataset (UNC/UMN Baby Connectome Project)

	
Total: 360 scans-training: 252; testing: 108

	
No

	
Image translation (for domain adaptation)

	
No

	
NR

	
No

	
Original MRI images

	
No

	
14.1% PSNR improvement (non-DL: 29.00 dB; CycleGAN: 33.09 dB) and 33.9% MAE reduction (non-DL: 0.124; CycleGAN: 0.082) for domain adaptation




	
Other




	
Mostapha et al. (2019)-USA [113]

	
MRI

	
3D DCGAN

	
Retrospective

	
1–6-year-old children

	
Public brain MRI datasets (UNC/UMN Baby Connectome Project and UNC Early Brain Development Study)

	
Total: 2187 scans

	
No

	
Automatic brain MRI image quality assessment

	
No

	
80:20 random split

	
No

	
Manual image quality assessment by MRI experts

	
No

	
92.9% sensitivity (VAE: 0.42; DCGAN: 0.81), 2.2% specificity (VAE: 0.93; DCGAN: 0.95), and 47.6% accuracy (VAE: 0.63; DCGAN: 0.93) improvements for automatic image quality assessment, respectively








2D, two-dimensional; 3D, three-dimensional; AC-GAN, auxiliary classifier generative adversarial network; ACDC, Automated Cardiac Diagnosis Challenge of 2017 Medical Image Computing and Computer Assisted Intervention; ADHD, attention deficit hyperactivity disorder; AI, artificial intelligence; AIGAN, attention-encoding integrated generative adversarial network; ATPC, Advancing Treatment for Pediatric Craniopharyngioma; AUC, area under the receiver operating characteristic curve; CAD, computer-aided detection and diagnosis; CGAN, conditional generative adversarial network; CNN, convolutional neural network; CNR, contrast-to-noise ratio; cvi42, a commercial deep learning-based segmentation product (Circle Cardiovascular Imaging, Calgary, Alberta, Canada); CT, computed tomography; CXR, chest X-ray; CycleGAN, cycle-consistent generative adversarial network; DCGAN, deep convolutional generative adversarial network; DL, deep learning; DNGAN, dual network generative adversarial network; DSC, Dice similarity coefficient; ECHO, Environmental Influences on Child Health Outcomes; FID, Fréchet inception distance; HD, Hausdorff distance; HU, Hounsfield unit; IQR, interquartile range; IS, inception score; Kaplan-T2w, a registration-based method for T1w-to-T2w translation; LDCT, low-dose computed tomography; MAE, mean absolute error; MCD, mean contour distance; ME, voxel-based mean error; MRI, magnetic resonance imaging; MSD, mean surface distance; NPV, negative predictive value; NR, not reported; PET, positron emission tomography; PG-GAN, progressive generative adversarial network; PMA, postmenstrual age; PPV, positive predictive value; PSNR, peak signal to noise ratio; R2, coefficient of determination; RPSP, relative proton stopping power; RSNA, Radiological Society of North America; RVD, relative volume difference; SAFIRE, sinogram affirmed iterative reconstruction; SDAM, spatial deformable aggregation module; SNR, signal-to-noise ratio; SRCNN, super-resolution convolutional neural network; SSIM, structural index similarity; SVDD, support vector data description; T1w, T1-weighted; T2w, T2-weighted; TransGAN, transformer-based generative adversarial network; UMN, University of Minnesota; UNC, University of North Carolina; US, ultrasound; VAE, variational autoencoder; VSMD, voxel-scale metabolic difference; WGAN, Wasserstein generative adversarial network.











Both image synthesis and data augmentation (n = 12) [89,90,91,92,93,94,95,96,97,98,99,100], and image translation (n = 12) [101,102,103,104,105,106,107,108,109,110,111,112] were the commonest application areas of GAN in pediatric radiology. Other GAN application areas included image segmentation (n = 5) [84,85,86,87,88], image reconstruction (n = 4) [80,81,82,83], disease diagnosis (n = 3) [77,78,79], and image quality assessment (n = 1) [113]. However, none of the GAN models involved in these studies were commercially available [77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113]. For the twenty-nine studies which compared their GAN model performances with those of other approaches, all of them outperformed the others by 0.1–158.6% [77,78,79,80,81,82,83,84,85,86,87,88,89,91,92,94,95,96,97,98,99,101,103,104,106,107,108,112,113]. The highest accuracy and AUC of GAN-based disease diagnosis were 0.978 [78] and 0.900 [79] for brain MRI-based autism diagnosis, respectively. The performances of GAN-based image reconstruction were as far as 0.991 structural index similarity (SSIM) and 38.36 dB peak signal-to-noise ratio (PSNR) for super-resolution in chest X-ray (CXR) [80], and 31.9 signal-to-noise ratio (SNR) and 21.2 contrast-to-noise ratio (CNR) for abdominal CT denoising [82]. For the top performing GAN-based image segmentation models, 0.929 Dice similarity coefficient (DSC) and 0.338 mm Hausdorff distance (HD) for prostate CT segmentation [86], 0.86 Jaccard index, 0.92 sensitivity and 0.94 PPV for echocardiography segmentation [85], and 0.998 specificity and NPV for cardiac MRI segmentation were achieved [87]. The GAN-based image synthesis and data augmentation for training models of DL-CAD of pneumonia based on CXR boosted the AUC, sensitivity, PPV, F1 score, specificity, and accuracy up to 0.994 [96], 0.993, 0.990, 0.991, [95], 0.97 [92] and 0.990 [94], respectively. The use of GAN for image translation from brain MRI to CT images achieved as far as 0.93 SSIM [110], 0.98 DSC, 32.6 dB PSNR and 42.4 Hounsfield unit (HU) mean absolute error (MAE) [111]. For GAN-based domain adaptation (image translation) in brain MRI segmentation, up to 0.86 DSC, 13.03 mm HD, and 0.23 mm MSD were attained [101]. The application of GAN in automatic image quality assessment yielded 0.81 sensitivity, 0.95 specificity, and 0.93 accuracy [113]. Table 4 summarizes these key findings.



Collectively, the included studies covered pediatric patients aged from 0 to 21 years [77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114]. Their average dataset size for GAN model development was 5799 images (range: 40–17,508 images) [79,80,82,83,89,91,92,94,95,96,98,99,100,101,102,107]/241 scans (range: 5–2187 scans) [77,78,81,84,85,86,87,88,90,93,97,103,104,105,106,108,109,110,111,112,113]. However, no study calculated the required sample size [77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113]. Except for two studies that collected both public and private datasets [83,97], and one not reporting the dataset source [93], half of the rest (n = 17) used public datasets [77,78,79,80,87,89,91,94,95,96,98,99,100,106,107,112,113], and the other half (n = 17) collected their own data [81,82,84,85,86,88,90,92,101,102,103,104,105,108,109,110,111]. The most popular public dataset was the chest X-ray dataset consisting of 1741 normal and 4346 pneumonia images of 6087 1–5-year-old children collected from the Guangzhou Women and Children’s Medical Center, China which was used in 10 studies [79,80,89,91,94,95,96,99,100,107].



Nonetheless, about 80% of the included studies (n = 29) were retrospective [77,78,79,80,81,82,83,84,87,89,90,91,94,95,96,97,98,99,100,101,102,105,106,107,109,110,111,112,113], and only three were prospective [88,92,103] with the other five not reporting the study design [85,86,93,104,108]. Additionally, about two-thirds of the studies (n = 23) did not report the approach for their model internal validation [77,78,79,82,83,85,88,89,90,91,92,93,98,100,101,102,103,104,106,109,110,111,112], and just more than one-fifth (n = 8) used the cross-validation to address the small sample size issue [81,84,86,97,99,105,107,108]. Around 90% of studies did not conduct external validation for their models (n = 32) [77,78,79,80,81,85,86,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,104,105,106,107,108,109,110,111,112,113], and compare their model performances with those of clinicians (n = 34) [77,78,79,80,81,83,84,85,86,87,88,89,91,92,93,94,95,96,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113]. Besides, the reference standard for ground truth establishment was not stated in around half of the included papers (n = 17) [77,78,79,83,85,86,89,91,92,93,95,96,100,101,104,107,108].




4. Discussion


This article is the first systematic review of the generative AI framework, GAN in pediatric radiology covering MRI [77,78,83,84,87,90,97,101,103,104,105,106,108,109,110,111,112,113], X-ray [79,80,89,91,92,94,95,96,98,99,100,102,107], CT [82,86,93,97], ultrasound [85,88], and PET [81]. Hence, it advances the previous literature reviews about general AI applications [67], and specific uses in radiation dose optimization [26], CAD [29], and chest imaging [28] in pediatric radiology published between 2021 and 2023 which did not focus on the GAN. Unsurprisingly, more than 80% of the studies applied the GAN to MRI and X-ray due to multiplanar imaging capability and excellent soft-tissue contrast of MRI, and less operator dependent and no/low radiation dose for both, resulting in their popularity in pediatric radiology [26,115,116]. Also, it is within expectation that the basic GAN architecture was the most commonly used architecture because it became available earlier than its variants [56,59,63]. The commonest use of basic GAN was for image synthesis and data augmentation [77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113], which was also one of the most popular GAN applications in the included studies [89,90,91,92,93,94,95,96,97,98,99,100]. These align with the original purpose of the basic GAN which was for the creation of new and original images [63]. CycleGAN was the second most common GAN architecture used in the included studies as the strength of CycleGAN is for image translation without the use of a paired training dataset [62,101,102,109]. A closer look at the findings presented in Table 3 reveals all but two image translation studies used the CycleGAN [101,102,103,104,107,108,109,110,111,112]. It is always challenging to obtain paired datasets to train GAN models for various image translation tasks [102,109]. For example, it is often unrealistic to perform both MRI and CT examinations on the same pediatric patients, resulting in the unavailability of a paired MRI-CT dataset required for training the basic GAN to achieve the image translation from MRI to CT. However, CycleGAN overcomes this issue by using two generators and two discriminators to convert MRI to CT images and vice versa (known as inverse transformation) for creating pseudo image pairs to accomplish the image translation training. In this way, the data collection task becomes easier as only individual MRI and CT images from different patients are required [62,109].



About 80% of the included studies compared their GAN model performances with those of other approaches for benchmarking and indicated that their GAN models outperformed the others [77,78,79,80,81,82,83,84,85,86,87,88,89,91,92,94,95,96,97,98,99,101,103,104,106,107,108,112,113]. Additionally, the absolute performance figures of the best-performing GAN models appear competitive with the other state-of-the-art approaches [77,78,80,82,85,86,87,92,94,95,96,101,110,111,113]. However, the findings from these studies should be used with caution because of the following methodological weaknesses [29]. No study calculated the required sample size for the GAN model development [77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113]. The sizes of the datasets used were as low as 40 images [83,101]/5 scans [93]. Although the cross-validation internal validation approach can address the small dataset issue to some extent [29], only one-fifth of them used this approach [81,84,86,97,99,105,107,108]. Additionally, just a quarter of the studies covered a wide age range of pediatric patients [84,86,87,93,98,105,109,110,111]. It is well known that there is a lack of generalization ability of many existing DL models because they are only trained by a limited number and variety of patient data [26,50,117]. The variety issue of the included studies was compounded by the retrospective nature of about 80% of them [77,78,79,80,81,82,83,84,87,89,90,91,94,95,96,97,98,99,100,101,102,105,106,107,109,110,111,112,113], and around 60% of these retrospective studies used public datasets which further limited the data variation [77,78,79,80,87,89,91,94,95,96,98,99,100,106,107,112,113]. The most popular public dataset used in the included studies was the one from the Guangzhou Women and Children’s Medical Center, China [79,80,89,91,94,95,96,99,100,107]. However, it is important to note that this public dataset has several image quality issues that could affect the DL model training and hence the eventual performance [118,119]. Hence, the performances of the GAN models covered in this review might not be realized in other settings [26,50,117].



It is noted that no GAN model of the included studies was commercially available [77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113]. Again, it is within expectation because the GAN has only emerged for 10 years. In contrast, another common DL architecture in medical imaging, convolutional neural network (CNN) which is a deductive AI technique has been available since the 1980s and hence some commercial companies have already used it for developing various products such as Canon Medical Systems Advanced Intelligent Clear-IQ Engine (AiCE) (Tochigi, Japan), General Electric Healthcare TrueFidelity (Chicago, IL, USA), ClariPI ClariCT.AI (Seoul, Republic of Korea), Samsung Electronics Co., Ltd. SimGrid (Suwon-si, Republic of Korea) and Subtle Medical SubtlePET 1.3 (Menlo Park, CA, USA) for radiation dose optimization (denoising) in pediatric CT, X-ray and PET, respectively [1,26].



As a result of the increasing number of GAN publications in pediatric radiology and the popularity of another generative AI application, Chat Generative Pre-Trained Transformer (ChatGPT), it is expected that the GAN would attract the attention of commercial companies to consider using it to develop various applications in pediatric radiology in the future [54,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113]. However, based on the previous trend of CNN-based commercial product development for pediatric radiology, such GAN-based commercial solutions should not be available in the coming few years [1,26].



Even when the GAN-based applications are on the market, after several years, developers should disclose their model external validation results, reference standards used for the validation, and their model performances against those of the clinicians on the same tasks for attracting potential customers [29,73,74,120]. According to Table 3, around 90% of the included studies did not conduct external validation for their models [77,78,79,80,81,85,86,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,104,105,106,107,108,109,110,111,112,113] and compare their model performances with those of clinicians [77,78,79,80,81,83,84,85,86,87,88,89,91,92,93,94,95,96,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113]. Besides, the reference standard for ground truth establishment was not stated in around half of the included papers [77,78,79,83,85,86,89,91,92,93,95,96,100,101,104,107,108]. Hence, it would be difficult to earn the pediatric clinicians’ trust in the GAN-based applications for image translation, segmentation, reconstruction, quality assessment, synthesis and data augmentation, and disease diagnosis as there is a lack of trustworthy findings to convince them [77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113].



There are two major limitations in this systematic review. A single author, despite having experience in performing literature reviews for more than 20 years, selected articles, and extracted and synthesized data [26,29]. As per a recent methodological systematic review, this arrangement is appropriate as the single reviewer is experienced [26,29,70,121,122,123]. Additionally, the potential bias would be addressed to a certain degree due to the use of PRISMA guidelines, data extraction form (Table 3) developed based on the recent systematic reviews on GAN for image classification and segmentation in radiology, and AI for radiation dose optimization and CAD in pediatric radiology, and one narrative review about GAN in adult brain imaging, and QATSDD [26,29,56,62,69,76]. In addition, only English papers were included and this could potentially affect the systematic review comprehensiveness [26,29,72,124,125,126]. Nevertheless, a wider range of applications of GAN in pediatric radiology has been covered in this review when compared with the previous review papers [26,28,29,67].




5. Conclusions


This systematic review shows that the GAN can be applied to pediatric MRI, X-ray, CT, ultrasound, and PET for image translation, segmentation, reconstruction, quality assessment, synthesis and data augmentation, and disease diagnosis. About 80% of the included studies compared their GAN model performances with those of other approaches and indicated that their GAN models outperformed the others by 0.1–158.6%. Also, the absolute performance figures of the best-performing models appear competitive with the other state-of-the-art approaches. However, these study findings should be used with caution because of a number of methodological weaknesses including no sample size calculation, small dataset size, narrow data variety, limited use of cross-validation, patient cohort coverage and disclosure of reference standards, retrospective data collection, overreliance on public dataset, lack of model external validation and model performance comparison with pediatric clinicians. More robust methods will be necessary in future GAN studies for addressing the aforementioned methodological issues. Otherwise, trustworthy findings for the commercialization of these models could not be obtained. Additionally, this would affect the clinical adoption of the GAN-based applications in pediatric radiology and the potential advantages of GAN would not be realized widely.
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Figure 1. PRISMA flow diagram for the systematic review of the generative adversarial network (GAN) in pediatric radiology. 
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Table 1. Patient/population, intervention, comparison, and outcome table for the systematic review of the generative adversarial network (GAN) in pediatric radiology.
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	Patient/Population
	Pediatric patients aged from 0 to 21 years



	Intervention
	Use of GAN to accomplish tasks involved in pediatric radiology



	Comparison
	GAN versus other approaches to accomplish the same task in pediatric radiology



	Outcome
	Performance of task accomplishment
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Table 2. Article inclusion and exclusion criteria.
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	Inclusion Criteria
	Exclusion Criteria





	
	
Peer-reviewed original research article



	
Written in English



	
Focused on the use of generative adversarial networks in pediatric radiology





	
	
Grey literature



	
Conference abstract



	
Editorial



	
Review



	
Perspective



	
Opinion



	
Commentary



	
Non-peer-reviewed article (e.g., paper on the arXiv platform)
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Table 4. Absolute performance figures of best-performing generative adversarial network (GAN) models for various applications in pediatric radiology.






Table 4. Absolute performance figures of best-performing generative adversarial network (GAN) models for various applications in pediatric radiology.





	GAN Application
	Best Model Performance





	Disease diagnosis
	0.978 accuracy and 0.900 AUC



	Image quality assessment
	0.81 sensitivity, 0.95 specificity, and 0.93 accuracy



	Image reconstruction
	0.991 SSIM, 38.36 dB PSNR, 31.9 SNR and 21.2 CNR



	Image segmentation
	0.929 DSC, 0.338 mm HD, 0.86 Jaccard index, 0.92 sensitivity, 0.998 specificity and NPV, and 0.94 PPV



	Image synthesis and data augmentation for DL-CAD performance enhancement
	0.994 AUC, 0.993 sensitivity, 0.990 PPV, 0.991 F1 score, 0.97 specificity, and 0.990 accuracy



	Image translation
	0.93 SSIM, 0.98 DSC, 32.6 dB PSNR, 42.4 HU MAE, 13.03 mm HD and 0.23 mm MSD







AUC, area under the receiver operating characteristic curve; CAD, computer-aided detection and diagnosis; CNR, contrast-to-noise ratio; DL, deep learning; DSC, Dice similarity coefficient; HD, Hausdorff distance; MAE, mean absolute error; MSD, mean surface distance; NPV, negative predictive value; PPV, positive predictive value; PSNR, peak signal to noise ratio; SNR, signal-to-noise ratio; SSIM, structural index similarity.
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