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Abstract: Congenital heart defects (CHD) are the most common congenital abnormality, with an
overall global birth prevalence of 9.41 per 1000 live births. The etiology of CHDs is complex and
still poorly understood. Environmental factors account for about 10% of all cases, while the rest are
likely explained by a genetic component that is still under intense research. Transcription factors and
signaling molecules are promising candidates for studies regarding the genetic burden of CHDs. The
present narrative review provides an overview of the current knowledge regarding some of the genetic
mechanisms involved in the embryological development of the cardiovascular system. In addition, we
reviewed the association between the genetic variation in transcription factors and signaling molecules
involved in heart development, including TBX5, GATA4, NKX2-5 and CRELD1, and congenital heart
defects, providing insight into the complex pathogenesis of this heterogeneous group of diseases.
Further research is needed in order to uncover their downstream targets and the complex network of
interactions with non-genetic risk factors for a better molecular–phenotype correlation.
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1. Introduction

Congenital heart defects (CHD) can be defined as structural abnormalities of the heart
and/or the great vessels present at birth and are caused by alterations in the normal em-
bryological development of the cardiovascular system. They are a heterogeneous group of
diseases. Botto et al. proposed a classification for etiologic studies based on anatomical, clin-
ical and embryological similarity [1]. They divided CHDs into eight categories: conotruncal
defects (including truncus arteriosus, the interrupted aortic arch, D-transposition of the
great arteries, tetralogy of Fallot and the double outlet right ventricle), atrioventricular sep-
tal defect, anomalous-pulmonary venous return (total or partial), left ventricular outflow
tract obstruction (including hypoplastic left heart syndrome, coarctation of aorta and aortic
stenosis), right ventricular outflow tract obstruction (including pulmonary valve stenosis,
tricuspid atresia, Ebstein malformation and pulmonary atresia), septal defects (ventricular
or atrial), heterotaxy malformations, and complex defects (including the L-transposition of
the great arteries, univentricular heart and other associations) [1].

CHDs are the most common congenital abnormality, followed by limb anomalies,
congenital anomalies of the kidney and urinary tract and nervous system anomalies [2].
The overall global birth prevalence of CHDs reported was 9.41 per 1000 live births [3],
which shows a substantial increase in recent decades [3,4]. The prevalence showed marked
differences between different geographical areas [3,4]. The most common type is the
ventricular septal defect (VSD), representing about 35% of all CHDs, followed by the atrial
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septal defect (ASD) and patent ductus arteriosus (PDA) [3]. The prevalence of ‘mild’ lesions
(defects that usually have a less significant hemodynamic and clinical impact, including
VSD, ASD and PDA) increased during the last decades, probably due to advances that led
to more accurate detection, while the ‘severe’ lesions showed a relatively constant trend in
prevalence [3].

The etiology of CHDs is complex and still poorly understood. Clearly identified
environmental factors (non-genetic risk factors) account for about 10% of CHDs [5]. The
most studied of them include maternal health conditions (such as obesity and diabetes
mellitus), maternal alcohol consumption, maternal smoking, maternal exposure to certain
drugs during pregnancy (antidepressants, anticonvulsants and antiarrhythmic drugs),
maternal fever during the first trimester (which possibly correlates with the teratogenic
effect of different microorganisms), paternal smoking and paternal advanced age [6,7].
Genetic contributions represent the remaining 90% [5]. Table 1 summarizes some of the
current knowledge about the etiology of CHDs. In a review regarding their complex
inheritance, Diab et al. concluded that more than half of CHDs do not have an identified
etiology, which will probably, in time, be explained by gene-to-gene interactions, gene-to-
environment interactions, polygenic inheritance or epigenetic mechanisms, all of which
are still under intense research [5]. New studies based on single-cell RNA-sequencing and
other functional genetics methods are starting to uncover the network of transcription
factors and signaling molecules involved [8,9]. Whole-genome sequencing studies have
underlined the implication of non-coding de novo mutations as part of the complex genetic
model of CHDs, but their effect on the transcriptional activity of coding genes and their
burden on the alteration of heart development is still unclear [10].

Table 1. The contribution of different etiologic factors in the development of CHD (adapted after [5–7]).

Non-Genetic Contribution~10% Genetic Contribution~90%

Convincing evidence

- Severe maternal obesity

Highly suggestive evidence

- Antidepressants (lithium)
- Maternal obesity
- Maternal alcohol consumption
- Maternal fever in the first trimester

Suggestive evidence

- Antidepressants (SSRIs)
- Paternal advanced age
- Paternal smoking

Other

- Retinoic acid
- Anticonvulsants
- Antiarrhythmics (class III)
- Maternal diabetes mellitus
- Maternal viral infections (rubella)

Aneuploidy (~13%)

- Trisomy 21, 13 and 18
- Monosomy X

CNV (~10%)

- Del22q11.2
- Del7q11.23
- Del5p15.2
- Del11q
- Del8p23.1
- Del1q21.1
- Dup22q11

De novo mutations (~8%)

- Chromatin-modifying genes

Transmitted mutations (~3%)

- Transcription factors genes
- Signaling molecules genes
- Structural genes

Unknown (~56%)
CNV, Copy number variation; SSRI, selective serotonin reuptake inhibitor.

The aim of this narrative review is to provide an overview of the current knowledge
regarding some of the genetic mechanisms involved in the embryological development
of the cardiovascular system. We briefly summarized the embryologic stages of heart
development and overviewed the role played by some transcription factors and signaling
molecules in this process. We also reviewed their association with congenital heart defects,
providing insight into the complex pathogenesis of this heterogeneous group of diseases.
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2. Embryologic Stages of Heart Development
2.1. Formation of the Heart Tube

The heart is one of the first organs to develop in the human embryo. It originates
mostly from the mesoderm, with the contribution of ectodermal-derived cells (neural
crest cells) [11]. The heart-forming region (the first heart field) is composed by the first
mesodermal cells that migrate through the primitive streak and position themselves in
a horseshoe-like shape, rostral and lateral to the stomato-pharyngeal membrane [11–13].
During this process, they exit the region of blocked differentiation mediated by Wnt growth
factors and enter an environment that promotes cardiomyocyte differentiation, via active
Wnt inhibition; the expression of bone morphogenetic protein (BMP) growth factors; and
other cardiac-specific transcription factors, such as Nkx2.5 and Islet1 [12,14–16].

The closure of the neural tube and the development of the nervous system determines
the cranio-caudal and anterior folding of the embryo, which places the heart-forming
region in its final position [11]. This process leads to the formation of the heart tube, a
Y-shaped structure with two caudo-lateral inlet branches and one cranial outlet, which is
initially attached to the body, anterior to the foregut, by the dorsal mesocardium [17] and
organized in three layers: an outer layer of cardiomyocytes (termed primary myocardium),
an inner layer of endocardial cells (a cell population that is also derived from the splanchnic
mesoderm of the heart field at the same time as cardiomyocytes [11,18]) and an extracellular
matrix between them (the cardiac jelly) [12]. After that, the heart tube starts to loop towards
the right, in a progressive manner, forming a C-like and then an S-like structure [12,17].
The looping is mediated by the growth of the heart tube due to the addition of new
cardiomyocytes, derived from the second heart field (located posteriorly from the first heart
field), and migrated through the dorsal mesocardium [11,19,20].

The cellular ultrastructure of cardiomyocytes makes all of them capable of contraction
(via sarcomeres), spontaneous depolarization and the conduction of the electrical impulses
generated (via ion pumps or channels and gap junctions) [11,12]. Cardiomyocytes in
various regions of the heart differ from one another by the intensity of these characteristics
and are partly mediated by the expression of the T-Box (TBX) transcription factor family [11].
The fate of one cell is determined by its location in the developing heart via signals that
promote the expression of certain transcription factors and other molecules [11].

2.2. Development of Heart Chambers

The looping of the heart tube represents a scaffold for the future four-chambered heart.
During this process, the cardiac jelly between the endocardium and the myocardium disap-
pears at the outer curvatures so the cardiomyocytes in these regions resume proliferation,
along with differentiation, forming the primordia for the future ventricles at the arterial pole
and the atrial appendices at the venous pole. This is referred to as the ballooning model [11].
The proliferating and differentiating cardiomyocytes are termed secondary or chamber
myocardium and express specific genes such as the atrial natriuretic factor (Anf /Nppa)
and Connexin 40 (Cx40/Gja5), a gap-junction protein [11,21]. The cardiomyocytes form
endoluminal protrusions, called trabeculations, that grow via the addition of new cells at
their base and assure the lengthening and thickening of the myocardium [12,20]. The initial
ventricles have a trabecular phenotype. During heart maturation, under the influence of
epicardial-derived fibroblasts, a compact layer develops, with a different set of markers
expressed compared to the trabecular myocardium [22].

The secondary myocardium gives rise only to the trabeculated portion of the mature
atria. The rest of the atrial myocardium forms via the incorporation of the venous sys-
tem [11]. The systemic venous blood is retrieved to the heart by the left and right common
cardinal veins. The pericardial cavity expands and incorporates the common cardinal veins,
while cardiomyocytes encircle them, forming the so-called sinus venosus, with its right
horn becoming the dorsal part of the right atrium [11,12]. The pulmonary venous system
develops as a vascular plexus surrounding the embryonic foregut, which gives rise to the
lung primordia. This plexus drains through a single vessel that is connected to the atrium
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in the midline via the dorsal mesocardium. Cardiomyocytes encircle the pulmonary vein
and incorporate it into the future left atrium up to the second bifurcation, resulting in
four pulmonary orifices [11,12].

2.3. Septation of the Heart

The septation of the heart is a complex process that leads to the development of its
closed double circulation characteristic. The process starts with the formation of extracellu-
lar matrix cushions in the atrioventricular canal and the outflow tract, which are further
populated by endocardium-derived mesenchymal cells [12].

Atrial septation begins with the primary septum, a crescent-shaped structure formed
by the proliferation of atrial cells, growing towards the atrioventricular canal and closing
the primary atrial foramen (ostium primum) by fusing with the major atrioventricular
cushions [11,12]. To ensure the bypass of the pulmonary circulation characteristic for the
fetal circulation, a secondary atrial foramen (ostium secundum) is formed in the primary
septum by the apoptosis of the cells [23,24]. To complete the septation process, the muscular
wall folds down to the right side of the primary septum, forming the secondary septum
and completely covering the ostium secundum. The secondary septum is still incomplete,
and the orifice that remains forms with the ostium secundum, an oblique canal termed the
foramen ovale, which represents the right-to-left shunt characteristic to the fetal circula-
tion [23,24]. At birth, due to the change in atrial blood pressure, the primary and secondary
septum are pushed together and the atrial septation is completed [11,23].

The septation of the ventricles starts during the ballooning process with the formation
of the muscular septum, by apposition, adding cells at its base from the adjacent growing
left ventricular free wall [12]. With the inner curvature, the superior rim of the ventricular
septum determines the ventricular foramen, which is functionally separated by the major
(dorsal and ventral) atrioventricular cushions in a right and left portion [12]. The ventricular
septation will become anatomically complete with the septation of the outflow tract.

The outflow tract connects the ventricles to the aortic sac, which in turn is connected to
the third, fourth and fifth pairs of pharyngeal arch arteries [12]. The septation of the outflow
tract starts at the level of the cushions from this region, in a spiral fashion and from distal to
proximal, generating a 180◦ turn in the future aortic and pulmonary arteries [11,12]. The
outflow tract cushions are populated with cells migrated from the secondary heart field,
as well as cells migrated from the neural crests, which provide growth factors essential
for the normal development of the region [12,25]. Proximally, the outflow tract septum
will fuse with the atrioventricular cushions, forming the membranous ventricular septum,
completing the anatomical septation of the ventricles. Distally, a protrusion of the pharyngeal
mesenchyme, termed the aorto-pulmonary septum, connects with the outflow tract cushions,
separating the emerging arteries [12]. The system of pharyngeal arch arteries will remodel
and generate the adult arterial pattern at the end of the eighth week of development [12].
The cardiac jelly at the site of the atrioventricular and outflow tract cushions and ridges will
remodel, forming the heart valves, in a complex process [11].

Table 2 summarizes the milestones of heart development and their connections
with CHDs.

Table 2. The milestones of cardiac development and the events leading to congenital heart defects
(adapted with permission from [11]. 2013 Wiley Periodicals, Inc., Hoboken, NJ, United States).

Carnegie Stage Age (DPC) Events CHD

CS8 17–19 Development of the heart-forming region

CS9 19–21 Embryonic folding and placement of the heart-forming
region in the final position

CS10 22–23
Formation of the heart tube
Looping
Ventricular ballooning

CS11 23–26 Atrial ballooning
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Table 2. Cont.

Carnegie Stage Age (DPC) Events CHD

CS12 26–30
Formation of the primary atrial septum
Development of the muscular part of the ventricular septum Muscular VSD

CS13 28–32
Formation of the atrioventricular cushions
Attachment of the pulmonary veins to the left atrium

CS14 31–35 Appearance of the outflow tract ridges

CS15 35–38
Formation of the secondary foramen
Beginning of the septation of the outflow tract TA, TGA, TOF
Migration of the neural crest cells to the outflow tract DORV, pulmonary atresia

CS16 37–42
Closure of the ostium primum AVSD, ASD I
Outflow ridges approaching the ventricular septum

CS17 42–44
Formation of the secondary atrial septum ASD II
Separation of the atrioventricular communication
Completion of the outflow tract septation Membranous VSD

CS18 44–48 Formation of the atrioventricular valves Tricuspid atresia

ASD I, Atrial septal defect type ostium primum; ASD II, atrial septal defect type ostium secundum; AVSD, atri-
oventricular septal defect; CS, Carnegie stage; DORV, double-outlet right ventricle; DPC, days post-conception;
TA, truncus arteriosus; TGA, transposition of great arteries; TOF, tetralogy of Fallot; VSD, ventricular septal defect.

3. An Overview of Transcription Factors and Signaling Molecules Involved in the
Development of CHD
3.1. TBX5

TBX5 is a transcription factor from the T-box family with a highly conserved expression
pattern in the heart, forelimb and retina in different vertebrate species [26].

3.1.1. TBX5 in Heart Development

The T-box transcription factor family plays an important role in regulating the car-
diomyocyte identity in the developing heart [11]. TBX5 demonstrates an expression gra-
dient from the venous pole of the heart (the region of the developing atria) to the right
ventricle and the outflow tract, where it is absent [11,26]. Recent studies on human em-
bryonic stem cell-derived cardiomyocytes uncovered both structural and functional roles
that can be attributed to TBX5 expression, which include upregulating sarcomere structure
genes and genes involved in cellular calcium handling [27].

The transcription factor is involved in the septation of the heart, for both the atria and
the ventricles. The location of the ventricular septum depends on the TBX5/TBX20 inter-
action, while the boundary between the TBX5 positive/TBX20 negative cardiomyocytes
(specific to the left ventricle) and the TBX5 negative/TBX20 positive myocardium (specific
to the right ventricle) appears to indicate the position of the interventricular septum [28,29].
In addition, the development of the atrial septum is dependent on the expression of TBX5
in the second heart field and is regulated by interactions with Sonic Hedgehog (SHH)
signaling, with the SHH ligand secreted from the pulmonary endoderm [30,31].

3.1.2. TBX5 in the Development of the Ventricular Conduction System

TBX5 appears to play a central role in the development of the ventricular conduction
system via the specification and regulation of gene expression. It activates the expression
pattern for the fast-conducting phenotype characteristic for the ventricular conduction system
cells by driving the gene regulatory network, composed of genes such as CX40, SCN5A,
RYR2, KCNK3 or KCNJ2, and coding for Na+, K+ and Ca++ channels, both in the developing
and the adult heart [26,32,33]. Van Ouwerkerk et al. proposed a murine model to evaluate the
effects of a TBX5 missense mutation (c.373G>A; p.Gly125Arg) in relation to early onset atrial
fibrillation. The mice showed variable RR intervals and a susceptibility to atrial fibrillation,
similarly to patients with the similar mutation. The cardiomyocytes demonstrated decreased
systolic and diastolic intracellular calcium concentrations, thus affecting action potentials,
probably due to changes in the regulatory element activity and transcriptional regulation
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(epigenetic changes) induced by the TBX5 mutation, confirming the central role played by
the transcription factor in the development of the conduction system [34].

3.1.3. Gene–Environment Interactions Involving TBX5

Zhang et al. demonstrated that increased maternal leucine levels in the first trimester
of pregnancy increase the risk for congenital heart defects in the offspring due to the
inhibition of TBX5 signaling. In an experimental model performed on mice, they showed
that increasing the maternal leucine levels will increase embryonic lysine-leucylation, thus
modifying the lysine residues in TBX5 and inhibiting its transcriptional activity [35]. This
underlines the importance of gene–environment interactions and the complex mechanisms
involved in the pathogenesis of CHD.

3.1.4. Genetic Variation Involving TBX5

TBX5 haploinsufficiency has been shown to be the cause of Holt–Oram syndrome
(HOS), an autosomal dominant disorder affecting cardiac and upper limb development,
with a high penetrance and variable expression [36–38]. The cardiac phenotype consists
of congenital heart defects (mostly septal defects, the atrial septal defect being the most
frequent) and conduction abnormalities, while the characteristic limb anomalies are bilateral
and asymmetric radial ray defects [39]. The majority of the reported TBX5 mutations
are nonsense or frameshift mutations, which result in the introduction of premature stop
codons, obtaining a truncated protein with impaired function. Al-Qattan et al. reviewed the
genotype–phenotype correlation in typical HOS patients resulting from missense mutations
of TBX5, concluding that most of the mutations were found in the DNA-binding domain
of the gene, thus affecting the interaction with other transcription factors regulating the
embryological development of the heart and limbs (such as GATA4 or NKX2-5) and causing
loss of function [40].

Recent reports have shown a heterogeneous pattern of genetic variants of the TBX5
gene in relation to heart disease, in addition to the known features of typical HOS, under-
lining the complex molecular regulation of the developing heart and uncovering new roles
for this transcription factor during the embryological period. Table 3 summarizes some of
the newly identified mutations involving TBX5 and their phenotype.

Table 3. Genotype–phenotype correlation in TBX5 mutations.

Mutation Type Location Cardiac Phenotype Other Phenotypes Reference

Nonsense—LOF c.577G>T (p.Gly193Ter) TAPVR and ASD Triphalangeal thumb [41]
Missense c.322C>A (p.Pro108Thr) Tricuspid atresia - [42]
Compound (missense +
nonsense)

c.791G>A + c.835C>T
(p.Arg264Lys + p.Arg279Ter) HLHS, VSD and PDA Hypoplastic thumb [43]

Missense—GOF c.373G>A (p.Gly125Arg) Early onset paroxysmal AF,
ASD and VSD

(Sub)luxation of the radial head,
carpal synostosis, scoliosis and
scapular dysplasia

[44]

Missense—LOF c.668C>T (p.Thr223Met) Long QT syndrome, ASD
and VSD - [45]

Nonsense—LOF c.835C>T (p.Arg279Ter) DCM, bicuspid aortic valve,
and first-degree AV block Hypoplastic thumb [46]

Missense—LOF c.710G>A (p.Arg237Gln) DCM, ASD, sick sinus
syndrome and AF Mild pectus excavatum [46]

Microdeletion +
microinsertion

c.627delinsGTGACTCA
GGAAACGCTTTCCT
GA

ASD and VSD Bilateral dysplasia of radius
and thumb [47]

Intragenic duplication Dup12q24.1—11 kb
(exons 1–6)

ASD, VSD and complete
AV block

Bilateral dysplasia of radius
and thumb [48]

Intragenic duplication Dup12q24.21—48 kb
(exons 2–9)

AVSD, pulmonary stenosis,
HLHS, atrial flutter, AF and
sick sinus syndrome

Bilateral ulnar hypoplasia,
syndactyly and fifth finger
clinodactyly

[49]
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Table 3. Cont.

Mutation Type Location Cardiac Phenotype Other Phenotypes Reference

Contiguous deletion Del12q24.13-q24.21—3.1 Mb
(including TBX5 and TBX3)

ASD, VSD, right pulmonary
artery hypoplasia and
high-grade second-degree
AV block

Bilateral dysplasia of radius and
thumb, fifth finger clinodactyly,
absent nipples bilaterally,
cryptorchidism and glandular
hypospadias

[50]

Contiguous duplication Dup12q24.21—399 kb
(including TBX5 and TBX3)

ASD, PDA, aortic stenosis,
bicuspid aortic valve and AF

Absence of distal inter phalangeal
joints of the thumb, hypoplastic
thenar eminence, camptodactyly
and supernumerary nipple

[51]

AF, Atrial fibrillation; ASD, atrial septal defect; AV block, atrioventricular block; AVSD, atrioventricular septal
defect; DCM, dilated cardiomyopathy; GOF, gain-of-function; HLHS, hypoplastic left heart syndrome; LOF, loss-
of-function; PDA, patent ductus arteriosus; TAPVR, total anomalous pulmonary venous return; VSD, ventricular
septal defect.

3.2. GATA4

GATA4 is a transcription factor from the GATA family characterized by a highly conserved
two zinc fingers domain that binds to the specific DNA sequence 5′-(A/T)GATA(A/G)-3′ in
the promoters of target genes [52].

3.2.1. GATA4 in Cardiomyocyte Differentiation

Many cardiac-specific genes possess GATA elements in their regulatory regions, in-
cluding not only structural sarcomere genes, such as myosin light chain-3 (MYL3) or
troponin C (TNNC1) and I (TNNI3), but also genes for Na+/Ca2+-exchanger (SLC8A3),
acetylcholine receptor-M2 (CHRM2), cardiac-restricted ankyrine repeat protein (CARP),
carnitine palmitoyltransferase-1b (CPT1B), and other transcription factors, such as NKX2-5,
which have been shown to be regulated by GATA4 [52]. Due to the overlap in the DNA-
binding region, the cardiac subfamily of GATA transcription factors (GATA4/5/6) exhibit
redundant functions and interact with each other to ensure the specification of cardiac cells
and subsequent heart development [53].

Zhao et al. suggested that GATA4 and GATA6 are essential for heart development by
influencing the transcription factors network involved in the cardiomyocyte differentiation.
They demonstrated that GATA4/GATA6 knockout mice presented with acardia, blocking
the formation of the first heart field and the differentiation of the progenitor cells into
cardiomyocytes, while the formation of the second heart field was independent of GATA4
activity [54]. Various in vitro studies have underlined the central role of the transcription
factor and its interactions with other regulatory elements in inducing cardiac specification.
For example, the combination of GATA4, NKX2-5 and TBX5 was sufficient for the activation
of the cardiac genetic program, both for transdifferentiating mesodermal cells and for
reprogramming postnatal fibroblast to differentiated cardiomyocytes [55,56].

3.2.2. GATA4 in the Development of the Atrioventricular Region

GATA4 has an important role in the development of the atrioventricular region, in-
cluding the valvulo–septal complex. The endocardium and endocardial cushions have a
high expression of the transcription factor, and it was shown that GATA4 mediates both
epithelial-to-mesenchymal transition (EMT) in the endocardial cushions and the growth
and remodeling of the atrioventricular cushions, playing an important role in valve devel-
opment [57]. Furthermore, GATA4 interacts with different cofactors in order to promote
cell-type-specific gene expression programs [53]. For example, Kim et al. demonstrated the
interaction between GATA4 and RERE (arginine-glutamic acid dipeptide repeats gene), a
cardiac-expressed nuclear receptor co-regulator, in the development of the membranous
portion of the ventricular septum, via their effects on EMT and mesenchymal cell prolif-
eration [58]. Functional analyses of both GATA4 and FOG2/ZFPM2 gene mutations have
shown a disturbance in the normal interaction between the two transcription factors, lead-
ing to similar phenotypes (mainly conotruncal defects), suggesting that the gene pair has
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an important role in the development of the outflow tract [59,60]. In addition, GATA4 is
involved in the localization of the atrioventricular canal by activating enhancers that lead
to H3K27 acetylation, thus activating atrioventricular canal-specific gene loci. This is in
contrast to its role in the chamber myocardium, where it determines deacetylation and gene
repression [61,62]. In a murine model, GATA4 haploinsufficiency determined an impaired
migration of Hedgehog-responsive progenitor cells from the second heart field in the out-
flow tract, causing CHDs [63]. Further studies have shown that GATA4, in association with
NKX2-5, promotes the maturation of differentiated cardiomyocytes after the migration [64].

3.2.3. GATA4 in the Developed Heart and Genetic Variation Involving GATA4

The transcription factor plays an important role in the adult heart as well by promot-
ing the compensatory mechanisms determined by different types of acquired cardiovascular
diseases, such as hypertrophy and angiogenesis. GATA4 is upregulated by mechanical and neu-
rohumoral stimuli, such as increased hemodynamic load, direct wall stretching, angiotensin
II, and endothelin-1, thus activating hypertrophy-associated gene promoters [52,65].

Many GATA4 mutations are associated with congenital heart defects. Table 4 summa-
rizes some of the identified mutations involving the genes and their phenotypes.

Table 4. Genotype–phenotype correlation involving GATA4.

Mutation Type Location Cardiac Phenotype Other Phenotypes Reference

Missense c.431C>T (p.Ala144Val) Pulmonary atresia and ASD - [42]

Missense c.487C>T (p.Pro163Ser) ASD Sexual development
disorder [66]

Missense c.886G>A (p.Gly296Ser) VSD - [67]

Missense c.929T>C (p.Met310Thr)

ASD, AVSD, pulmonary stenosis,
AF, paroxysmal VT and
junctional premature beat with
aberrant ventricular conduction

- [68]

Synonymous c.99G>T (p.Ala33Ala) ASD, VSD, coarctation of aorta
and TOF - [69]

Synonymous c.822C>T (p.Cys274Cys)
c.906C>T (p.His302His) Bicuspid aortic valve - [70]

SNP
(regulatory variant)

g.31360T>C
g.31436G>A
g.31437C>A
g.31487C>G
g.31856C>T

ASD - [71]

Insertion Ins4+5G>A TOF - [42]
Microdeletion Del8p23.1 AVSD Psychomotor delay [42]

Deletion DelGATA4 VSD, ASD and pulmonary
stenosis

Craniofacial dysmorphism
and ectopic kidney [72]

Deletion Del8p23.1—between 2.945 and
6.352 Mb

DORV, AVSD, pulmonary
atresia, TGA and ASD

Congenital diaphragmatic
hernia and craniofacial
dysmorphism

[73]

AF, Atrial fibrillation; ASD, atrial septal defect; AVSD, atrioventricular septal defect; DORV, double-outlet
right ventricle; TGA, transposition of great arteries; TOF, tetralogy of Fallot; VSD, ventricular septal defect;
VT, ventricular tachycardia.

3.3. NKX2-5

The transcription factor NKX2-5 is part of the NK-2 homeodomain-containing family,
which is related to the Drosophila tinman protein (essential for the development of the
dorsal vessel in flies) and highly conserved in many different species, from flies to zebrafish
and humans [74–77]. The family is characterized by a homeodomain that consists of a
helix-turn-helix motif and binds to the specific DNA sequence 5′-T(C/T)AAGTG-3′ [74,75].

3.3.1. NKX2-5 in Heart Development

During the embryologic period, NKX2-5 is expressed in the mesodermal cells of the first
heart field, as well as the second heart field and the endoderm underlying it, indicating a
central role in the transcriptional regulation of the developing heart due to its expression
in progenitor cells [75,76]. Tissue-specific deletions in mouse models have shown that the
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mesodermal expression of NKX2-5 is essential for heart development, with a heart phenotype
similar to that of NKX2-5 knock-out mice in the mesodermal deletion group, while the
endodermal expression has very little influence on the normal development of the heart [76].

George et al. revealed that NKX2-5 expression is essential for the maintenance of
the ventricular identity of cells during cardiomyocyte differentiation and acts in a dose-
dependent manner in preserving the chamber-specific molecular features during atrial and
ventricular formation [78]. In addition, studies have shown that NKX2-5 plays a specific role
in the development of the outflow tract and the right ventricle [76,77]. Immunohistochemistry
studies have demonstrated an increased expression of NKX2-5 in the outflow tract wall, thus
promoting the progressive maturation of the differentiated cardiomyocytes at this level [64].

3.3.2. NKX2-5 in the Development of the Ventricular Conduction System

NKX2-5 appears to be involved in the development of the conduction system by
influencing the number of specific myocytes in a dose-dependent manner, with little
effect on the transcriptional regulation of gap junction proteins [79]. Moreover, it directly
activates the expression of several major cardiac ion-channels, such as SCN5A, CACNA1C
and KCNH2, thus linking the gene with conduction disturbances [80]. Li et al. uncovered
that NKX2-5 is required for maintaining the physiological function of the sinoatrial node,
with sinus node dysfunction as a result of the downregulation of the transcription factor,
although it is not essential for the morphological development of the structure [81].

3.3.3. Gene–Gene and Gene–Environment Interactions Involving NKX2-5

Various transcription factors and other regulatory elements interact with one another
in order to mediate the normal development of the heart. For example, Vincentz et al. iden-
tified a direct interaction between NKX2-5 and MEF2C for ventricular chamber formation
by influencing ventricular cardiomyocyte specification [82]. Cardiomyocyte differentiation
promoted by NKX2-5 is regulated by BMP signaling via SMAD4, which controls not only
the expression but also the nuclear localization of the transcription factor [83].

Environmental factors can determine a CHD, but, for the majority of them, the exact
molecular mechanism is not yet fully understood. Lai et al. proposed a mechanism for the
association between hyperhomocysteinemia and the development of heart malformations
by the downregulation of NKX2-5 via its interactions with IGFBP5 [84]. Furthermore,
Zhao et al. found a link between maternal gestational diabetes mellitus, single nucleotide
polymorphisms of NKX2-5 and CHD [85].

3.3.4. Genetic Variation Involving NKX2-5

NKX2-5 is one of the most studied genes in relation to heart disease. It appears to be a
hypermutable locus, with an estimation that from 2 to 4% of all CHDs can be explained
by mutations in the transcription factor, with the majority of them involving the outflow
tract and the septal region [75,86]. Table 5 summarizes some of the identified mutations
involving genes and their phenotypes.

Table 5. Genotype–phenotype correlation involving NKX2-5 gene.

Mutation Type Location Cardiac Phenotype Other Phenotypes Reference

Missense c.182C>G (p.Ala61Gly) VSD and coarctation of aorta - [87]
Missense c.284G>T (p.Arg95Leu) VSD - [87]
Missense c.391G>A (p.Glu131Lys) ASD and TOF - [87]

Missense c.443C>A (p.Ala148Glu) DORV, TGA, ASD, VSD, coarctation
of aorta and atretic aortic valve - [87]

Missense c.739C>G (p.Pro247Ala) TOF - [87]
Missense c.413G>A (p.Arg138Glu) Familial ASD - [88]
Missense c.561G>C (p.Gln187His) Familial ASD - [88]
Missense c.355G>T (p.Ala119Ser) HLHS - [89]
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Table 5. Cont.

Mutation Type Location Cardiac Phenotype Other Phenotypes Reference

Synonymous Exon 2 Septal defects - [90]
Nonsense c.541C>T (p.Gln181Ter) ASD and AV block - [91]
Nonsense c.574A>T (p.Lys192Ter) Bicuspid aortic valve - [92]

Frameshift c.397-400del DORV, AVSD and TAPVR Extracardiac heterotaxy
syndrome features [93]

ASD, Atrial septal defect; AV block, atrioventricular block; AVSD, atrioventricular septal defect; DORV, double-
outlet right ventricle; HLHS, hypoplastic left heart syndrome; TAPVR, total anomalous pulmonary venous return;
TGA, transposition of great arteries; TOF, tetralogy of Fallot; VSD, ventricular septal defect.

3.4. CRELD1

The Cysteine-Rich with EGF-Like Domains 1 (CRELD1) gene encodes for a protein
that acts as a cell adhesion and signaling molecule, is highly conserved between species,
ranging from C. elegans to Homo sapiens, and is expressed both during embryogenesis and
adult life in a number of different tissues, but mainly the developing heart, limb buds,
branchial arches and brain [94].

3.4.1. CRELD1 in Heart Development

During cardiac embryogenesis, CRELD1 is expressed in the cells of the atrioventricular
canal, endocardial cushions and the outflow tract, being involved in the development of
these structures [95]. Knock-out CRELD1 mice presented fewer cells and less extracellular
matrices in the atrioventricular endocardial cushions than wild-type mice [96]. Studies have
revealed an interaction between VEGF, which seems to act upstream of CRELD1, and the
calcineurin/NFATc1 signaling pathway, with CRELD1 promoting the nuclear translocation
of the transcription factor NFAT, is known to regulate genes involved in the development
of the heart [95,96]. Using a murine model of the spatial inactivation of CRELD1, Beckert
et al. uncovered that the gene plays an important role not only in the early stages of heart
development but also in the maturation and the maintenance of the normal function of
the myocardium by regulating transcriptional networks in both atria and ventricles that
control the modeling of the extracellular matrix and trabecular formation [97].

3.4.2. Genetic Variation Involving CRELD1

CRELD1 mutations have been described in association with the development of
atrioventricular septal defects (AVSD), in both isolated and syndromic patients, with
an additional risk in Down syndrome patients, possibly due to the particular genetic
background of trisomy 21 [98,99]. It was approximated that between 5 and 10% of the AVSD
patients carry a missense mutation in this gene [96]. Table 6 summarizes the pathologic
implications of CRELD1 mutations described so far.

Table 6. Genotype–phenotype correlation involving CRELD1 gene.

Mutation Type Location Cardiac Phenotype Other Phenotypes Reference

Missense c.985C>T (p.Arg329Cys) AVSD, VSD and PPHT - [100,101]
Missense c.932C>T (p.Thr311Ile) AVSD - [100]

Missense c.320G>A (p.Arg107His)
AVSD, pulmonary atresia,
dextrocardia and right aortic arch
(heterotaxy syndrome)

- [100]

Missense c.973G>A (p.Glu325Lys) AVSD Down syndrome [98,102]
Missense c.857C>G (p.Pro286Arg) AVSD - [102]
Synonymous c.1628G>A (p.Lys336Lys) ASD - [103]
SNP c.-103G>T (5′UTR) ASD - [103]
SNP c.1048+23G>T (intronic) ASD - [103]

ASD, Atrial septal defect; AVSD, atrioventricular septal defect; PPHT, persistent pulmonary hypertension;
SNP, single nucleotide polymorphism; UTR, untranslated region; VSD, ventricular septal defect.
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3.5. Genetic Variations in Other Transcription Factor and Signaling Molecule Genes

The vascular endothelial growth factor (VEGF) family is essential for angiogenesis,
and the pathway involving these signaling molecules is also a key regulator of heart mor-
phogenesis [104]. VEGFA plays an important role in the early stages of heart development,
influencing the formation of the heart tube, and its overexpression can lead to impaired
heart tube elongation and looping [105]. In addition, it is involved in the development of
the endocardial cushions by mediating the endothelial-to-mesenchymal transition; thus,
alterations in the expression of VEGFA may lead to atrioventricular septal defects and
dysplastic atrioventricular valves [106]. Single nucleotide polymorphisms of VEGFA, such
as c.-2578C>A, c.+963C>T, c.-634C>G, c.-1154G>A and c.-460T>C, were associated with an
increased risk of developing CHDs, especially for tetralogy of Fallot and ventricular septal
defects [67,107–109]. Moreover, studies have shown that deficiencies in the VEGF signaling
pathway, due to haploinsufficiency of VEGF receptors, also contribute to the pathogenesis
of tetralogy of Fallot [110].

The bone morphogenetic protein (BMP) signaling pathway is involved in the differ-
entiation of the cardiac mesoderm as it regulates the expression of NKX2-5 transcription
factor [104]. Murine models have uncovered an important role played by BMP4 in the re-
modeling and expansion of the endocardial cushions; it is required for the normal septation
of the outflow tract and the development of the semilunar valves [111]. This process is medi-
ated by complex molecular interactions between BMP4 and TBX1 and by VEGFA [112,113].
Although studies have underlined its involvement in cardiac embryogenesis, the relation-
ship between the genetic variation of BMP4 and CHDs in human populations is still being
researched. The association between the single nucleotide polymorphism rs762642 and both
atrial and ventricular septal defects was demonstrated in a Chinese population [114,115].

ISL1 is a transcription factor that characterizes the cardiac progenitor cells [116].
The genetic variants of the promoter of ISL1 (g.4581A>G, g.4630G>A, g.5085G>A) were
associated with the development of tetralogy of Fallot by causing functional changes
that alter the transcriptional activity of the promoter, downregulating the transcription
factor and its downstream effectors [117]. Additionally, the promoter variants g.4335A>G,
g.4477G>A and g.4613G>A were described in patients with ventricular septal defects,
demonstrating a similar pathogenetic mechanism [116]. Furthermore, a loss-of-function
mutation c.225C>G (p.Tyr75Ter) was identified in a patient presenting with double-outlet
right ventricle, altering the transcriptional activity of the gene and the interactions with
TBX20, another transcription factor involved in heart development [118].

4. Conclusions

As previously stated, CHDs are a heterogeneous group of disorders with complex
underlying pathologic mechanisms. In one study, it was estimated that over 400 genes are
likely to be involved in their etiology [119]. In addition to genetic mutations, the researchers’
focus was also directed towards common and non-coding variants, as well as epigenetic
factors and interactions with environmental contributors, as an effort to uncover some of
the missing heritability [104,119].

Understanding new concepts regarding heart development has led to a paradigm
shift in the pathogenesis of CHDs, from the multifactorial inheritance hypothesis to the
“one heart disease—several mechanisms—several genes” hypothesis. It states that having
a heart disease may be caused by errors in several embryological mechanisms in a develop-
mental sequence, each of which are orchestrated by a specific set of genes, similarly to the
“off targets” model from cancer research [119,120]. This paradigm shift has practical impli-
cations by changing the focus from the anatomical defect to the developmental mechanism.
In order to give adequate genetic advice, it is mandatory to describe the cardiac anatomy
accurately so that the suggestive embryological pathways can be identified and candidate
genes can be determined [120]. Providing a molecular diagnosis of CHDs is important not
only for future family planning but also for effective future patient management, due to
insights in the evolution of the disorders (for example, an association with conductance
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disturbances, cardiomyopathies or extracardiac symptoms), as well as the outcome after
surgery or other treatments (some genetic variations have been described as risk factors for
morbidity and mortality after surgery) [119].

Transcription factors and signaling molecules are promising candidates for studies
regarding the genetic burden of CHD. Although many of the pathogenetic mechanisms
surrounding heart development have been described, further research is needed in order
to uncover their downstream targets and the complex network of interactions with non-
genetic risk factors for a better molecular–phenotype correlation.
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