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Abstract: This review delineates the main pulmonary issues related to preterm birth, perinatal
tobacco/nicotine exposure, and its effects on offspring, focusing on respiratory health and its possible
transmission to subsequent generations. We review the extent of the problem of preterm birth,
prematurity-related pulmonary effects, and the associated increased risk of asthma later in life. We
then review the impact of developmental tobacco/nicotine exposure on offspring asthma and the
significance of transgenerational pulmonary effects following perinatal tobacco/nicotine exposure,
possibly via its effects on germline epigenetics.
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1. Introduction

Preterm birth (PTB)/prematurity is “the leading cause of death in children under
five years”, with approximately one million annual deaths globally. It is one of the top
healthcare priorities, both in the United States and globally [1]. The United Nations
Sustainable Development Goal Target 3.2 aims to end preventable deaths of newborns and
children under 5 by 2030. To accomplish this, all countries are aiming to reduce neonatal
mortality to at least 12 per 1000 live births and under-5 mortality to at least 25 per 1000 live
births [2]. Specifically, The Healthy People initiative, spearheaded by the U.S. Department
of Health and Human Service’s Office of Disease Prevention and Health [3], in its fifth
iteration, Healthy People 2030 (MICH-7), aims to reduce the incidence of PTB to 9.4% by
2030 [4]. Since maternal exposure to tobacco smoke during pregnancy is a major cause of
PTB [5], the second goal of Healthy People 2030 is “to increase abstinence from cigarette
smoking to 95.7% by 2030.” Data from 2019 show that the current abstinence rate is at
94% [6]. Significantly, maternal smoking in pregnancy is independently associated with
both preterm delivery and increased respiratory morbidities such as asthma [7–9]. Given
smoking’s harmful effects and its association with PTB and asthma, numerous organizations
are attempting to mitigate this public health crisis. However, despite all efforts, we have
still not seen sustainable declines in either PTB or asthma.

2. Preterm Birth Rates and Recent Trends

Due to challenges in many countries with data collection, especially those that are
low-income, determining the actual prevalence of PTB is difficult. The World Health
Organization (WHO) estimates that there are approximately 15 million preterm (<37 weeks’
gestation) deliveries per year globally [10,11]. This results in a PTB rate of 11%, and
for many countries, it continues to be on the rise [11]. Global PTB rates increased from
9.8% in 2000 to 10.6% in 2014 [12]. The United States is ranked sixth “among the top 10
countries with the greatest numbers of PTBs,” with 517,000 cases annually [13]. The top six
countries with the highest prevalence—India, China, Nigeria, Pakistan, Indonesia, and the
U.S.—comprise approximately 50% (~7.4 million) of total PTBs worldwide [13]. For the U.S.
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specifically, there have been fluctuating trends in the incidence of PTB since 2007. National
Vital Statistics showed that from 2007 to 2014, the PTB rate decreased from 10.44% to 9.57%,
but then increased by 7% from 2014 to 2019 [14]. There was a marginal improvement from
2019 to 2020, which was not observed in all race groups. It declined by 2% in non-Hispanic
White mothers, from 9.26% to 9.10%, and by 1% in Hispanic mothers, from 9.97% to 9.84%.
No significant change was noted in non-Hispanic Black mothers [15]. The most recent
PTB rate in 2020 spanned from a minimum of 8.51% in non-Hispanic Asian mothers to a
maximum of 14.36% in non-Hispanic Black mothers [15]. This highlights the disparities in
PTB rates and difficulties with health equity. Moreover, it does not appear that the recent
trend of a decrease in PTB rate will persist. For example, Martin JA recently (2021) reported
an uptrend in PTB in all racial groups [16].

Due to improved perinatal care, including antenatal steroids, surfactant therapy, and
other technological advances, there are more adult survivors of PTB now than at any time.
In addition to mortality risk, prematurity is a significant risk factor for lifelong adverse
sequelae, including significant pulmonary complications such as chronic lung disease
and asthma [17–25], constituting a significant economic burden. The U.S. alone spends
approximately USD 26 billion yearly on the medical care of preterm infants [26]. This does
not include the cost of potential adverse sequelae, such as chronic lung diseases, including
asthma and neurodevelopmental delays [10–13,27–29].

3. Normal Lung Development

Implications of PTB and tobacco/nicotine exposure on the developing lung first re-
quire a brief overview of normal lung development. Lung development involves five
stages encompassing both prenatal and postnatal periods (Figure 1). The conducting
system begins to develop in the fourth week of gestation, followed by the formation
of the gas exchange components, which extends well into late childhood and even to
early adulthood [30–32]. During the embryonic stage (gestational weeks 4–7), two lung
buds develop from the ventral wall of the primitive foregut. These elongate and initiate
branching (branching morphogenesis) [33], which is finely orchestrated by epithelial-
mesenchymal crosstalk [34,35]. The initial pulmonary vessels (vasculogenesis) are formed
as a plexus in the mesenchyme surrounding the lung buds, with the formation of a
new capillary plexus (angiogenesis) surrounding each newly formed bud with further
branching [36,37]. The second pseudoglandular stage (weeks 7–17) primarily involves the
formation of the first 20 generations of airway branching [38], the first few generations of
alveolar ducts, and the appearance of proximal airway cells [39]. The third canalicular stage
(weeks 17–27) includes the differentiation of the epithelium, allowing the morphological
distinction between conducting and respiratory airways [40]. By the end of this stage, the
alveolar epithelium comes in close proximity with the mesenchymal capillary network,
allowing gas exchange in babies born extremely premature [37]. During the fourth saccular
stage (weeks 24–38), the terminal airways grow in length, widen, and form clusters of larger
airspaces, i.e., saccules, and the gas-exchanging (type 1) and surfactant-producing (type 2)
epithelial cells differentiate further [37]. The fifth and final alveolar stage (weeks 36 and
beyond) is the longest lung development stage that can continue to approximately 21 years
of age, although most alveolarization is achieved by 8 years [41,42].

Although infants born extremely preterm, i.e., during the late canalicular and early
saccular stages of lung development, have the most significant burden of early respiratory
morbidity that predisposes them to the most significant risk for later pulmonary issues,
a complex, intricate and protracted lung development process, starting from the early
embryonic period and continuing into early adult years, renders the respiratory system to
be vulnerable to insults throughout its developmental course. Furthermore, although the
lung’s functional capacity increases throughout childhood and peaks at 20–25 years before
starting its decline into old age, it is well established that the trajectory of its maturation
is already established at birth. For example, maximal expiratory flow measured shortly
after birth correlates with the forced expiratory volume in one second/forced vital capacity
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(FEV1/FEC) ratio into adult life [43]. In addition to the interruption of natural lung
development due to PTB, the damaging effects from inadequate nutrition, respiratory
infections and respiratory support, such as oxygen supplementation and invasive or non-
invasive ventilatory support that extremely premature infants universally require for
their extrauterine survival, adds to both short- and long-term respiratory consequences
(Figure 1) [44]. These invariably include sub-optimal adult respiratory capacity, an increased
predisposition to asthma, and accelerated decline in lung function, although the data are
inconsistent between various studies. Furthermore, as outlined later, exposure to tobacco
smoke/nicotine at any stage in the developing lung is detrimental [45].
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key cellular and molecular pathways involved in preterm birth- and smoke/nicotine exposure-related
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4. Preterm Birth and Life Long Respiratory Sequelae

With an increase in PTB rate, there has also been an increase in survivors of PTB of
up to 95% [46,47] into adult years. This has been accompanied by increased chronic health
problems among the survivors. These include, but are not limited to, chronic cardiovascular,
metabolic, endocrine, renal, central nervous system, and pulmonary disorders such as
asthma and other chronic lung diseases [7,18,23,44,48–52]. Although heterogeneity among
study populations, advances in perinatal and neonatal care over time, and numerous
other confounding variables (e.g., genetic background, socioeconomic status, and tobacco
exposure) makes a direct comparison between various studies challenging, in general,
as reviewed next, the pulmonary outcomes at all ages following PTB are compromised
compared to those born at term [44,53].

5. Preterm Birth and Respiratory Symptoms at Various Life Stages

During early childhood and preschool years, children born preterm, both with and
without bronchopulmonary dysplasia (BPD), show more respiratory symptoms, such as
cough and wheezing, than those born at term [54–56]. Similarly, during school-age years,
former preterm infants compared to term-born controls demonstrate more significant
respiratory symptoms (wheezing and cough) independent of their BPD status [53,57–60],
although there is a higher frequency of symptoms in those with BPD versus those without
BPD [61]. In contrast to the unequivocal evidence of adverse respiratory outcomes in
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preschool and school-age former preterm-born children, the data in the adolescent age
group are somewhat limited and inconclusive. Both higher [62] and equal [63] prevalence
of respiratory symptoms have been reported in former preterm-born (versus term-born
control) adolescents. Like the preschool and school-age groups, prematurely born young
adults, compared to those born at term, show more respiratory symptoms irrespective of
their BPD status [64–66]. Although some studies suggest that symptoms, such as cough,
wheezing, long-term use of respiratory medications, and impaired quality of life, remain
more frequent in former preterm-born individuals with BPD versus those without BPD, in
general, there is an overall decrease in the frequency of respiratory symptoms from early
childhood to adulthood in both with and without BPD populations [67].

6. Impact of Preterm Birth on Exercise Tolerance

The data on exercise capacity in former preterm-born individuals is in line with the
data on respiratory symptoms, i.e., lower exercise capacity in those with BPD (versus
non-BPD and term controls) [66,68–70] and without BPD (vs. term controls) [44,68,69]. In a
select cohort of former preterm-born individuals from a large population-based Swedish
database, PTB was noted to be an independent predictor of reduced exercise capacity [71].
The reasons underlying reduced respiratory function in former preterm-born adults are
likely to be multifactorial, e.g., lower lung volumes, neonatal respiratory support-related
lung damage, more frequent respiratory infections, and respiratory de-conditioning related
to reduced activity, contributing to variable degrees in different populations. Lung volumes
in premature infants born before 28 weeks gestation with or without BPD when measured at
term equivalent are lower than those born at term [72]. This likely contributes to continued
lower respiratory capacity over time. For example, in a study involving preterm children,
as assessed by spirometry, worsening lung function was observed at ages 3–6, 7–11, and
12–20 years [73]. In general, prematurely delivered individuals with or without BPD do not
achieve optimal peak lung function as adults and have decreased lung function despite
receiving antenatal corticosteroids and surfactant BPD [19,73,74].

7. Preterm Birth and Predisposition to Airway Hyperresponsiveness/Asthma

A high prevalence of airway hyperresponsiveness/asthma following PTB has been
found at all postnatal ages examined [49,75–79]. The overall wheezing risk in former
preterm-born individuals is estimated to be increased by 1.71-fold with an inverse cor-
relation with gestational age at birth [80]. However, due to heterogeneity in the study
populations, the definitions of wheezing and asthma used, and variations in exposure to
other factors, such as pollution, maternal smoking, and hygiene conditions, which are all
known independent contributors to wheezing disorders, the actual risk of hyperresponsive-
ness/asthma varies. In general, higher rates of wheezing in premature children, both with
and without BPD, likely account for high asthma rates in this population. However, whether
wheezing is largely reversible or not, it helps differentiate asthma from prematurity-related
lung parenchymal structural damage and or airway wall thickening that lead to fixed
airflow obstruction and wheeziness [81]. Lower concentrations of exhaled nitric oxide and
exhaled breath temperature and the absence of eosinophilic airway inflammation in wheezy
former preterm-born children with or without BPD versus children with asthma suggest
different underlying mechanisms resulting in wheezing under these two scenarios [82–84].
However, evidence of ongoing oxidative stress in former preterm-born individual’s airways
suggests an ongoing airway disease and not just stabilized structural lung damage from
preterm birth and other accompanying insults [85]. Additionally, subglottic stenosis and
tracheomalacia/bronchomalacia secondary to prolonged mechanical ventilation and left
recurrent laryngeal nerve palsy after surgical ligation of patent ductus arteriosus might also
result in fixed airway obstruction and wheezing in former preterm-born individuals that
are unresponsive to bronchodilators [86]. Intrauterine growth restriction, often accompany-
ing preterm birth, also enhances airway obstruction, manifesting clinically as persistent
wheezing [87].
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8. Preterm Birth and Predisposition to Respiratory Infections

Due to pulmonary and immune immaturity, PTB is associated with increased respi-
ratory infections in infancy and early childhood; however, whether this predisposition
continues into adolescence and adulthood is unclear [88–90]. In a national cohort of all
infants born in Denmark from 1992 to 2007, although higher rates of respiratory infections
and higher odds of hospitalization for airway infections were found in former preterm-
born children (GA 23–27 weeks) at 4–5 years of age, there was no difference in these rates
in adolescents [88]. Low birth weight has also increased the risk of severe SARS-CoV-2
infection in non-elderly adults [91]; however, whether PTB has an independent association
remains to be proven [92].

Once a preterm delivery has occurred, it can be challenging to mitigate the cascade
of events that ultimately result in morbidities, the degree to which is dependent upon the
gestation: the lower the gestation at birth, the higher the risk of morbidities and mortality.
Moreover, higher morbidities in childhood set the stage for higher adulthood adverse
events, as described by Barker [93]. Therefore, the prevention of PTB may be the key to
the prevention of many of these adulthood conditions. There is a myriad of causes for
prematurity: inflammation and infection, gestational diabetes, maternal hypertension,
multiple gestations, advanced maternal age, maternal obesity, in vitro fertilization, and
smoke exposure [94–106]. Although many of these risk factors are unmodifiable, others,
such as decreasing or abstaining from tobacco/nicotine usage during pregnancy, can make
a significant difference. Importantly, maternal smoking in pregnancy is independently
associated with both preterm delivery and lifetime predisposition to respiratory illnesses,
including asthma [7–9], rendering prevention of perinatal smoke exposure one of the top
public health priorities. An estimated 20% of healthcare costs (USD ~1 billion annually) for
childhood respiratory illnesses are directly attributable to maternal smoking [107].

9. Effects of Perinatal Tobacco/Nicotine Exposure on Developing Lungs

Based upon the 2020 National Health Interview Survey, an estimated 47.1 million
U.S. adults (19.0%) reported currently using any commercial tobacco product, including
cigarettes (12.5%), e-cigarettes (e-cigs, 3.7%), cigars (3.5%), smokeless tobacco (2.3%), and
pipes (1.1%) [108]. There is evidence that despite warnings from the Food and Drug Ad-
ministration and other agencies, there has recently been a marked increase in the use of
e-cigs among women of reproductive age [109]. Regardless of the form by which these are
consumed, tobacco products and e-cigs contain thousands of compounds (toxicants, carcino-
gens, and nicotine) [110] that play significant roles in the adverse health consequences of
their users [111], as well as the fetus [112,113], and even subsequent generations [114–116].
However, convincing evidence supports that smoke exposure’s effects on the developing
lung are predominantly caused by nicotine [114,117,118]. It crosses the placenta with
minimal biotransformation and accumulates in amniotic fluid and several fetal tissues,
including the respiratory tract [119,120]. Since, in comparison to maternal concentrations,
fetal serum nicotine concentrations can be higher by 15% [121], the fetus is exposed to
even higher nicotine than the smoking mother. Notably, the pulmonary phenotype seen
following perinatal nicotine exposure in multiple experimental models is similar to that
seen in human infants exposed to maternal smoke during pregnancy [118,122,123]. In a
multicenter study, subjects born to mothers who smoked during pregnancy had an adjusted
hazard ratio of 1.79 [95% CI, 1.20–2.67] for increased risk of asthma compared to those
born to non-smoking mothers [124]. In an earlier groundbreaking study, Tager et al. [125]
established that even sidestream smoke affected fetal lung development and neonatal
pulmonary function.

It is widely established that there are critical periods in an individual’s lifespan when
the impact of environmental exposures is at its peak. These vulnerable windows include
conception (where plasticity can be at its maximum) [126], birth, puberty, pregnancy, and
menopause [127]. The perinatal period, defined as the period from 20 completed weeks
of gestation to 28 postnatal days, or defined alternatively as the period starting from
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22 completed weeks of gestation and lasting up to seven days after birth [128], is partic-
ularly vulnerable to the detrimental effects of tobacco smoke/nicotine. During this time
frame, nicotine particularly affects cellular differentiation and conducting airways [129],
explaining the reduced respiratory function in the premature infants of smoking mothers
compared to premature infants of nonsmokers [130]. In vitro studies have demonstrated
that nicotine directly affects alveolar type II cells, fibroblasts, endothelial cells, and stem
cells, among the many other lung cell types affected [131–133]. These effects likely ex-
plain the dysanaptic lung growth and branching, increased collagen deposition, thicker
alveolar walls, airway smooth muscle volume, altered tidal volumes, and airflow restric-
tion observed in various rodent, sheep, and primate models of gestational and perinatal
nicotine exposure [118,123,129,130,134,135]. Animal models have also demonstrated ar-
rested lung growth and hypoplasia [131,134,136] with larger and fewer saccules that are
more compliant, have fewer septal crests, reduced parenchymal tissue, and decreased gas
exchange area secondary to overall hypoplastic lungs of smoke-exposed fetal rats [137].
Interestingly, males demonstrated a more significant asthmatic pulmonary phenotype in a
well-established rat model of perinatal nicotine exposure [138].

Airway responsiveness following perinatal smoke/nicotine exposure is primarily
driven by nicotine’s effect on the developing mesenchyme. During development, a deli-
cate balance between the mesenchymal Wingless/Int (Wnt) and peroxisome proliferator-
activated receptor γ (PPARγ) signaling controls airway smooth muscle cell and alveolar
fibroblast differentiation [139,140]. Acting via nicotinic acetylcholine receptors (nAChRs),
expressed extensively by bronchial epithelial, endothelial, mesenchymal, and pulmonary
neuroendocrine cells during early fetal life [141], perinatal nicotine exposure upregulates
Wnt signaling and downregulates PPARγ signaling pathways in the developing lung
(Figure 1) [138,140,142], resulting in excessive myofibroblast differentiation and prolif-
eration, a hallmark of airway hyperresponsiveness seen in perinatal smoke/nicotine-
exposed children and adults. Nicotine exposure results explicitly in upregulation of
α7nAChR in airway fibroblasts, followed by an increase in collagen and a decrease in elastin
deposition [123,143]. These molecular and cellular phenomena likely represent the main
mechanisms underlying perinatal smoke/nicotine exposure-induced lung phenotype.
However, limited animal and human studies have also suggested perinatal smoke/nicotine-
induced altered immune alterations such as Th2 polarization [144–146] and enhanced re-
sponses to postnatal allergen and fungal exposures following in utero smoke exposure [147].

10. Epigenomics of Smoke/Nicotine Induced Pulmonary Programming

Epigenomics involves modifying gene expression through epigenetic processes that
alter the genome without affecting the underlying DNA sequence. These processes include
DNA methylation, histone modifications, or RNA silencing, resulting in changes that can
persist through cell division and be inherited through multiple generations [148]. Therefore,
in contrast to an individual’s genome, which is constant, the epigenome is a dynamic
response to external exposures and stimuli that alters how genes are expressed [149].
Although roles of both heritability and epigenetics have been studied extensively in asthma
and chronic obstructive pulmonary disease pathogenesis [150–152], accumulating evidence
suggests a more dominant role played by epigenetic factors [153–160].

Several studies have examined epigenetic programming following perinatal smok-
ing/nicotine exposure. Gene and tissue-specific DNA methylation changes have been de-
scribed in the placenta, fetus, and cord blood after prenatal smoke exposure [161–164], and
the persistence of some of these changes on specific loci has been shown up to adolescence on
buccal and blood analysis [165–167]. Interestingly, changes at specific loci have been linked to
specific morbidities, including an increased predilection for asthma [168,169]. For example,
specific genes such as AHRR, GF1, FOXP3, CYP1A1, and RUNX that may play a role in child-
hood respiratory morbidities were identified in cord blood studies [162,168–173]. Intriguingly,
RUNX1 polymorphism is directly linked to airway hyper-responsiveness and asthma, and
after in utero nicotine exposure, its expression increases in the human embryonic lung [168].
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Additionally, placenta and cord samples from pregnancies exposed to tobacco were noted to
have hypermethylation in RUNX1 and RUNX3 [162,172] and hypomethylation in AHRR loci
in the cord blood of human neonates, correlating with maternal cotinine concentration and
persisting up to 18 months of age [166,174,175]. Finally, deletions or structural polymorphisms
in CYP1A1 and GSTT1 enzymes, involved in detoxification and metabolism processes of the
tobacco products’ toxic metabolites, were found to be associated with increased asthma risk
and sensitivity of the fetus to maternal smoking [165,176].

11. Transgenerational Inheritance via Smoking/Nicotine’s Effects on
Germline Epigenetics

Many studies have shown that not only the first-generation offspring are at risk follow-
ing maternal exposure to smoke/nicotine during pregnancy, but the progeny of subsequent
generations might also be at risk for pulmonary complications even without any subsequent
exposure to smoke/nicotine. This indicates that the adverse health impact of smoking
is heritable, and persistent and has been observed both clinically and experimentally. In
a Southern California telephone survey, tobacco smoke exposure during pregnancy was
determined to have had potential effects on the lung development of the grandchild, re-
gardless of the mother’s smoking status during pregnancy [177]. A similar association
was seen in grandchildren developing asthma among those whose grandmothers smoked
during their pregnancies [178]. Interestingly, paternal studies demonstrated that nicotine
exposure by the father in utero affected the respiratory outcome of his daughter, inde-
pendent of his smoking habits [179]. However, not all studies support the occurrence of
transgenerational asthma following prenatal smoke exposure. For example, there was no
conclusive evidence for any correlation between prenatal smoking by grandmothers and
any effect on grandchildren in the Avon Longitudinal Study of Parents and Children [180].
The differences in genetically diverse populations likely studied, and the difficulties in
excluding the effects of numerous other confounding variables account for the observed
discrepancies in the results of these studies. Overall, epidemiological and clinical studies
suggest but do not prove smoke/nicotine’s transgenerational pulmonary effects.

Given that it would take decades to follow multiple generations prospectively and
since, in real life, it is almost impossible to control for all variables determining asthma,
experimental models are the only realistic way to study the phenomenon of transgen-
erational transmission of asthma. As outlined next, that is what we and others have
done. A murine model demonstrated that maternal tobacco exposure increased airway
hyperactivity, airway resistance, and decreased lung compliance in offspring, which was
then passed on to the next generation without tobacco exposure [145]. Even more con-
vincingly, in an experimental rat model, airway hyperresponsiveness and asthma-related
molecular markers were increased in the first-generation offspring exposed to nicotine and
subsequent second and third-generation offspring without any subsequent exposure to
nicotine beyond the F0 generation (Figure 2) [181,182]. Supporting this highly significant
observation, nicotine-induced transgenerational inheritance of additional phenotypic and
molecular traits has also been described in other models [115,183]. Additionally, since the
offspring of smokers are more likely to smoke than nonsmokers [184,185], the effect of
repeat smoke/nicotine exposure during a subsequent generation following exposure in
F0 gestation on the asthmatic phenotype in F2 generation has been examined [114]. It was
determined that nicotine exposure in F1 gestation following its exposure in F0 gestation
causes a more robust asthma phenotype in the F2 generation, especially in males, compared
to its exposure in only F0 pregnancy.

While the exact mechanism(s) underlying any transgenerational inheritance remains
unknown, epigenetic inheritance via alterations in germline DNA methylation, histone acety-
lation, and small RNAs have been implicated as plausible mechanisms [114,181,186,187].
Though most environmental exposures-induced epigenetic changes are known to be discarded
at every generation, there is irrefutable evidence of germline reprogramming [188], retentions
of heritable epigenetic marks, and the transmission of the environmentally induced epigenetic



Children 2023, 10, 608 8 of 17

marks across generations in a variety of models [189–192], rendering smoke/nicotine-induced
germline epigenetic inheritance as a potential plausible mechanism (Figure 2).
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Given the above-reviewed pulmonary consequences and other well-known harms of
perinatal smoke exposure, many organizations and campaigns have focused on tobacco ces-
sation [193–196]. Although there has been improvement, the WHO reported that there are
still approximately 1.3 billion smokers globally, contributing to 8 million deaths yearly [197].
Specifically in the U.S., 500,000 smokers die prematurely yearly, and an additional 16 mil-
lion develop significant morbidities, accounting for USD 225 billion in healthcare costs
yearly [196]. Although tobacco/nicotine usage during pregnancy continues to be common,
there has been a modest improvement in women smoking anytime during their pregnancy
from 2016 (7.2%) to 2020 (5.5%) [15,198]. In addition, from 2005 to 2020, adults generally
smoked fewer cigarettes per day. In 2020, 12.5% of U.S. adults aged ≥18 smoked cigarettes,
the lowest prevalence since data became first available in 1965 [199]. These statistics are
encouraging, and these improvements may be due to multi-pronged anti-tobacco interven-
tions [193–195,199,200]. Although these statistics are promising, there are still challenges
to its continued reduction due to multiple barriers, such as the highly addictive nature of
nicotine [201], substantial withdrawal symptoms [202], and aggressive advertising strate-
gies that target adolescents [203]. Since a dose-effect relationship exists between nicotine
intake and smoking-related outcomes of pregnancy [9], smoking cessation strategies at any
stage during pregnancy should be emphasized.

12. Conclusions

Given that adults born preterm remain at increased risk for pulmonary structural
and functional compromise, respiratory infections, and respiratory health-related hospital
admissions, it is imperative to ensure continued close oversight over these issues as a former
preterm-born child transitions to adult care. It is also evident that the adult pulmonary
outcomes of pre-surfactant and pre-antenatal steroid-a era preterm-born individuals differ
from those routinely receiving these interventions. Additionally, there is no doubt that due
to changing threshold of viability and the ever-improving perinatal, neonatal, and pediatric
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care, the outcomes of preterm-born in the future will also be different from those receiving
contemporary medical care. Similarly, changing perinatal tobacco/nicotine exposure
patterns in preterm-born individuals can also potentially impact the pulmonary outcomes
differently. Nevertheless, despite knowing the dangers of perinatal exposure to smoking for
over six decades [204], it remains a major public health concern [205]. Fortunately, various
campaigns globally and nationally have prioritized mitigating tobacco/nicotine usage for
the general population and pregnant women. It is gratifying to note that according to
the most recent National Center for Health Statistics (NCHS) brief (#458, January 2023),
between 2016 and 2021, the percentage of mothers who smoked during pregnancy declined
across all maternal age groups, regardless of race or ethnicity. It occurred in all 50 U.S. states
and the District of Columbia.

Inquiry into preterm birth and perinatal health/exposures should be part of routine
adult health care with an emphasis on avoidance of tobacco smoking and e-cig vaping,
emphasis on regular exercise, and adopting a generally healthy lifestyle, as well as ensuring
annual influenza immunization [83]. Whether routine spirometry in adult follow-up
clinics will be a valuable tool in monitoring the respiratory health of prematurely born
adults remains to be proven. Furthermore, bronchodilator and/or inhaled corticosteroid
therapy should be based upon individualized needs and risk-benefit analysis rather than
the persistent presence of audible wheeze only. With a deeper mechanistic understanding
of tobacco/nicotine-mediated damage to the developing lung and its transgenerational
inheritance, attention can also be placed on epigenetic-targeted therapeutics in the future
for those who experience continued exposure to the peril of perinatal tobacco/nicotine.
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