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Abstract: This study aimed to systematically review the literature to synthesise and summarise the
evidence surrounding the efficacy of artificial intelligence (AI) in classifying paediatric pneumonia
on chest radiographs (CXRs). Following the initial search of studies that matched the pre-set criteria,
their data were extracted using a data extraction tool, and the included studies were assessed via
critical appraisal tools and risk of bias. Results were accumulated, and outcome measures analysed
included sensitivity, specificity, accuracy, and area under the curve (AUC). Five studies met the
inclusion criteria. The highest sensitivity was by an ensemble AI algorithm (96.3%). DenseNet201
obtained the highest level of specificity and accuracy (94%, 95%). The most outstanding AUC value
was achieved by the VGG16 algorithm (96.2%). Some of the AI models achieved close to 100%
diagnostic accuracy. To assess the efficacy of AI in a clinical setting, these AI models should be
compared to that of radiologists. The included and evaluated AI algorithms showed promising
results. These algorithms can potentially ease and speed up diagnosis once the studies are replicated
and their performances are assessed in clinical settings, potentially saving millions of lives.

Keywords: artificial intelligence (AI); deep learning (DL); paediatric pneumonia; chest radiograph;
computer-aided detection (CAD)

1. Introduction

Pneumonia is one of the leading causes of global mortality and morbidity [1] and
the leading cause of death among children under five years of age [2]. The chest X-ray
(CXR) is the primary diagnostic tool in both the detection and diagnosis of paediatric
pneumonia [1] due to the unspecific and subjective signs and symptoms of the infection [3],
while sputum cultures are often extremely difficult to ascertain [4]. A lack of expert
radiologists, particularly in resource-constrained countries, where paediatric pneumonia is
endemic with shockingly high mortality rates [5], might have significantly contributed to
the high mortality rates.

Pneumonia, as a whole, often manifests on a chest radiograph as areas of increased
opacity [6]. Bacterial and viral pneumonia, the two most common aetiologies, have different
appearances on CXRs and have different treatment regimes [7]. Bacterial pneumonia often
manifests as a lobar and focal consolidation, whereas viral pneumonia can present as an
interstitial pattern. Although the different appearances on CXRs, interpretation of the
aetiologies on CXR varies amongst physicians [3] as the opacification presented is often
variable and irregular [8].

There are roughly two billion CXRs performed in the United States annually [9], with
approximately two million of these being on paediatric patients [10]. The accumulation
of imaging data and the increasing complexity of medical history pose new challenges in
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modern medicine but also open up new opportunities in implementing artificial intelligence
(AI) for effective detection and diagnosis [3].

AI is defined, by the father of AI, Marvin Minsky, as “the science of making machines
do things that would require intelligence if done by men” [11]. Machine learning (ML) and
deep learning (DL) are both under the umbrella of AI. In ML, the system identifies patterns
by learning from data and makes decisions with minimal programming and human inter-
ventions [12,13]. On the other hand, DL involves multiple processing layers, with individual
layers extracting a large number of features from unstructured data before progressing to the
next layer [14]. Higher levels typically represent more abstract concepts [15] and can give a
more comprehensive depiction or decision after passing through the entire network [14].

Computer-aided detection (CAD) was first introduced between 1963–1973 [16–21],
and utilised in facets of radiology, predominantly the identification of lung, colorectal,
breast, and prostate cancer, over the past 20 years [22–33]. CAD is trained in a regimental
fashion and can only be improved by inputting more data, while AI has the autonomous
learning element in which explicit programming and human instructions are not necessary
for its improvement [34].

AI interpretation of medical images can also potentially be utilised in low- to middle-
income countries, where the availability of radiologists is limited. Currently, interpretations
rely on teleradiology [35], though it is not flawless. Cross-border teleradiology, in particular,
is challenging due to liability in case of malpractice, healthcare professional registration
restrictions, data protection, quality of the reporting, healthcare system, and cultural
differences [36]. This is where AI can potentially come in to make the diagnostic and
treatment pathway of patients smoother, especially in these developing nations [35].

Recent studies exhibited that AI algorithms outperformed radiologists in the detection
of skin cancer [37], diabetic retinopathy [38], and haemorrhage identification [39], probably
owing to the recent AI model advancement [40] and widening availability of electronic
health record, providing more training materials. The winner of the Turning Prize said in
2016, “We should stop training radiologists now. It’s just completely obvious that within
five years, DL is going to do better than radiologists” [41].

These successes have sparked interest in the automated diagnosis of paediatric pneu-
monia in CXRs, reflected by the increased number of studies regarding the diagnostic
accuracy of AI for paediatric pneumonia over the last number of years. When being asked
about AI’s role in diagnosing pneumonia, Andrew Ng, the co-founder and head of Google
Brain, went further—“radiologists should be worried about their jobs” [42]. A recent
study by Kermany et al. [43] showed that a customised AI model demonstrated a good
level of classification of paediatric pneumonia on CXR. By systematically reviewing the
current literature regarding AI and paediatric pneumonia, the current gap in literature may
be filled and potentially result in a dramatic improvement of accuracy and efficiency in
differentiating bacterial and viral pneumonia in paediatric CXRs in a clinical setting [44].

2. Materials and Methods
2.1. Literature Search Strategy

A comprehensive search of the literature was conducted in accordance with the
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guide-
lines [45] in February 2021. A number of pre-determined keywords were pooled for this
systematic search, and subsequent medical subject headings (MeSH terms) were gener-
ated. The MeSH terms used for this systematic search include: (‘artificial intelligence’ OR
‘deep learning’ OR ‘CNN’ OR ‘convolutional neural network’ OR ‘deep residual network’),
(‘paediatric pneumonia’ OR ‘pediatric pneumonia’ OR ‘child* pneumonia’), ‘classification’,
(‘chest xray’ OR ‘chest x ray’ OR ‘chest x-ray’ OR ‘CXR’ OR ‘chest radiograph’). The pre-
determined MeSH terms were then linked using Boolean operators specific to each database
(PubMed, Science Direct, Embase, ProQuest, and Scopus) to retrieve all relevant articles
evaluating the diagnostic efficacy of AI models in the classification of paediatric pneumonia
in CXRs. These databases were chosen as opposed to others due to their scientific reliability



Children 2023, 10, 576 3 of 13

and coverage. Google Scholar and the reference lists of relevant studies were also screened
to ensure as much grey literature was captured as possible. In addition to these criteria,
only peer-reviewed articles published in English were included in this review.

2.2. Study Selection and Eligibility Criteria

The initial selection involved screening the paper title and abstract. After gathering
all of the potential papers, a full-text assessment was undertaken. Studies were included
if they met the following inclusion criteria: only original cross-sectional studies, cohort
or case-control studies, randomised control trials (RCTs), or diagnostic accuracy studies
in the format of either journal articles, dissertations, conference proceedings, or grey lit-
erature, disseminated between 2015–2021, were included. In addition, the paper must
analyse/evaluate the AI performances on the classification of pneumonia aetiology (bacte-
rial or viral) using CXR test datasets of children under the age of 16 years in acute healthcare
settings. These studies should also evaluate the AI performance using at least three of the
following parameters: accuracy, sensitivity, specificity, and area under the curve (AUC).
Studies which did not meet one of the inclusion criteria, or inaccessible full-text articles,
were excluded.

2.3. Data Extraction

Data extraction was performed on included studies using the amended version of
the Cochrane ‘Data collection form for Intervention Reviews for RCTs and Non-RCTS—
Template’ [46]. A general overview of the data extracted is as follows: general information
(report title, study ID, date form completed, etc.), study eligibility, characteristics of study
(the aim of the study, design, etc.), participants (description of images from dataset, setting,
age, etc.), AI model (AI type, mode, detail, etc.), outcomes (sensitivity, specificity, accuracy,
AUC), and other information (key conclusions, future work, etc.). Each data extraction
form was reviewed by two independent reviewers, and any discrepancies were resolved
by consensus. The original data extraction form applied to each included study can be
obtained from the author on request.

2.4. Quality Assessment and Risk of Bias

A quality assessment of each included study was examined using the Critical Appraisal
Skills Programme (CASP) Diagnostic Study Checklist, which focuses on the result validity,
measuring parameters and transparency, and generalisability [47]. A risk of bias (ROB)
assessment was also completed for each included study. The tool utilised for the ROB was
adjusted from Hung et al.’s QUADAS-2 tool, whose systematic review investigated the use
and performance of AI applications in the maxillofacial and dental radiology [48]. This
adapted ROB consists of four key domains: patient selection, index test, reference standard,
and study flow and timing with regard to both applicability and general ROB. Each domain
was assessed using a three-point scale, low (green), high (red), or unclear (yellow), to reflect
the level of bias concerns accordingly. All CASP and ROB checklists were reviewed by
two independent reviewers, and any discrepancies were resolved by consensus.

3. Results
3.1. Study Selection

A total of 114 papers were identified following the initial systematic search from
the six databases previously mentioned, combined with subsequent manual searches of
reference lists based on the relevance of their title to the research question. After the
removal of duplicates, 82 papers were considered for abstract screening, and 24 out of
82 were considered suitable and underwent full-text assessment. Of these 24 papers,
19 did not meet the required inclusion criteria due to a broad spectrum of reasons, such
as the study did not classify pneumonia subtypes, the study did not include the desired
(number of) outcome measures, and the dataset used was inapplicable. Five papers were
included at last. The PRISMA flowchart exhibiting the study eligibility and selection
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process is presented in Figure 1. The two independent reviewers agreed with the initial
search and study selection/eligibility process, with no discrepancies found.
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Figure 1. A PRISMA flow chart illustrating the filtering and gathering of eligible studies.

3.2. Study Quality Assessment

The quality assessment of each included study can be seen in Figure 2. All five papers
were considered as having a “low” risk of concern in the workflow, and both reference
standard domains. Gu et al.’s study [44] was regarded as a “high” risk in the subject
selection domain because the authors omitted CXRs without the condition of interest. In
the index test domain, Rajaraman et al.’s [5] and Karthikeyan’s studies [49] were graded
as “unclear”, while Ferreira et al.’s study [50] was considered a “high” risk, in the same
domain due to the fact that the performance of the AI model was not evaluated by an
independent testing dataset that was excluded in the development of the AI model. Since
the QUADAS-2 tool allows a study to contain one element ascertaining a high risk of bias
without being eliminated [48], none of the selected studies were eliminated at this stage.
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Figure 2. A risk of bias table of the five included studies from the adapted version of the QUADAS-2
ROB tool with a three-point scale indicating low, high and unclear concern [5,44,49–51].

3.3. Study Characteristics

Table 1 presents the characteristics of the included papers. All included papers utilised
the same public dataset obtained from Guangzhou Women and Children’s Medical Centre;
however, each paper varied regarding the number of images used for training, testing and
validation sets. All studies, apart from Gu et al.’s study [44], included ‘normal’ radiographs,
as well as bacterial and viral pneumonia, labelled radiographs in their dataset. There were
some similarities and overlaps with regard to pre-processing methods employed, though
none of the studies utilised precisely the same pre-processing strategy.
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Table 1. Characteristics of the AI algorithm employed, pre-processing methods utilised, as well as detailed descriptions of each dataset used in each of the included
studies. Abbreviations: N/A (not applicable), ROI (region of interest), CLAHE (contrast limited adaptive histogram equalisation), CNN (convolutional neural network).

Author,
Year

Algorithm Employed Type of
AI

Age of Par-
ticipants
(Years)

No. of Images (by Aetiology) No. of Images Used in

Pre-Processing Methods
Normal

Pneumonia
Total Training Validation Testing

Bacterial Viral Total

Gu et al.,
2018 [44]

• AlexNet,
• 3 Handcrafted Features (Gray

level co-concurrence matrix-based
feature extraction, Haar wavelet
transform feature extraction,
Histogram of oriented
gradient-based feature extraction)

DL 5.5 ± 4.2 0 2665 1848 4513 4513 3211 802 500

• All input ROIs images were
resized to
256 × 256 matrices.

• An AlexNet-based fully
convolutional networks model
was applied for the
segmentation of lung regions.

Ferreira
et al.,

2020 [50]

• VGG16,
• Inception V3 architecture DL 1–5 1349 2538 1345 3883 5232 5232 0 624

• CLAHE method
• Chest cavity cropped from

radiograph images
• Combination of the above

Sousa et al.,
2019 [51]

• CNN,
• Inception V3 Architecture DL 1–5 1349 2538 1345 3883 5232 624 0 624

• All of the images were
re-dimensioned to a
300 × 300 pixels resolution
and saved in a
one-dimensional format

Rajaraman
et al.,

2018 [5]

• Sequential CNN,
• Residual CNN,
• Inception CNN,
• Customised VGG16

DL 1–5 1349 2538 1345 3883 5232 5232 0 624

• Both baseline and cropped
images are resampled to
1024 × 1024 pixel

• Cropped using an algorithm
based on anatomical atlases to
detect the lung ROI
automatically

Karthikeyan
2020 [49]

• AlexNet,
• ResNet18,
• DenseNet201,
• SqueezeNet

DL 1–5 1341 2561 1345 3906 5247 4500 0 398
• The images were resized to

227 × 227 pixels
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3.4. Diagnostic Accuracy of AI Algorithms in Distinguishing Viral Pneumonia from
Bacterial Pneumonia

Table 2 presents the diagnostic accuracy measures (sensitivity, specificity, accuracy,
and AUC) of each AI algorithm employed in respective papers. The ensemble set created
achieved the highest sensitivity value of 96.3% [50] across all artificial algorithms exam-
ined (95% confidence intervals is not stated in the article). The DenseNet201 algorithm
described by Karthikeyan reigned supreme with regard to both specificity and accuracy
value obtaining 94% and 95%, respectively [49]. The AUC value closest to 1 was achieved
by the VGG16 architecture (AUC = 0.9536) [5]. The baseline image, as well as the cropped
ROI, scored 0.962 [5].

Table 2. The diagnostic accuracy of each AI algorithm employed in its respective paper in terms of
sensitivity, specificity, accuracy, and AUC (area under the curve). The highest value for each outcome
measure is highlighted in bold. ± indicates the standard deviations.

Author, Year Algorithm Sensitivity Specificity Accuracy AUC

Gu et al.,
2018 [44] AlexNet (DCNN ONLY) 0.6322 ± 0.0023 0.7072 ± 0.0023 0.7360 ± 0.0023 0.7384 ± 0.0023

GLCM Features 0.6378 ± 0.0058 0.8980 ± 0.0062 0.7060 ± 0.0672 0.7060
Wavelet Features 0.5612 ± 0.0065 0.8779 ± 0.0205 0.6769 ± 0.0100 0.6769

HOG Features 0.5714 ± 0.0617 0.8651 ± 0.0664 0.7511 ± 0.0127 0.6930
All Handcrafted Features 0.6213 ± 0.0482 0.8848 ± 0.0387 0.7640 ± 0.0330 0.7200 ± 0.0060

Fused Features (DCNN + all
handcrafted features) 0.5567 ± 0.0379 0.9267 ± 0.0301 0.7692 ± 0.0122 0.8234 ± 0.0014

Ferreira et al.,
2020 [50] VGG16 and Baseline Set Not Stated Not Stated Not Stated 0.85

VGG16 and Set A Not Stated Not Stated Not Stated 0.88
VGG16 and Set B Not Stated Not Stated Not Stated 0.83

VGG16 and Set C (ensemble set) 0.963 0.851 0.921 0.91
Inception V3 architecture 0.886 0.909 0.907 0.940

Sousa et al.,
2019 [51] ‘Best generated model’ 0.913 0.696 0.831 0.831

Inception V3 architecture 0.886 0.909 0.907 0.940
Rajaraman et al.,

2018 [5] Sequential CNN—Baseline Not specified 0.838 0.928 0.954

Residual CNN—Baseline Not specified 0.784 0.897 0.921
Inception CNN—Baseline Not specified 0.714 0.854 0.901

Customised VGG16—Baseline Not specified 0.860 0.936 0.962
Sequential CNN—Cropped Not specified 0.838 0.928 0.956
Residual CNN—Cropped Not specified 0.798 0.908 0.933
Inception CNN—Cropped Not specified 0.730 0.872 0.919

Customised VGG16—Cropped Not specified 0.860 0.936 0.962
Karthikeyan,

2020 [49] AlexNet 0.94 0.845 0.90 0.89

ResNet18 0.92 0.82 0.87 0.87
DenseNet201 0.96 0.94 0.95 0.952
SqueezeNet 0.905 0.75 0.83 0.83

4. Discussion

CXR is routinely performed around the world to diagnose both subsets of pneumonia
in paediatric patients [5]. Due to the complexity of lung diseases, the diagnosis of pneu-
monia on chest radiographs heavily relies on the eyes of a veteran radiologist. Therefore,
there is a huge potential for AI algorithms to assist and further improve detection. This
study aims to combine the results of all published literature focused on the classification of
sub-types of paediatric pneumonia on chest X-rays using deep learning algorithms.

In this study, the efficacy of respective AI models in the classification of paediatric
pneumonia on chest radiographs was evaluated by assessing accuracy, sensitivity, speci-
ficity, and AUC. Regarding diagnostic accuracy and specificity, the deep learning algorithm,
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the DenseNet201 model utilised by Karthikeyan’s study, performed far superiorly to the
rest, yielding results of 95% and 94%, respectively [49]. AUCs measure the ability of a
test (the individual algorithm in this case) to distinguish the presence or absence of a
specific pathology [52] and take sensitivity and specificity into consideration. Thus, AUC
can indicate how well a classifier is performing. The AI model, the customised VGG16
employed by Rajaraman et al. [5], achieved 96.2% in AUC for both of the baseline image sets
(i.e., the original chest radiographs produced and cropped images), raising the question as
to whether or not images that are cropped (just include the ROI) aid/improve AI models
in the classification of paediatric pneumonia, or if it is simply one particular model be-
ing superior in performance to another. For example, both cropped and baseline images
assessed by the customised VGG16 model achieved the same AUC result. However, the
original VGG16 model utilised by Ferreira et al. [50] achieved an AUC of 85% with baseline
images and 88% AUC with cropped images. Future studies should consider comparing
cropped and uncropped images directly to make a definitive verdict. It would be unwise
to conclude that AI models that are trained with the cropped ROI prior to testing with
the dataset learn relevant feature representations toward classifying the task of interest
without considering the probability of overfitting, reducing the generalisability of the
results. In addition, cropping images before training involves more computational power
and manpower.

When compared to the adapted Inception V3 architecture model employed by
Kermany et al. [43], all four of the aforementioned outcome measures achieved greater
results than the said platform in differentiating bacterial pneumonia from viral pneumonia
on paediatric chest X-rays.

All five studies selected for this systematic review utilised the dataset obtained from
Guangzhou Women and Children’s Medical Centre, China. The selection of said dataset
by all five groups of authors immediately excluded participation bias and allowed each
AI model to be accurately compared. The included radiographs by Rajaraman et al. also
included ‘noisy images’ to reduce bias and improve the model generalisation [5]. All
authors also developed AI models with multi-level architectures, which, unlike the study
by Kermany et al., avoided limited prediction accuracy. However, using the same dataset
from Guangzhou place the studies’ generalisability, as well as the algorithms’ abilities in
detecting pneumonia using noisy images since only one study included noisy images, into
question. On the other hand, the upper age limit in Gu et al.’s study was 9.7 years old,
diminishing its comparability to other studies included in this review.

At present, there is no sufficient guidance in critically appraising machine learning
prediction models. Thus, one of the limitations of this study is that the information in this
review may not be able to be combined or pooled together with other systematic reviews
on the same subject matter and compare the data and information directly.

In order to improve and generalise results achieved by AI models in the classification
of pneumonia on paediatric CXRs, further datasets should be developed worldwide. This
is because pneumonia caused by different bacteria/viruses has different radiographical
appearances [53], while the prevalence of different risk factors and types of paediatric pneu-
monia varies in different countries [54,55]. An algorithm that can effectively detect/rule
out pneumonia and its ability to identify pneumonia aetiology can be the single best tool
to be employed in the effort of reducing global paediatric pneumonia mortality. This is
particularly crucial for resource-restrained countries with limited radiographic reporting
capacity. The said datasets should include a variety of normal paediatric CXRs, as well
as CXRs that belonged to those who had clinically confirmed having bacterial or viral
pneumonia. Diagnosis should be confirmed by seasoned radiologists and other diagnostic
test results, such as sputum cultures. This would improve the generalisation of AI models
used to classify aetiologies. Finally, a major barrier impeding the translation of these results
to a clinical setting is the comparison of said results to reporting clinicians’ reports. Each
of the included articles in this study assessed AI algorithms against one another rather
than comparing outcome measures to that of consultant radiologists, and this would be
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a great research question for future investigations. One study assessed the performance
of an AI model to that of a number of radiologists in the classification of viral versus
bacterial pneumonia in paediatric chest X-rays [56]. However, this study only assessed
the differentiation of the two pneumonic aetiologies and not normal vs. pneumonic, so
none of these algorithms could replace human radiologic interpretation currently [56]. In
order for AI to translate into the clinical setting, future studies should compare different AI
algorithms in differentiating normal versus bacterial versus viral pneumonia from that of
human radiologists. AI algorithms are normally trained on one specific modality and on a
specific pathology, while human radiologists have a basic and fundamental knowledge of
all modalities and common pathologies then often specialise in one, sometimes multiple,
organ systems.

There are only a few commercially available AI product that is capable of interpreting
both chest and appendicular musculoskeletal X-ray images at the time of writing. This
algorithm can detect seven different pathologies (fracture, pleural effusion, lung opacifi-
cation, joint effusion, lung nodules, pneumothorax, and joint dislocation). A recent study
which compared this AI algorithm’s ability to human radiologists showed that the al-
gorithm failed to pass the Fellowship of Royal College of Radiologists Rapid Reporting
examinations [57]. This exam is normally taken between radiology speciality training years
four and five in the UK [58].

This review has limitations. The age range used in these studies varied, making direct
comparisons between the AI algorithms difficult. Secondly, only five studies are included in
this review. Although all five studies used the same dataset from Guangzhou, the fact that
some studies included noisy images and others included cropped images made it impossible
to compare the algorithms on par with each other, let alone with other algorithms that
are trained with a different dataset. Finally, the number of images that these algorithms
were trained and validated on were small, compared to some of the commercially available
algorithms [59–65] and some algorithms that are at the research stage [66].

Since the accuracy for all algorithms is so high, the amount of data is limited. Concerns
about overfitting arise, which commonly occur due to the small training dataset [67,68].
Overfitting is a phenomenon where the algorithm fits in all the noises within the dataset,
and the algorithm memorises all the peculiarities, finding the pattern best fit to the training
data but not the general prediction trend, which is the goal of training [69]. Overfitted AI
models are only applicable to the training dataset, but not the unseen dataset, losing the
generalisability of the prediction [70–72]. Going forward, these algorithms should be further
scrutinised. If overfitting did occur during training, the problem would need to be addressed
in further studies before using these algorithms in clinical practice. Overfitting is an innate
problem in using AI in radiology. First, there is no set threshold for a “sufficient” amount of
data [70]. The more images and data fed into the algorithm for training, the less likely for
overfitting to happen [49,73,74]. However, a large number of images can be very difficult to
obtain in medicine due to confidentiality issues. Even if these data protection hurdles are
overcome, the financial cost of acquiring medical images or data can be substantial [75,76].
Adding sub-optimal images into the training set, such as rotated or images with artefacts,
can minimise the chance of overfitting [77,78] while increasing the overall image counts in
the training set [78,79] can also mimic the situations in clinical practice.

This review gave the radiology community an insight into how AI can help us to
reduce paediatric pneumothorax mortality rate and pose a potential solution to replace or
to add on top of the current teleradiology system, especially in low- to middle-income or
rural areas. This review took the essential step in starting the conversation in considering
how radiology can utilise AI to improve workflow, but indeed, this is a start of a very long
journey of research before AI can be used clinically. In this context, AI has the potential to
assist in the classification of the aetiologies of pneumonia and, therefore, greatly increase
treatment rates, potentially saving lives. The future landscape and the scope of practice of
the radiology workforce are both going towards an exciting trajectory. “In the Age of the
Algorithm, humans have never been more important” [80].
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5. Conclusions

A number of the AI models achieved high accuracy in differentiating paediatric pneumo-
nia. This showed potential in the automated classification of paediatric pneumonia on CXRs.
Future studies should involve the comparison of AI models to that of a radiologist. Future
research should focus on advancing the use of AI in identifying paediatric pneumonia in a
clinical environment by including more sub-optimal images to ensure AI can correctly and
accurately identify paediatric pneumonia in different circumstances and situations.
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