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Abstract: Background: Equinus deformity with or without concomitant drop foot is a common
finding in children with unilateral spastic cerebral palsy and spastic hemiplegia of other causes.
Hypothetically, these deformities may lead to pelvic retraction and hip internal rotation during gait.
Orthoses are used to reduce pes equinus during gait and to restore hindfoot first contact. Objective:
We aimed to investigate whether the use of orthotic equinus correction reduces rotational hip and
pelvic asymmetries. Methods: In a retrospective study, 34 children with unilateral spastic cerebral
palsy or spastic hemiplegia of other causes underwent standardized instrumented 3D gait analysis
with and without orthotic equinus management. We analyzed the differences in the torsional profile
during barefoot walking and while wearing orthoses, as well as investigated the influence of ankle
dorsiflexion and femoral anteversion on pelvic and hip kinematics and hip kinetics. Results: Wearing
orthoses corrected pes equinus and pelvic internal rotation at the end of the stance phase and in
the swing phase compared to barefoot walking. Hip rotation and the rotational moment did not
significantly change with orthoses. Orthotic management or femoral anteversion did not correlate to
pelvic and hip asymmetry. Conclusion: The findings indicate that the correction of the equinus by
using orthoses had a variable effect on the asymmetry of the hip and pelvis and internal rotation;
both appear to have a multifactorial cause that is not primarily driven by the equinus component.

Keywords: hemiplegia; cerebral palsy; pelvic asymmetry; hip asymmetry; pes equinus; orthotic
management

1. Introduction

The most common gait abnormalities in children with unilateral spastic cerebral palsy
and spastic hemiplegia of other causes are pes equinus with or without drop foot, in-
toeing, and stiff knee in the swing phase. Other manifestations are hip flexion, hip internal
rotation, and pelvic retraction [1–3]. As a consequence of these abnormalities, children are
prone to developing lever arm dysfunction and clearance problems, such as dripping and
falling [1]. The standard treatment for in-toeing gait is femoral derotation osteotomy (FDO).
The surgically improved hip centration results in reduced internal rotation of the hip and
pelvic retraction [4,5]. Nevertheless, FDO carries the risk of over- or under-correction of
rotational abnormalities [6]. To date, the pathogenetic mechanisms of internal rotation gait
are not fully understood, and dynamic factors need to be discussed. Dynamic components
can include muscular imbalance, increased muscle tone, spasticity, and altered moment
arms [7]. It was hypothesized that hip internal rotation might be a result of high femoral
anteversion or increased hip flexion present in children with unilateral spastic cerebral
palsy [8,9]. However, it is still unclear whether this is a cause or a consequence of other
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factors. This might explain the variability of results after femoral derotation osteotomies.
Based on computerized modeling, Brunner et al. showed a significant correlation between
ankle plantar flexion and hip internal rotation in children with unilateral spastic cerebral
palsy as a direct functional effect. Hence, an equinus position changes the torsional forces in
the hip joint and, thus, increases hip internal rotation and pelvic retraction. This mechanism
may represent a driving factor for the persistence of increased femoral anteversion during
growth. Furthermore, it was suggested that the effects at the hip and knee are related to the
function of the triceps surae and are not directly dependent on neuromuscular control [10].
In addition, Pasin Neto et al. found a combined improvement of ankle dorsiflexion and
internal rotation of the hip through postural insoles in children with bilateral spastic cerebral
palsy [11]. However, the body of literature lacks studies that underline the hypothesis that
increased plantar flexion is a relevant factor leading to internal rotation gait.

Orthotic management is typically applied to correct pes equinus during walking and
restore heel contact at initial contact (IC) in children with unilateral spastic cerebral palsy or
spastic hemiplegia of other causes [12–14]. This results in an improvement of the first and
second ankle rocker, increased dorsiflexion, and reduced drop foot [12,13,15–17]. Further-
more, orthotic management to correct pes equinus decreases energy cost, increases speed
and stride length, enlarges hip and ankle range of motion, and improves the kinematics
and kinetics of the knee [12,15–19].

In addition to conservative treatment with orthotics or the surgical rotation correction
of the femur described above, various other treatment approaches are used for spasticity
management, the improvement of foot elevation, or the correction of contractures. These
include oral spasmolytics, selective dorsal rhizotomy, oral or intrathecal baclofen [20],
botulinum toxin injections [21], muscular strengthening and stretching through physio-
therapy, neuromuscular electrical stimulation [22], lengthening of the calf muscles, and
shortening of the anterior tibialis tendon with or without split transfer to peroneus bre-
vis [23]. The latter contributes to the balanced, active foot elevation or at least leads to a
supporting tenodesis.

If pes equinus plays a central role as a driving factor for internal rotation gait, tor-
sional moments of the hip, hip internal rotation, and pelvic asymmetry [1–3,10,24], these
patterns should vanish or at least be significantly reduced by the orthotic management
of equinus foot deformity. However, to the best knowledge of the authors, this was not
previously investigated.

We hypothesized that the rotational effects and asymmetry of the hip and pelvis are
significantly reduced by using orthoses to correct pes equinus in children with unilateral
spastic cerebral palsy and spastic hemiplegia of other causes. As a secondary research
question, this study aimed to investigate whether a high femoral anteversion reduces the
corrective effect of the orthoses on hip and pelvic asymmetry.

2. Materials and Methods
2.1. Participants

Gait analysis data from children with unilateral spastic cerebral palsy and spastic
hemiplegia of other causes and equinus foot deformity were investigated in this study.
Furthermore, these patients needed to have orthotics for the management of equinus
deformity. The exclusion criteria were the absence of dynamic pelvic or hip asymmetry,
botulinum toxin therapy of the leg conducted within three months prior to gait analysis, or
a history of selective dorsal rhizotomy (See Figure 1). None of the children had a previous
derotating femoral osteotomy. The inclusion criteria were the neurological disorder due to
cerebral palsy, post-stroke, post-trauma, neoplasia, syndrome or post-infection, between 4
and 18 years old, and Gross Motor Function Classification System (GMFCS) I or II. Further
inclusion criteria based on the gait analysis parameters were pes equinus of the affected
side (ankle plantar flexion at IC and/or < 5◦ ankle dorsiflexion in the single support phase);
≥4◦ transversal hip internal rotation (>1 standard deviation (SD) of typically developing
reference group); and ≥5◦ asymmetry of the hip or pelvis (>1 SD of typically developing
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reference group). Only one gait analysis per patient was included. The examination was
carried out barefoot and with orthotic support of the equinus foot. The type of orthosis
was based on the individual need of the patient and varied from heel wedges, insoles, and
foot drop bandages to ankle–foot orthosis and supramalleolar orthosis, according to Nancy
Hilton. All orthotics shared the goal of correcting the equinus position during walking to
reduce the effects of increased plantar flexion on proximal segments and planes.
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right and left row: number of and reason for excluded patients.

2.2. Measurements

All 3D gait analyses were carried out by the same experienced physiotherapists and
pursuant to standardized procedures [25]. The participants were asked to walk along a
10-m walkway at a self-selected speed. Two gait analyses were performed in succession:
the first barefoot and the second wearing their individual orthosis. Reflective markers were
transferred from the foot to the orthosis according to a standardized protocol. At least
three valid strides per patient and per condition were analyzed. A clinical examination was
carried out as a standard part of each gait analysis. As a part of the clinical examination,
femoral anteversion was measured using the TPAT (trochanteric prominence angle test).

2.3. Data Analysis

Several parameters for pelvic, hip, and ankle motion were derived from the gait
analysis data. The pelvic motion in the transverse plane was calculated over the entire gait
cycle (GC) due to the interdependent motion of the left and right pelvic hemispheres. Hip
rotation was calculated as a mean during the stance phase (ST) and specifically at initial
contact (IC). Furthermore, the internal hip rotational moments were calculated and used
for further analysis. The ankle joint position was calculated at IC and as a mean during the
stance phase. Furthermore, manually measured femoral torsion was used to determine a
possible influence on pelvic and hip asymmetry. To determine any possible influences of
the pes equinus and the femoral torsion on the pelvic and hip movements, differences in
the joint angles between barefoot and orthotic management were calculated (See Table 1).
They represent the change in joint angles while wearing the orthoses.

To study the dynamic effect of equinus position over the first half of the stance phase
(30%) on the hip rotation angle (See Figure 2), the ∆ hip rotation was calculated with and
without orthotics (See Figure 3). This difference was then correlated with the femoral
anteversion angle to evaluate whether patients with a high anteversion angle showed
significantly less ∆ hip rotation during this phase.
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Table 1. Description of the calculation of the used variables.

Variable Calculation

Pelvic asymmetry barefoot [◦] |mean pelvic rotation GC affected/unaffected side|
Pelvic asymmetry with orthosis [◦] |mean pelvic rotation GC affected/unaffected side|

∆ pelvic asymmetry [◦] barefoot affected side/orthotic affected side
Hip asymmetry barefoot [◦] |mean hip rotation ST affected/unaffected side|

Hip asymmetry with orthosis [◦] |mean hip rotation ST affected/unaffected side|
∆ hip asymmetry [◦] barefoot affected side/orthotic affected side

∆ mean hip rotation ST [◦] orthotic affected side/barefoot affected side
∆ hip rotation IC [◦] orthotic affected side/barefoot affected side

∆ hip rotational moments ST [◦] orthotic affected side/barefoot affected side
Barefoot ∆ hip rotation [◦] hip rotation midstance/hip rotation initial contact
Orthotic ∆ hip rotation [◦] hip rotation midstance/hip rotation initial contact

∆ ankle dorsi/plantar flexion IC [◦] orthotic affected side/barefoot affected side
∆ = delta; | | = absolute value; GC = gait cycle; ST = stance phase; IC = initial contact.
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Figure 2. Statistic parametric mapping of kinematics of pelvic rotation, hip rotation, ankle flexion,
and hip movement during gait. Grey area: significant changes on affected side between barefoot
(red curve) and walking wearing orthoses (blue curve). The kinematics of the unaffected side (green
curve) are shown as a reference.

2.4. Statistical Analysis

The data were tested for normal distribution using the Shapiro–Wilk test. Based on
normally distributed data, for each parameter, descriptive statistics were calculated with
means and SD. Paired sample t-tests and statistical parametric mapping (SPM), including
the Bonferroni method, were used to investigate differences between barefoot and orthotic
management. The influence of ∆ ankle dorsi/plantar flexion IC and femoral anteversion
on ∆ pelvic and hip asymmetries and ∆ hip rotation ST were analyzed by linear regression
analyses. The significance level was set at α ≤ 0.05.

2.5. Sample Size

Due to a retrospective study design, out of 64 patients with unilateral spastic cerebral
palsy and spastic hemiplegia of other causes who underwent a gait analysis, 34 were
included in this study, according to the inclusion and exclusion criteria (See Figure 1).
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Figure 3. Linear regression of femoral anteversion or changes in pes equinus on changes in pelvic and
hip asymmetry, hip rotation, and hip rotational moments. ∆ pelvic asymmetry = barefoot affected
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rotation ST = orthotic affected side/barefoot affected side; ∆ hip rotation IC = orthotic affected
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adj = R2 adjusted. Dotted line: zero line; continuous line: regression line.

3. Results

Sixty-four children with unilateral spastic cerebral palsy and spastic hemiplegia of
other causes were found in our database. A total of thirty patients were excluded due to
the inclusion and exclusion criteria from the gait analysis data.

The selection process resulted in 34 children (17 females, 17 males) with unilateral
spastic (n = 24) or spastic-dystonic (n = 10) hemiplegia of different causes. Reasons for the
movement disorder were cerebral palsy (n = 24), post-stroke (n = 6), post-traumatic (n = 1),
neoplastic (n = 1), syndromal (n = 1), and post-infectious (n = 1) disease. Twenty-seven
patients had GMFCS-level I and 7 GMFCS-level II. The patients’ mean age at examination
was 10 ± 4 years (4 to 17 years old). Individual orthotic management was used for pes
equinus correction and compensation for leg length discrepancy. In the clinical examination,
the participants showed a femoral anteversion from 10◦ to 45◦ (mean = 27.65◦ ± 9.07◦).

Pelvic and hip asymmetry did not significantly change with orthoses (each by approx.
2◦) (See Table 2). There was a significant difference in mean pelvic rotation during GC. With
orthotic management, the pelvis rotated approx. 1◦ more inwards. When walking barefoot,
the group showed an ankle plantar flexion at IC of around 12◦, which was significantly
reduced with orthoses (by approx. 14◦) and resulted in a mean dorsiflexion at IC around 2◦.
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Table 2. Comparison of kinematic gait data barefoot and with orthoses.

Parameter Barefoot
(Mean ± SD) [◦]

Orthoses
(Mean ± SD) [◦] p-Value

Pelvic rotation GC (mean) −7.4 ± 5.5 −6.1 ± 4.7 0.018
Pelvic rotation GC (ROM) 16.6 ± 4.3 16.3 ± 4.9 0.657

Pelvic asymmetry 15.5 ± 9.8 13.9 ± 7.2 0.106
Hip rotation ST (mean) 12.9 ± 6.3 11.6 ± 8.4 0.398
Hip rotation ST (ROM) 21.1 ± 8.2 25.1 ± 9.4 <0.001

Hip asymmetry 16.2 ± 10.2 14.6 ± 9.3 0.326
Ankle dorsi/plantar flexion IC −11.5 ± 6.0 2.2 ± 4.1 <0.001

Ankle dorsi/plantar flexion ST (mean) 3.2 ± 8.8 8.0 ± 4.6 <0.001
GC: gait cycle, ROM: range of motion, ST: stance phase, IC: initial contact. Pelvic rotation: protraction =
+/retraction = −; hip rotation: internal = +/external = −; pelvic asymmetry = |affected/unaffected pelvic rotation
GC (mean)|; hip asymmetry = |affected/unaffected hip rotation ST (mean)|; ankle: dorsiflexion = +/plantar
flexion = −.

With orthotic equinus management, there was a significant pelvic internal rotation at
the end of ST and the beginning of the swing phase compared to barefoot (See Figure 2).
There was a visible but not significant deviation of hip rotation with orthoses compared
to barefoot at IC but no longer in midstance (MST). Hip moments during ST showed no
significant changes. Pes equinus was corrected at IC, the end of ST, and during the swing
phase using orthoses.

The changes in the ankle position at IC did not relate to the changes in pelvic asym-
metry (β = 0.222, p = 0.189), hip asymmetry (β = −0.128, p = 0.662), ∆ hip rotation at ST
(β = −0.195, p = 0.486) and at IC (β = −0.096, p = 0.731), or ∆ hip rotational moments at
ST (β = −0.001, p = 0.109) (See Figure 3). Femoral anteversion did not show a relationship
with rotational asymmetries (pelvis: β = 0.139, p = 0.190) (hip: β = −0.196, p = 0.280). The
changes in the hip rotation at IC to MST did not relate to the femoral anteversion. This
could be shown with orthoses (β = 0.124, p = 0.278) and barefoot (β = 0.98, p = 0.542).

The hip asymmetry increased in 15 participants and decreased in 19 participants
while wearing their orthosis (See Figure 4). Twenty-three children showed a reduced
pelvic asymmetry when wearing the orthosis, while 11 children had an increased pelvic
asymmetry with the orthosis.
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4. Discussion

The current study investigated the influence of orthotic equinus correction in children
with unilateral spastic cerebral palsy and spastic hemiplegia of other causes on hip and
pelvic rotation and associated asymmetries. All the participants showed a significant
reduction in plantar flexion when wearing orthotics, underlining that there was a func-
tional correction of pes equinus during gait and corroborating the findings of previous
investigations [14,16,17,26].
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However, this correction of pes equinus showed variable effects on hip and pelvic
rotation, even though pes equinus has been associated with pelvic retraction and internal
hip rotation in the previous literature [10,27]. From this global evaluation, the clinical
relevance of these effects seems only to be relevant for some children, or other factors mask
this association.

On average, only a significant difference in mean pelvic rotation at the end of the
stance phase and the beginning of the swing phase of 1◦ toward the internal rotation
could be found, which we consider not to be clinically relevant. This reduction could be
explained by the reduction in leg extension due to the orthosis and, therefore, the reduction
in pelvic retraction movement and the lifting of the foot is no longer delayed. According
to Aminian et al., the retraction on the affected side was also seen as compensation for the
stride length of the opposite side, which is impaired by the weakness of the hip extensors
on the affected side [28].

There was a trend in the linear regression analysis that when the pes equinus was
corrected while wearing orthoses, there was a marginal decrease in the hip asymmetry,
and the asymmetry of the pelvis slightly increased. The hip rotation at initial contact and
hip rotational moments during the stance phase showed no significant relationship with
the ankle position. Furthermore, the amount of femoral anteversion did not significantly
affect rotational asymmetries when wearing an orthosis. However, there was also a slight
opposite trend as the femoral anteversion increased, the pelvic asymmetry also increased,
and the hip asymmetry decreased (See Figure 3).

In line with the results of Brunner et al. [5], Figure 2 shows a visible but not significant
deviation of hip rotation with orthoses compared to barefoot at initial contact, but no longer
during midstance. This may explain why the dynamic effect is most relevant during the
early stance phase or why static torsional or lever arm preconditions are the more relevant
factors for torsional positioning after the loading response.

For a better understanding, we additionally correlated the dynamic change in hip
rotation during the first 30% of the gait cycle with the clinically measured femoral an-
teversion angle (See Figure 3). There, we could not find a significant relationship either
with orthoses or barefoot. This may have several explanations. First, if there is remaining
passive internal rotation in the hip despite an increased femoral anteversion, the dynamic
effects of equinus foot position on hip rotation may still work. Another explanation may
be that other dynamic effects could be relevant and mask the dependence between this
suggested effect. Furthermore, clinical evaluation of the femoral anteversion angle shows
only a weak correlation with the anatomical anteversion, which may also mask this effect.
This will be further addressed in the limitations section.

Figure 4 further illustrates that there was a very variable effect of the orthoses on
the rotational asymmetries. About half of the patients saw improved hip asymmetry, and
about two-thirds saw improved pelvic asymmetry (See Figure 4). However, the effects on
asymmetries were highly inconsistent, and possible reasons need to be further discussed.

Weak hip abductors [29] or increased hip flexion, which contribute to an increase in
the internal rotating movement of the hips, may also play a role [9]. There is some limited
evidence that soft tissue surgery of the hip flexors and adductors, in addition to femoral
derotational osteotomy, improves pelvic retraction, as well as internal hip rotation [30].

A potential leg length difference was compensated with orthotic management. The
influence of leg length differences on rotational asymmetries is possible; however, to
conclude this, the exact calculation would be beneficial. Furthermore, malalignment,
altered tibial torsion, and a structural or functional pointed foot may influence a possible
correction of the asymmetries.

In summary, we recommend a correction of the pes equinus through orthoptic man-
agement for a proven significant reduction in ankle plantar flexion and, thus, functional
correction. Multiple factors seem to influence rotational asymmetry. Our results underline
that other factors need to be considered to understand internal rotation hip and pelvic
retraction patterns in children with unilateral spastic cerebral palsy and spastic hemiplegia
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of other causes. We suggest that a more comprehensive dynamic and static investigation is
needed, taking into account various additional confounding factors, such as tibia torsion,
muscular weaknesses, and joint contractures, in order to improve our understanding of
the mechanisms underlying rotational asymmetries. Since internal rotation is one of the
most disturbing aspects of gait impairment in these children, it is crucial to inform the
children and their parents that the internal rotation of the hip and pelvic asymmetry may
persist despite orthotic management of the equinus foot position and potentially needs to
be addressed by other means, such as rotational orthotics or surgical correction through
rotational osteotomy.

There are several limitations to mention. One reason for a pronounced internal rotation
gait is increased femoral anteversion. This was manually measured in the current study
with the commonly used Craig’s test. Measured in the prone position, the hip is rotated
until the greater trochanter can be palpated most prominently. The amount of torsion corre-
sponds to the angle of the flexed lower leg to the vertical. Several studies have compared
the widely used Craig’s test and computed tomography to measure femoral anteversion
without significant correlation [31,32]. Therefore, the analysis of whether a higher femoral
anteversion produces a smaller effect on correcting asymmetry in walking is limited. How-
ever, in our study, the differences in gait parameters between barefoot and wearing orthoses
were the main parameters not affected by femoral anteversion measurement.

The type of orthosis was based on the individual need of the patient. Due to the
individual orthotic management, it was not possible to create subgroups of orthotic type.
However, to answer the main question, it was only relevant that the orthosis corrected the
equinus foot functionally, which was the case in all participants.

Our retrospective study population included children with spastic and spastic–dystonic
hemiplegia with variable causes, which resulted in a rather inhomogeneous population. For
a more detailed analysis investigating further possible influencing factors, such as further
stratification, e.g., on the influence of spastic or dyskinesia (dystonia) or on the influence of
structural or functional pes equinus—a larger number of patients should be included.

All participants walked first barefoot and then with orthoses. The changes in gait
pattern between the two examinations could have occurred due to muscular and/or
mental fatigue. No studies have investigated the effect of fatigue on physical function.
A prospective study randomizing the order of walking with a larger sample size could
outweigh some of the limitations of the current study.

The variability of dynamic effects of orthotic management on the hip and pelvic
rotation, which was found in our study, clearly shows that there is a need to further
investigate these mechanisms. A major limitation of this retrospective approach is the
limited number of patients, which did not allow for further subgroup analysis.

5. Conclusions

Orthotic management of pes equinus significantly reduced ankle plantar in children
with unilateral spastic cerebral palsy or spastic hemiplegia of other causes and is, therefore,
recommended for functional correction. However, there was a variable effect on the hip and
pelvic asymmetry. The increased hip internal rotation problem appears to be multifactorial.
Children and their parents need to be informed that rotational asymmetries may persist
when using orthoses.
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