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Abstract: (1) Background: In propionic acidemia (PA), myocardial involvement often leads to progres-
sive cardiac dysfunction of the left ventricle (LV). Cardiomyopathy (CM) is an important contributor
to mortality. Although known to be of prognostic value in CM, there are no published data on
right ventricular (RV) function in PA patients. (2) Methods: In this cross-sectional single-center
study, systolic and diastolic RV function of PA patients was assessed by echocardiography, including
frequency, onset, and combinations of echocardiographic parameters, as well as correlations to LV
size and function. (3) Results: N = 18 patients were enrolled. Tricuspid annulus S’ was abnormal
in 16.7%, RV-longitudinal strain in 11.1%, tricuspid annular plane systolic excursion (TAPSE) in
11.1%, Tricuspid valve (TV) E/e’ in 33.3%, and TV E/A in 16.7%. The most prevalent combinations
of pathological parameters were TV E/A + TV E/e’ and TAPSE + TV S’. With age, the probability
of developing abnormal RV function increases according to age-dependent normative data. There
is a significant correlation between TAPSE and mitral annular plane systolic excursion (MAPSE),
and RV/LV-longitudinal strain (p ≤ 0.05). N = 5 individuals died 1.94 years (mean) after cardiac
evaluation for this study, and all had abnormal RV functional parameters. (4) Conclusions: Signs of
diastolic RV dysfunction can be found in up to one third of individuals, and systolic RV dysfunction
in 16.7% of individuals in our cohort. RV function is impaired in PA patients with a poor outcome. RV
functional parameters should be used to complement clinical and left ventricular echocardiographic
findings.

Keywords: propionic acidemia; cardiac phenotype; right ventricular dysfunction; metabolic
cardiomyopathy

1. Introduction

Propionic acidemia (PA), a rare organic aciduria inherited in an autosomal recessive
pattern, is caused by deficiency of mitochondrial propionyl-CoA carboxylase. PA affects
around 1/100,000–1/250,000 individuals in most regions. Clinical presentation and disease
onset vary depending on residual enzymatic activity, intake of propiogenic precursors,
and the occurrence of catabolism. Most PA patients have an early onset of disease, with
ketoacidosis and hyperammonemia in the first days of life, typically presenting as poor
feeding, decreased arousal, and progressive encephalopathy after a symptom-free period.
Late onset patients present after the neonatal period. Both early and late onset patients
often develop various organ manifestations of this multisystem disease, including global
developmental delay and intellectual disability, muscular hypotonia, movement disorders,
seizures, pancreatitis, and cardiac disease. While PA can be identified through expanded
newborn screening, most infants are diagnosed during the neonatal period based upon
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clinical suspicion and biochemical workup. Diagnosis is confirmed via molecular genetic
testing (PCCA and PCCB genes; PCC = propionyl-CoA carboxylase gene, subunits alpha
and beta) [1–8].

Cardiac disease is among the most prevalent organ manifestations in PA and a major
contributor to mortality. It presents mainly as progressive left ventricular (LV) dysfunction,
often leading to manifest cardiomyopathy (CM), with life-threatening acute heart failure dur-
ing, e.g., metabolic decompensation and/or infections. Further, acquired long QT syndrome
is described with potential occurrence of malignant ventricular arrhythmias [1–8].

CM is found in 9–40% in PA, usually diagnosed by conventional echocardiography
(by measuring LV fractional shortening). The treatment of cardiac disease consists of
angiotensin converting enzyme inhibitors (ACE-I) and beta blockers, with anecdotal reports
regarding Coenzyme Q10 [5–8].

In a recent study by our group, we found systolic and diastolic LV dysfunction in up
to 72% of PA patients using advanced echocardiographic techniques [9].

Interestingly, there are no published data on right ventricular (RV) functional parame-
ters in PA patients. This may reflect that during routine echocardiographic evaluation of
PA patients, sonographers mainly focus on assessment of LV function [5–8]. However, RV
systolic dysfunction is recognized as an independent predictor of the clinical outcome in
patients with left ventricular systolic dysfunction due to other etiologies, such as ischemic
heart disease or dilated CM (DCM) [10–13].

Due to the complex RV anatomy, measuring RV function is, however, more challenging
compared to assessing LV function. Furthermore, LV contraction contributes to RV contrac-
tion [13,14]. Therefore, RV dysfunction may be also due to close interaction between LV and
RV function and not attributed to predominant right heart failure, e.g., due to pulmonary
hypertension or in right-sided obstructive lesions in congenital heart disease [13]. Both
conditions are neither commonly seen in PA nor described as associated with PA [5–9].

To date, only data on LV functional parameters, mainly assessed by conventional
echocardiography, have been published in PA. Therefore, we sought to investigate RV
function in PA patients, including the impact of LV size and function on RV function, by
advanced echocardiographic techniques.

2. Materials and Methods

This is a cross-sectional single-center study with a prospective observational design
conducted in a Tertiary Medical Care Center. Ethical approval (S-525/2010) was provided
by the local Ethical Board. Written informed consent for all patients was obtained. All
individuals with confirmed PA (n = 18) were enrolled during the study period 2015–2020.
The study individuals have been published before within a retrospective study on LV
cardiac phenotype in PA [7], a prospective study on LV cardiac dysfunction in PA [9], and
as part of larger studies on organic acidemias within the E-IMD project (please see Funding
for further details) [3,15,16].

Transthoracic echocardiography was performed during routine outpatient visits ac-
cording to current international guidelines by a single cardiologist following a predefined
protocol [14,17,18]. Echocardiograms were made with Philips Diagnostic Ultrasound Sys-
tem; for details regarding software and sector array transducers, see [9].

Longitudinal systolic RV function was assessed by measuring tricuspid annular plane
systolic excursion (TAPSE) by M-mode [19]. RV fractional area change (FAC) was calcu-
lated by tracing the endocardium in systole and diastole in an apical four-chamber view:
FAC = 100% × (end-diastolic area − end-systolic area)/end-diastolic area [14,20]. S’ was
calculated as the peak systolic velocity of the lateral tricuspid annular plane by pulsed
Doppler tissue imaging from an apical four-chamber view [14,21]. RV myocardial per-
formance index (RV-MPI) was assessed by pulsed Doppler imaging using the formula:
RV MPI = TCO − ET/ET (ET right ventricular ejection time, TCO tricuspid valve closure
to opening time) [14,21]. RV global longitudinal strain (RV-GLS; RV longitudinal strain
estimated as average of seven segments including the interventricular septum in the pe-
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diatric age group) and RV free wall strain (RV-FWS; RV longitudinal strain estimated as
average of three segments excluding the interventricular septum in the adult age group)
was measured using two-dimensional speckle-tracking echocardiography (2D-STE) in a
dedicated four-chamber view [14,22]. This approach for measuring RV longitudinal strain
was chosen due to the availability of normal values for the different age groups, and in
view of our available ultrasound and software equipment. GLS measurements were made
as described before [9]. To evaluate RV diastolic function, we assessed Tricuspid valve (TV)
inflow velocities by conventional Doppler and Tricuspid annulus early and late diastolic
velocities by tissue Doppler (TDI): TV E/A, TV e’/a’ (the latter in adult patients only as not
standardly used in children), and TV E/e’. RV-MPI is considered to represent both systolic
and diastolic function, and its assessment is explained earlier [14,21]. Right ventricular
end-diastolic diameters (RVEDD) were measured in a standard parasternal long axis view
using motion-mode imaging (m-mode) in the pediatric age group. RV basal diameters
were measured in a dedicated four-chamber view for the adult age group [14]. Z-scores for
RV dimensions (for patients < 18 years) were calculated [23], and in addition compared
to normal value ranges, according to Kampmann et al. [24]. Right atrial (RA) end-systolic
dimensions were assessed by measuring RA area in the pediatric age group or RA minor
axis and RA minor axis/body surface area (BSA) in the adult age group in a dedicated
four-chamber view [25,26]. To compare RV and LV function, we looked at LV fractional
shortening (FS) and ejection fraction by biplane Simpson’s, mitral annular plane systolic
excursion (MAPSE), LV-GLS by STE, Mitral valve (MV) E/A ratio, MV E/e’, LV-MPI, and
MV deceleration time (DT-E), as well as LV size. Parameters of RV and LV function were
measured at the same examination and results of LV function were published earlier (for
detailed description of methods and results, see reference [9]).

All results were compared to published age-dependent normative data [14,19–23,25,26].
Examples of echocardiographic measurements are displayed in Figures 1–3.
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(a) (b) 

Figure 1. (a) Measurement of TAPSE by M-mode and (b) RV-GLS / RV-FWS* by 2D-STE. Figure 1. (a) Measurement of TAPSE by M-mode and (b) RV-GLS / RV-FWS* by 2D-STE.

To test for intra- and interobserver variability, randomly selected cases were reanalyzed
and calculated by the equation: Variability % = (m1−m2)/(m1 + m2)/2× 100%, where m1
and m2 are the mean values of the first and the second measurement sets of one investigator
(intra-observation variability) or the first measurement set between two investigators (inter-
observation variability), who were blinded to each other’s results. The variables tested
were LVEDD, MAPSE, TAPSE, MV E, MV e’, TV E, and TV e’ (Table S1).
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Figure 3. (a) TV E/A inflow and TCO and (b) Pulmonary valve (PV) Doppler and ET by conventional
Doppler; RV-MPI = TCO − ET/ET. (c) Tissue Doppler imaging (TDI): TV e’, a’, and S’.

Statistics

Statistical analyses were computed with R language version 4.2.0. The linear rela-
tionship between two numeric variables was computed via Pearson correlation coefficient.
Frequent combinations of echocardiographic parameters were displayed as combination
of two to a maximum of four pathological parameters, according to the ECLAT algorithm
implemented in R package ‘arules’. The development of specific pathological echocardio-
graphic functional parameters of the RV were modeled as left and right censored data with
the ‘Surv’-function in package ‘survival’: if a pathologic functional parameter were found,
this observation was treated as left censored, otherwise as right censored.
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3. Results
3.1. Study Cohort

Eighteen patients were enrolled. The median age at visit for cardiac evaluation was
13.1 years (range 0.6–28.1 years). The gender distribution was female n = 8 vs. male
n = 10. Transthoracic echocardiography following a predefined protocol was performed
during routine outpatient visits. None of the patients had structural heart disease (e.g.,
tricuspid/mitral valve disease or RV outflow tract obstruction). There were no cases
of pulmonary hypertension. All patients had sinus rhythm during echocardiographic
assessment, and none had acute preload changes. For further details regarding the study
cohort, see reference [9].

3.2. Results of Echocardiographic Measurements

RV and RA size, diameter, and anatomy of the tricuspid valve annulus were normal in
all included patients. Inspiratory collapse of the inferior vena cava was ≥50% in all cases.
None of the presented cases had signs of elevated pulmonary artery pressure (none with a
peak velocity of tricuspid valve regurgitation of more than 2.8 m/s). Tricuspid annulus
S’ was abnormal in 16.7%, RV-strain in 11.1%, TAPSE in 11.1%, TV E/e’ in 33.3%, and TV
E/A in 16.7%. Normal parameters were found in all individuals for RV-FAC, RV-MPI, and
TV e’/a’ (TV e’/a’ assessed in adult patients). Table S2 and Table A1a,b summarize all
echocardiographic parameters. In addition, Table 1 and Figure 4 give an overview of the
distribution of the raw data. The most prevalent combinations of pathological parameters
were TV E/A + TV E/e’ for diastolic RV function and TAPSE + TV S’ for systolic RV
function; diastolic RV dysfunction was more prevalent (see Table A2 for data on support
and count).

Table 1. Raw values of assessed RV functional parameters. Mean, median, 25% and 75% quantile,
minimal (Min) and maximal (Max) values of right ventricular functional parameters in n = 18
individuals with PA. SD = standard deviation.

Parameter n Mean SD 25% Median 75% Min Max

TAPSE cm 18 1.96 0.26 1.83 1.90 2.08 1.50 2.70
TV S’ cm/s 18 12.84 3.41 11.25 12.25 14.15 8.40 22.90
RV-FAC % 18 42.09 3.68 40.51 41.80 43.07 34.00 49.00

RV-MPI 18 0.28 0.07 0.23 0.28 0.33 0.21 0.43
TV E/A 18 1.36 0.29 1.22 1.38 1.56 0.70 1.80
TV E/e’ 18 5.04 1.51 3.75 5.00 5.78 3.00 8.82

RV strain % 18 −22.72 3.17 −23.98 −22.78 −22.31 −28.00 −15.10
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3.3. Effects of Patients’ Age on Right Ventricular Function

With growing age, the proportion of patients without abnormal RV function decreases
(Figure 5a–e).

Children 2022, 9, x FOR PEER REVIEW 7 of 14 
 

 

 

Figure 5. (a)–(e). Survival curves of proportions of patients without specific pathological RV func-

tional parameters. With age, the probability of developing abnormal RV function increases accord-

ing to age-dependent normative data. The dotted line indicates the 95% confidence interval. 

3.4. Effect of Left Ventricular Size and Function on Right Ventricular Function 

N = 3 individuals (ID 4, 13, 14) had a DCM with a LVEDD above the normal range 

and abnormal parameters for LV-FS, LV-EF, LV-MPI, and LV-GLS. Of these, n = 1 (ID 4) 

had additional abnormal RV-longitudinal strain, and another one (ID 14) had abnormal 

values for TAPSE, TV S’, and TV E/e’. The last one (ID 13) had no abnormal RV functional 

parameters. N = 1 individual (ID 9) had a dilated LV without pathological LV functional 

parameters; this patient also had normal values for all RV functional parameters.  

Regarding the correlation of RV and LV function, there is a significant correlation 

between TAPSE and MAPSE, and RV longitudinal strain and LV-GLS (p ≤ 0.05). Correla-

tion was more significant between LV functional parameters: LV-EF and LV-FS (p ≤ 0.001), 

LV-EF and LV-MPI (p ≤ 0.05), LV-FS and LV-MPI (p ≤ 0.01), LV-FS and MAPSE (p ≤ 0.01), 

Figure 5. (a)–(e). Survival curves of proportions of patients without specific pathological RV func-
tional parameters. With age, the probability of developing abnormal RV function increases according
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3.4. Effect of Left Ventricular Size and Function on Right Ventricular Function

N = 3 individuals (ID 4, 13, 14) had a DCM with a LVEDD above the normal range
and abnormal parameters for LV-FS, LV-EF, LV-MPI, and LV-GLS. Of these, n = 1 (ID 4)
had additional abnormal RV-longitudinal strain, and another one (ID 14) had abnormal
values for TAPSE, TV S’, and TV E/e’. The last one (ID 13) had no abnormal RV functional
parameters. N = 1 individual (ID 9) had a dilated LV without pathological LV functional
parameters; this patient also had normal values for all RV functional parameters.

Regarding the correlation of RV and LV function, there is a significant correlation
between TAPSE and MAPSE, and RV longitudinal strain and LV-GLS (p≤ 0.05). Correlation
was more significant between LV functional parameters: LV-EF and LV-FS (p ≤ 0.001), LV-
EF and LV-MPI (p ≤ 0.05), LV-FS and LV-MPI (p ≤ 0.01), LV-FS and MAPSE (p ≤ 0.01), and
LV-MPI and MAPSE (p ≤ 0.05). Figure 6 shows the correlation matrix and Table S3 the
corresponding correlation coefficients.
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Figure 6. Correlation matrix: the size of the circles on the right side of the matrix correspond
to more correlation, positive or negative (color code: blue positive and red negative correlation);
the corresponding r values are displayed on the left side of the matrix. “*” corresponds to the
calculated significance levels: * = p ≤ 0.05, ** = p ≤ 0.01, *** = p ≤ 0.001. Note that higher values
of LV-MPI indicate cases with DCM, and that strain values are negative, i.e., values closer to zero
indicate reduced, and more negative values better myocardial strain. For the remainder of displayed
parameters, more positive values indicate better ventricular function.

3.5. Patient Outcome and Right Ventricular Function

Until publication of this study, n = 5 patients (IDs 3, 4, 11, 14, 15) died (due to
metabolic decompensation, pneumonia, other infection) with a mean time distance of
1.94 years (range 0.4–3.6 years) after cardiac evaluation for this study. Death occurred at a
median age of 18 years (mean age 16.6 years, range 10–20 years).

Regarding RV functional parameters, ID 3 had pathological values for RV longitudinal
strain, TAPSE, and TV S’. ID 4 had reduced RV longitudinal strain. ID 11 had abnormal TV



Children 2023, 10, 113 8 of 13

E/A and TV E/e’. ID 14 had pathological TAPSE, TV S’, TV E/A, and TV E/e’. ID 15 had
abnormal TV S’.

4. Discussion

In this study, we present novel data on systolic and diastolic RV function in PA
patients. Up to one third of PA patients show signs of diastolic RV dysfunction, and 16%
have systolic RV dysfunction, both in the absence of structural heart disease or pulmonary
hypertension. With age, the probability of developing RV dysfunction, both diastolic and
systolic, increases. Compared to our previous studies, RV dysfunction is less prevalent
than LV dysfunction, which was found in up to 72% for both systolic and diastolic LV
parameters in the same cohort.

RV dysfunction is frequently described, although less compared to LV dysfunc-
tion, e.g., in long-term adult survivors of childhood lymphoma and acute lymphoblastic
leukemia [27], hypertensive heart failure [28], and also in β-thalassemia children [29], but
prior to our present study not in PA patients. RV systolic dysfunction is recognized as
independent predictor of clinical outcome e.g., in ischemic heart disease or DCM [10–13].
Some authors even state that the right ventricle and subsequent comprehensive evaluation
of RV function seems “forgotten” in the routine work-up in pediatric CM [30]. The same
authors found that RV systolic and diastolic functional parameters such as TAPSE, S′, e′/a′,
and RV MPI were significantly correlated to LV-GLS [30]. This is supported by our findings
of significant correlations between TAPSE and MAPSE, as well as RV and LV longitudinal
strain.

Assessment of RV function should be considered important as it determines cardiac
symptoms and exercise capacity in chronic heart failure, and it predicts the outcome in
patients with DCM [10–13]. However, measuring RV function is more challenging due to
the complex RV anatomy. The RV shares fibers in the interventricular septum with the
LV. Subsequently, contraction of the interventricular septum augments RV contraction,
described as systolic ventricular interaction. Therefore, RV dysfunction may also occur
due to close interaction between LV and RV function [13]. In the absence of other causes
of RV dysfunction, such as pulmonary hypertension or right-sided obstructive lesions,
this concept, also known as ventricular interdependence, where the size and shape of one
ventricle affects the function of the other ventricle, is likely the etiology of RV dysfunction
we detected in our PA cohort. This is in line with the observed correlations between RV
and LV dysfunction and—although less pronounced—the effects of LV size on RV function.

Cardiac disease is associated with high morbidity and mortality in PA patients. Fur-
ther, disease progression may not be haltered by conventional therapies such as ACE-I or
beta blockers started once CM is detected by conventional echocardiography [7], raising
the need for earlier treatment and/or other new therapeutic strategies. Liver transplanta-
tion may reverse CM in PA, but can be associated with considerable mortality [6,31–35].
Predictors of outcome may help to guide patient management including decision for liver
transplantation. In our cohort, five patients died till date. All had abnormal RV function at
time of cardiac assessment, mainly impaired systolic RV function, whereas overall preva-
lence of RV dysfunction was 11–33%. It remains to be determined whether RV dysfunction
can serve as an independent predictor of poor outcome in PA, in analogy to other conditions
such as ischemic heart disease or DCM [10–13].

In summary, in view of our current and previous data [7,9] on cardiac phenotype in
PA, we provide new insights regarding cardiac function in PA, the potential interaction
between LV and RV function, and its possible effects on the outcome of this progressive
disease. Considering the existing literature on cardiac function in PA, where LV function
was mainly assessed by LV-FS [5–8], it seems important to define diagnostic methods such
as advanced echocardiographic techniques to identify early and subtle signs of cardiac
dysfunction and possibly parameters with predictive value. Due to limited case numbers
per center for this rare disease, a multicenter approach would be desirable to confirm and
expand the results from our single-center studies.
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5. Limitations

With increasing age, PA patients are often noncooperative during echocardiography
due to intellectual disability, and acoustic windows are hampered due to, e.g., immobility
or scoliosis. We therefore (a) had to limit assessed echocardiographic parameters, and (b)
quality of obtained views may have been impacted. However, intra- and interobserver
variability for the echocardiographic parameters was excellent. There were no cardiac MRI
or invasive data available, as not standardly recommended in PA. The strain algorithms
used in QLAB have been validated for LV strain. However, algorithms used to determine
strain are not chamber-specific, and, until 2018, both the apical four-chamber and the
RV-focused four-chamber view were used to generate normal values for RV-GLS and FWS,
and software packages designed for LV strain assessment were standardly used [36–38].
Additionally, it has been shown that RV strain measurements using LV-specific strain
software correlate with RV strain measurements using RV-specific strain software [39]. Due
to the study design, no longitudinal data were included. Therefore, effects of increasing
age on RV function in individual study patients cannot be excluded.

6. Conclusions

We present, for the first time in literature, data on RV function in PA. We show that
assessment of systolic and diastolic RV function is feasible, and that diastolic RV dysfunction
occurs in up to one third of individuals in our cohort, whereas systolic RV dysfunction is
found in 16.7%. RV dysfunction is less prevalent than LV dysfunction, and there is some
correlation between LV and RV functional parameters. LV and subsequent RV dysfunction
was found in PA patients with a poor outcome. In summary, RV functional parameters can
be used to complement clinical and LV echocardiographic findings in the assessment of PA
patients. A possible prognostic role of RV dysfunction in PA remains to be investigated.
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Appendix A

Table A1. (a). Raw data of echocardiographic measurements for systolic RV function. (b). Raw data
of echocardiographic measurements for diastolic RV function.

(a)

ID TAPSE
cm

RV GLS %
(ped.) RV FWS % (adult) TV S’ Vmax

cm/s RV FAC % RV-
MPI

1 1.9 −22.6 / 12.6 44.5 0.24
2 1.7 −25 / 12.1 43.1 0.23
3 1.9 −16.5 / 11.2 41.4 0.32
4 2.7 −11.6 / 12.4 48.6 0.31
5 1.8 −24.1 / 11.4 40.5 0.21
6 1.8 / −23.3 11.5 43.0 0.38
7 2 −23.4 / 11.5 41.2 0.21
8 1.9 −22.9 / 15.3 40.6 0.21
9 2.1 / −27.7 14.5 42.2 0.29
10 1.9 −20.9 / 17.5 49.0 0.36
11 1.9 −21 / 22.9 42.9 0.35
12 2 / −22.7 13.2 42.3 0.27
13 2 / −22.3 10.4 39.3 0.43
14 1.5 −23.6 / 8.44 47.0 0.33
15 1.7 / −22.3 8.4 37.4 0.21
16 2.3 / −28.0 14.3 40.2 0.26
17 2.14 −25.2 / 13.7 40.5 0.28
18 2.1 −22.3 / 9.8 34.0 0.24

(b)

ID
TV E
Vmax
cm/s

TV A Vmax
cm/s TV E/A

TV e’
Vmax
cm/s

TV a’ Vmax
cm/s

TV e’/a’
(adult)

TV
E/e’

1 55 32 1.7 15.5 8 / 3.5
2 54 38 1.4 11 5.3 / 4.9
3 49 36 1.36 14 9.4 / 3.5
4 55 44 1.3 14 12 / 3.9
5 62 42 1.5 10.4 5.9 / 5.96
6 55 32 1.7 11 7.3 1.5 5
7 75 73 1 8.5 7 / 8.82
8 53 45 1.2 14.3 9.52 / 3.7
9 75 54 1.4 20.1 19 1.05 3
10 60 46 1.3 20 11 / 3
11 67.6 96.3 0.7 13.5 21.9 / 5
12 63 38 1.7 12.4 10.2 1.22 5.1
13 59 41.8 1.4 10.7 7.1 1.51 5.5
14 55.8 57.8 0.97 9.5 4.7 / 5.87
15 49.4 42.9 1.2 7.46 5.3 1.41 6.62
16 82 45 1.8 11.7 9.3 1.26 7
17 55 34.8 1.58 11 9.2 / 5
18 85 65.8 1.3 15.8 6.9 / 5.4
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Table A2. First 10 itemsets (=combination of all pathological echocardiographic functional parame-
ters) sorted by support and count. The most prevalent combination of pathological echocardiographic
values was found for TV E/A + TV E/e’ and TAPSE + TV S’.

Items Support Count

1 {TV E/A, TV E/e’} 0.16666667 3
2 {TAPSE, TV S’} 0.11111111 2
3 {TAPSE, RV-strain, TV S’} 0.05555556 1
4 {RV-strain, TV S’} 0.05555556 1
5 {TAPSE, RV-strain} 0.05555556 1
6 {TAPSE, TV S’, TV E/A, TV E/e’} 0.05555556 1
7 {TAPSE, TV E/A, TV E/e’} 0.05555556 1
8 {TAPSE, TV S’, TV E/A} 0.05555556 1
9 {TAPSE, TV S’, TV E/e’} 0.05555556 1

10 {TAPSE, TV E/e’} 0.05555556 1
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