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Abstract: G-protein signaling modulators (GPSMs) are a class of proteins involved in the regulation
of G protein-coupled receptors, the most abundant family of cell-surface receptors that are crucial
in the development of various tumors, including breast cancer. This study aims to identify the
potential therapeutic and prognostic roles of GPSMs in breast cancer. Oncomine and UALCAN
databases were queried to determine GPSM expression levels in breast cancer tissues compared to
normal samples. Survival analysis was conducted to reveal the prognostic significance of GPSMs
in individuals with breast cancer. Functional enrichment analysis was performed using cBioPortal
and MetaCore platforms. Finally, the association between GPSMs and immune infiltration cells in
breast cancer was identified using the TIMER server. The experimental results then showed that
all GPSM family members were significantly differentially expressed in breast cancer according to
Oncomine and UALCAN data. Their expression levels were also associated with advanced tumor
stages, and GPSM2 was found to be related to worse distant metastasis-free survival in patients with
breast cancer. Functional enrichment analysis indicated that GPSMs were largely involved in cell
division and cell cycle pathways. Finally, GPSM3 expression was correlated with the infiltration of
several immune cells. Members of the GPSM class were differentially expressed in breast cancer. In
conclusion, expression of GPSM2 was linked with worse distant metastasis-free outcomes, and hence
could potentially serve as a prognostic biomarker. Furthermore, GPSM3 has potential to be a possible
target for immunotherapy for breast cancer.

Keywords: breast cancer; G-protein signaling modulator; survival analysis; biomarker; functional
enrichment analysis; gene expression; immunotherapy

1. Introduction

Worldwide, breast cancer remains the most commonly seen malignancy in women,
with a staggering incidence of 2 million cases annually [1]. Molecular markers of breast
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cancer, including estrogen and progesterone receptors and human epidermal growth
factor 2, are crucial to the classification, treatment, and prognosis of individuals with this
disease [2]. While early-stage, non-metastatic breast cancer is considered treatable, such
curative therapies do not yet exist for patients in the more advanced stages with distant
organ metastases [3]. Combinations of novel biomarkers play a critical role in the highly
complex diagnostic and treatment algorithms of breast cancer [4]. Therefore, efforts to
identify additional, robust biomarkers that could stratify patients and improve clinical
outcomes are wholly justified.

In many instances, cancer arises from disruptions of cell signaling pathways, which
modulate various cellular processes including survival, reproduction, and motility [5].
Among their components, G proteins, also known as guanine nucleotide-binding proteins,
remain one of the most significant and are involved in the transduction of extracellular
signals into the cell’s interior [6]. These intracellular molecular switches are triggered
by the membrane-bound G protein-coupled receptors, and the ensuing signaling events
eventually lead to changes in cell function. This process is further regulated by another
group of proteins, G protein-signaling modulators (GPSM), via their interaction with
subunits of G proteins. GPSMs are a class of receptor-independent activators of G protein
signaling, whose family members include GPSM1, GPSM2, GPSM3, and GPSM4. In
particular, GPSM2 is widely known to modulate mitotic spindle orientation [7], and its
significance in breast cancer has been reported by earlier studies. Fukukawa et al. showed
that GPSM2 is overexpressed in breast cancer tissues [8], while Deng et al. stated that its
nuclear expression is an unfavorable prognostic indicator [9]. Furthermore, bioinformatics
analysis and in vivo verification have suggested that GPSM2 negatively influenced patient
response to paclitaxel, one of the most effective and well-tolerated chemotherapy drugs for
breast cancer [10]. Meanwhile, members of the GPSM family are known to be associated
with other neoplasms, namely lung [11], prostate [12], and pancreatic cancer [13].

A few reports to date have illustrated the expression profiles, as well as therapeutic
and prognostic role of GPSM class in breast cancer. Thanks to an increasing number of
publicly available databases and web tools for cancer-related genomics studies, researchers
are able to leverage these resources to discover novel targets and biomarkers [14]. In this
study, we aim to better understand the significance of GPSM family members as potential
molecular therapeutic targets and biomarkers in breast cancer, through performing an inte-
grated bioinformatics analysis. Our analytic workflow follows the standard bioinformatics
studies [15,16] and it is briefly outlined in Figure 1. First, we determine whether GPSM
family genes could serve as potential biomarkers by comparing their mRNA expression
levels in breast cancer and normal samples, using Oncomine and UALCAN databases.
After confirming that GPSMs were differentially expressed in breast cancer, their protein
expressions in immunohistochemically stained breast cancer tissues were visualized by
querying the Human Protein Atlas platform. Next, GPSMs’ connection with prognosis
of patients with breast cancer was plotted using the Kaplan–Meier plotter. Univariate
and multivariate Cox analyses were also performed to assess the proportional hazards
model. Finally, we identify the GPSMs-related signaling pathways by overlapping datasets
from METABRIC and TCGA, and explore the relationship between GPSMs and immune
infiltration levels in breast cancer.
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Figure 1. Study flowchart. METABRIC, Molecular Taxonomy of Breast Cancer International Con-
sortium; KEGG, Kyoto Encyclopedia of Genes and Genomes; TIMER, Tumor Immune Estimation
Resource.

2. Materials and Methods
2.1. Oncomine

Oncomine (http://www.oncomine.org accessed on 15 June 2021) is an online DNA
microarray database that allows cancer transcriptome analysis, and currently houses
715 datasets and 86,733 samples, covering the majority of cancer types [17]. It was used to
compare the transcriptional levels of GPSM family members between tumor and normal
samples in 20 types of cancer. Statistics were performed by Student’s t-test, and thresholds
were set as follows: p value < 0.05, fold change >2, gene rank top 10%.

2.2. CCLE (Cancer Cell Line Encyclopedia)

The Broad Institute CCLE (http://www.broadinstitute.org/ccle accessed on 15 June 2021)
is a dataset containing more than 1100 cell lines for 37 types of cancer [18]. It allows com-
putational genomic analysis and visualization, and was used in our study to demonstrate
the expression levels of GPSMs in breast cancer.

2.3. UALCAN

UALCAN (http://ualcan.path.uab.edu accessed on 15 June 2021) is a web portal that
allows online analysis of transcriptome sequencing data from The Cancer Genome Atlas
(TCGA) project [19]. We used UALCAN to validate the relative expressions of GPSMs in
normal and breast cancer samples, as well as those in different tumor stages and subclasses.
This measurement was represented as transcript per million reads, and a comparison was
carried out using Student’s t-test.

2.4. Human Protein Atlas

The Human Protein Atlas (https://www.proteinatlas.org/ accessed on 15 June 2021)
contains mRNA and protein expression data of normal and cancerous human tissues [20].
mRNA and protein expression profiles of GPSMs in normal and breast cancer tissues were
analyzed using RNA-sequencing data and immunohistochemical images.

http://www.oncomine.org
http://www.broadinstitute.org/ccle
http://ualcan.path.uab.edu
https://www.proteinatlas.org/
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2.5. Survival Analysis

The Kaplan–Meier plotter (https://kmplot.com/analysis accessed on 15 June 2021)
is an online tool that assesses survival data of 54,000 genes in 21 cancer types, including
breast, ovarian, lung, and gastric cancer [21]. The effect of GPSMs mRNA expression on
distant metastasis-free survival (DFMS) of patients with breast cancer were identified by
sorting patients into high and low median expression groups.

Next, univariate and multivariate Cox analyses were performed, using the survival
package of R language (https://cran.r-project.org/web/packages/survival/index.html
accessed on 15 June 2021), to assess the proportional hazards model. Variables including
age, gender, tumor stage (TNM), and treatment.

2.6. Functional Enrichment Analysis

cBioPortal for Cancer Genomics (https://www.cbioportal.org/ accessed on 15 June 2021)
is a portal for analyzing multidimensional gene-level data of cancer tissues and cell
lines [22]. Two datasets from cBioPortal, namely METABRIC (Molecular Taxonomy of
Breast Cancer International Consortium) and TCGA, were accessed to determine func-
tional enrichment analysis [23]. In particular, we first identify the gene–gene interaction
network using the Gene Multiple Association Network Integration Algorithm (Gene-
MANIA, https://genemania.org accessed on 15 June 2021) [24]. The Venny tool (https:
//bioinfogp.cnb.csic.es/tools/venny accessed on 15 June 2021) was then employed to find
the overlap from lists of co-expressed genes from METABRIC and TCGA.

Next, MetaCore (https://portal.genego.com accessed on 15 June 2021), an integrated
functional analysis software, was curated to determine the biological processes, biomarker
networks, and the breast cancer cell–cell signaling pathway.

Finally, functional annotation was performed using GO and KEGG analyses. Gene
ontology (GO) is the standardized representation of gene and gene products, covering three
domains: Cellular component, molecular function, and biological process [25]. The Kyoto
Encyclopedia of Genes and Genomes (KEGG) is the knowledge base for gene functions
systemic analysis [26]. Results were visualized by R, package DOSE (Disease Ontology
Semantic and Enrichment, version 3.13) [27].

2.7. TIMER (Tumor IMmune Estimation Resource)

TIMER (http://timer.cistrome.org/ accessed on 15 June 2021) is a web server for
systematic analysis of immune infiltrates across various cancer types [28]. Its algorithm
estimates the correlations between gene expression and an abundance of six immune
infiltrates cells (B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and dendritic
cells). All Spearman’s correlation coefficients were tumor purity-adjusted.

3. Results

The basic characteristics, including their approved symbols, IDs, alternative names,
and chromosomal locations, of all members of the GPSM family are shown in Table 1. It is
worth noting that GPSM4 is more commonly known as PCP2 (Purkinje cell protein 2).

3.1. Differential Expression of GPSM Family Genes in Breast Cancer

Analysis from Oncomine revealed that all four GPSMs were differentially expressed
in breast cancer (Figure 2A). In particular, GPSM1 and GPSM4 were downregulated while
GPSM2 and GPSM3 were over-expressed. Detailed overexpression profiles of GPSM2
between cancer and normal tissues are provided in Supplementary Table S1.

Next, expression patterns of the GPSM family in various cell lines were analyzed from
the CCLE database. The molecular subtypes of cell lines were also shown [29]. GPSM1,
GPSM2, and GPSM3 were most highly expressed in triple negative breast cancer cell lines,
while GPSM4 showed high expression in multiple luminal A cell lines (Figure 2B).

https://kmplot.com/analysis
https://cran.r-project.org/web/packages/survival/index.html
https://www.cbioportal.org/
https://genemania.org
https://bioinfogp.cnb.csic.es/tools/venny
https://bioinfogp.cnb.csic.es/tools/venny
https://portal.genego.com
http://timer.cistrome.org/
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Table 1. Basic characteristics of GPSM family genes.

Approved Symbol HGNC ID Gene ID Aliases Location on Chromosome

GPSM1 17858 26086 AGS3
DKFZP727I051 9q34.3

GPSM2 29501 29899 LGN
Pins 1p13.3

GPSM3 13945 63940

NG1
G18

G18.1a
G18.1b
G18.2
AGS4

6p21.32

GPSM4 30209 126006 PCP2
MGC41903 19p13.2

Biomedicines 2021, 9, x FOR PEER REVIEW 5 of 19 
 

G18.1b 
G18.2 
AGS4 

GPSM4 30209 126006 
PCP2 

MGC41903 
19p13.2 

3.1. Differential Expression of GPSM Family Genes in Breast Cancer 
Analysis from Oncomine revealed that all four GPSMs were differentially expressed 

in breast cancer (Figure 2A). In particular, GPSM1 and GPSM4 were downregulated while 
GPSM2 and GPSM3 were over-expressed. Detailed overexpression profiles of GPSM2 be-
tween cancer and normal tissues are provided in Supplementary Table S1. 

Next, expression patterns of the GPSM family in various cell lines were analyzed 
from the CCLE database. The molecular subtypes of cell lines were also shown [29]. 
GPSM1, GPSM2, and GPSM3 were most highly expressed in triple negative breast cancer 
cell lines, while GPSM4 showed high expression in multiple luminal A cell lines (Figure 
2B). 

 
Figure 2. Expression of GPSMs across various cancer tissues. (A) mRNA expression levels of GPSMs in 20 cancer types. 
Numbers in red and blue cells represent dataset numbers in which levels of GPSMs are statistically increased or decreased, 
respectively (p < 0.05, fold change >2, gene rank top 10%, Oncomine). (B) Heatmap plots showing GPSMs expression status 
in breast cancer cell lines (CCLE), with colored columns on the right side displaying the molecular subtype of each cell 
line. “Inconsistent” denotes cell lines that are inconsistently annotated regarding the status of markers. “Others” include 
two cell lines that were not breast cancer (HMEL, engineered breast and HS274T, breast fibroblast). TNBC, triple negative 
breast cancer. 

Figure 2. Expression of GPSMs across various cancer tissues. (A) mRNA expression levels of GPSMs in 20 cancer types.
Numbers in red and blue cells represent dataset numbers in which levels of GPSMs are statistically increased or decreased,
respectively (p < 0.05, fold change >2, gene rank top 10%, Oncomine). (B) Heatmap plots showing GPSMs expression status
in breast cancer cell lines (CCLE), with colored columns on the right side displaying the molecular subtype of each cell line.
“Inconsistent” denotes cell lines that are inconsistently annotated regarding the status of markers. “Others” include two cell
lines that were not breast cancer (HMEL, engineered breast and HS274T, breast fibroblast). TNBC, triple negative breast
cancer.
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3.2. GPSMs Expression in Subgroups of Individuals with Breast Cancer

Regarding the comparison between healthy and breast cancer samples, UALCAN
analysis illustrated higher transcription levels of all four GPSM genes in breast cancer
patients (Figure 3A). For GPSM1, this result was not consistent with that from Oncomine
and the Human Protein Atlas, which indicated that GPSM1 was under-expressed and had
low protein expression status in individuals with breast cancer.
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In terms of stratification by cancer stages, all GPSMs expression levels in healthy
controls were significantly lower than those at stage 1, 2, and 3 (Figure 3B). GPSM3 and
GPSM4 also showed similar patterns for stage 4 breast cancer. With respect to breast cancer
subclasses, all GPSMs’ expression statuses were lower in normal individuals compared to
those with luminal or triple negative breast cancer (Figure 3C). Detailed statistics of the
comparison are provided in Supplementary Table S2.

3.3. GPSMs Expression Profiles on mRNA and Protein Level

Expression levels of GPSMs in non-cancer tissues were derived from the GTEx
(Genotype-Tissue Expression) dataset in the Human Protein Atlas (Supplementary Figure S1).
Among all members of the GPSM family, GPSM3 and GPSM2 were most and least abun-
dant in normal breast tissues (pTPM of 16.8 and 5.9, respectively). Furthermore, analysis
revealed that GPSM1 had weak protein expression, in contrast to the moderate expression
of GPSM2 in clinical breast cancer specimens (Figure 4). Corresponding data of GPSM3
and GPSM4 were not found in the database.
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To summarize, in the GPSM family genes, GPSM2 expression was consistently higher
in people with breast cancer than in normal controls at both mRNA and protein levels.

3.4. Prognostic Roles of GPSMs in Breast Cancer

The Kaplan–Meier plot was used to identify prognostic significance of the GPSM
family gene in individuals with breast cancer. Among the four members, only GPSM2
is consistently associated with poor distant metastasis-free survival (DMFS) outcomes
(Figure 5). In particular, higher expression levels of GPSM2 indicated worse DMFS time
overall and in the following subtypes of breast cancer: ER or PR positive, HER2 positive or
negative, luminal A or B, and with or without chemotherapy.
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Figure 5. Distant metastasis-free survival (DMFS) analysis of GPSM2 in breast cancer (Kaplan–Meier plot). Red and black
curves represent survival analysis for higher and lower GPSMs mRNA expression levels, respectively. Red and black titles
indicate statistically and non-statistically significant survival, respectively. ER, estrogen receptor; HER2, human epidermal
growth factor receptor 2; PR, progesterone receptor; +, positive; −, negative.

Meanwhile, survival results of the remaining members of GPSM family were more
inconsistent (Supplementary Figure S2). Specifically, while a higher level of GPSM1 mRNA
showed significant improvement in outcome for patients with HER2+/− and luminal A
and B subtypes of breast cancer, it was linked to poor prognosis in patients with ER+/−,
PR +/−, and chemotherapy-included subtypes (S2-1). Furthermore, GPSM3 and GPSM4
with low expression levels were considerably associated with better survival outcomes
(S2-2, S2-3).
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As the Kaplan–Meier curve showed that higher GPSM2 expression and poor DMFS
were consistently and significantly correlated, we next investigated whether GPSM2, along
with variables such as age, gender, and tumor stage, were risk factors for survival in breast
cancer patients. Univariate Cox analysis revealed that advanced age, TNM stage III/IV,
and metastasis, but not GPSM2 expression, were independent high-risk factors for breast
cancer survival. Subsequent multivariate Cox analysis showed that these three risk factors
remained to be associated with decreased overall survival (Table 2).

Table 2. Univariate and multivariate Cox proportional hazards regression analysis of factors affecting overall survival.
Variables with significant association with overall survival in univariate analysis were then put into the multivariate analysis.
HR, hazard ratio; CI, confidence interval; *: significant risk factor, p < 0.05.

Number of
Patients

Univariate Multivariate

Variables HR (95% CI) p Value HR (95% CI) p Value

Age (y)
<60 366 reference reference
≥60 287 2.032 (1.277–3.235) 0.003 * 2.361 (1.436–3.881) 0.0004 *

Gender
Male 10 reference

Female 643 0.887 (0.122–6.417) 0.906

Tumor stage
Stage I/II 471 reference reference

Stage III/IV 176 2.687 (1.657–4.356) 6.15 × 10−05 * 2.517 (1.516–4.18) 0.0002 *

M stage
M0 530 reference reference
M1 9 3.965 (1.828–8.59) 0.0004 * 2.28 (1.014–5.128) 0.04 *
MX 114 1.268 (0.622–2.584) 0.513 0.726 (0.306–1.723) 0.49

T stage
T1/T2 532 reference
T3/T4 118 1.55 (0.920–2.609) 0.099

GPSM2 expression
Low 336 reference
High 317 0.888 (0.56–1.41) 0.617

3.5. Biological Functions and Pathway Enrichment Analysis

Figure 6 illustrates the gene interaction networks of GPSMs and their neighboring
genes. The relationship between co-localization, shared protein domains, co-expression,
prediction, and pathways of GPSMs is shown. Notably, we found that GPSM members were
highly correlated with metastatic markers, such as ATG3 (autophagy-related gene 3) [30],
DTX3 (Deltex E3 Ubiquitin Ligase 3) [31], and PALM [32]. Next, GO and KEGG resources
were used to explore the functions of GPSM and their neighboring genes (Figure 7). We
found that GPSMS were mostly involved in cell division from their “Biological Process”
results: Nuclear division, organelle fission, chromosome segregation, mitotic nuclear
division, and nuclear chromosome segregation. Subcellular locations of GPSMs were
mostly around the chromosomal region, spindle, and chromosome and centromeric region.
Molecular functions of these genes were mostly related to ATPase activity, catalytic activity
(acting on DNA), and tubulin binding. KEGG pathways that were involved in breast
cancer pathogenesis included cell cycle, oocyte meiosis, and cellular senescence. Finally,
Disease Ontology analysis revealed that GPSMs played roles in autosomal dominant
disease, non-small cell lung carcinoma, and hereditary breast ovarian cancer.
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Next, we illustrate the functional pathway enrichment analysis from MetaCore, which
involves determining gene networks and biological processes of each GPSM family member
co-expressed genes. Again, among all GPSMs, GPSM2 is most relevant to breast cancer
tumor biology (Figure 8). In particular, GPSM2 co-expressed genes play essential roles in
the cell cycle and DNA damage pathways in breast cancer growth. The five pathways that
showed the most significant p values are “cell cycle_role of APC (Anaphase-promoting
complex) in cell cycle regulation”, “cell cycle_metaphase checkpoint”, “cell cycle_spindle
assembly and chromosome separation”, “DNA damage_intra S-phase checkpoint”, and
“cell cycle_start of DNA replication in early S phase”.

Similar analyses of GPSM1, GPSM3, and GPSM4 showed that their related biological
pathways are only minimally linked to breast cancer development (Supplementary Figure S3).
For example, “prolactin/ERK (extracellular signal-regulated kinase) signaling in breast
cancer” was ranked ninth among GPSM1 statistically significant pathway analysis, and
“mitogenic action of ESR1 (Estrogen Receptor 1) (membrane) in breast cancer” was ranked
15th for GPSM4. Biological process analyses revealed that GPSM1, GPSM3, and GPSM4
showed biological significance in colon cells, adipose tissue, and neuronal cell, respectively.
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function. (B) Dot plot of Kyoto Encyclopedia of Genes and Genomes (KEGG) enriched analysis. (C) Dot plot of Disease
Ontology analysis.
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by co-expressed genes (right column) and respective log p value (left column). (B) Biological process analysis. Symbols represent proteins. Arrows depict protein interactions (green,
activation; red, inhibition). Thermometer-like histograms indicate microarray gene expression (blue, down-regulation; red, up-regulation).
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3.6. Correlation between GPSMs and Tumor Purity and Immune Infiltrate in Breast Cancer

Knowledge regarding the host immune system is crucial to developing cancer im-
munotherapy [28], and high levels of tumor-infiltrating lymphocytes are associated with
better prognosis [33]. TIMER analysis revealed that GPSM1, GPSM2, and GPSM4 were only
slightly correlated with tumor purity and infiltrating lymphocytes (correlation coefficients
ranging from approximately −0.3 to 0.2) (Figure 9). On the other hand, GPSM3 showed sig-
nificant negative correlation with tumor purity (r = −0.48, p = 2 × 10−58), and moderate to
strong positive association with six types of immune infiltrate cells (dendritic cell, r = 0.65;
CD4+ T cell, 0.64; neutrophil, 0.56; B cell, 0.44; CD8+ T cell, 0.36; and macrophage, 0.29;
all p values < 10−20). We further clarify the association between GPSM3 expression and
immune infiltrates in different subtypes of breast cancer (Figure 10). The results demon-
strated that GPSM3 expression was most strongly correlated with levels of CD8+ T cells, B
cells, macrophage, and myeloid dendritic cells in subtypes basal and HER2 of breast cancer.
Taken together, it is suggested that GPSM3 expression was related to immune infiltration
levels in breast cancer.
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(xCell, CIBERSORT, CIBERSORT abs. mode, EPIC, MCP-counter, TIMER, quanTIseq) and indicated
as colors (blue, negatively correlated; red, positively correlated). * p < 0.05; ** p < 0.01; *** p < 0.001.
Column: Subtypes of breast cancer, Row: Immune infiltrate levels.

4. Discussion

Breast cancer is the most prevalent malignancy in women globally [3]. It is widely
acknowledged as a highly heterogeneous disease at multiple levels, from clinical and
histopathologic classification to the expression of predictive and prognostic biomarkers, all
of which must be taken into account to design targeted and personalized treatment plans
for patients [34]. Considerable efforts are being directed at detecting accurate biomark-
ers as leads to anti-cancer drugs, or to predict treatment outcome and survival in breast
cancer [35–38]. Among them, accumulating evidence suggests that signal transduction
pathways, the process in which extracellular molecules interact with receptors to bring
about changes in and around the cells, are highly attractive targets in breast cancer treat-
ment and prevention, specifically by modulating G protein-coupled receptors [39–41]. A
recent review by Usman et al. highlighted several ongoing anti-GPCR drugs for individuals
with cancer [42]. Thus, further investigation of the roles of GPCRs and their modulators,
including GPSMs, are warranted. To our knowledge, this is the first study that evaluates
the potential therapeutic and prognostic value of all members of the GPSM family gene
together, and their roles in breast cancer specifically. Prior studies have confirmed the
contributions of each gene individually in various types of cancer, with GPSM2 so far being
the most relevant to breast cancer.

GPSM2 is also known as LGN (Leu-Gly-Asn repeat-enriched protein), due to its
N-terminal half containing a ten Leucine-Glycine-Asparagine repeats within to eight
tetratricopeptide motifs [43]. This structure binds to NuMA, the nuclear-mitotic apparatus
protein, and therefore establishes the important role of GPSM2 in modulating G protein
signaling to mitotic spindle positioning during oriented cell division [44]. Furthermore,
GPSM2 also plays a vital role in cell division symmetry control and in the G2/M phase of
the cell cycle [45,46]. Cancer-related research has revealed that GPSM2 could potentially
serve as a drug target and prognostic biomarker in hepatocellular carcinoma [47], lung
adenocarcinoma [48], and pancreatic cancer [13]. GPSM2 was first reported to be highly
over-expressed in breast cancer and play a crucial role in cytokinesis by Fukukawa et al. [8].
Subsequent studies confirmed this finding and also found that its nuclear expression is
significantly linked to worse prognosis [11]. Interestingly, Zhang et al. demonstrated
that GPSM2 is down-regulated in paclitaxel-resistant samples of breast cancer patients
and could be a drug-resistance gene in breast cancer [10]. Consistent with previous
research, we also found that the expression level of GPSM2 in breast cancer tissues increased
significantly when compared to normal samples from Oncomine and UALCAN analysis.
Survival analysis then showed breast cancer patients with high GPSM2 expression to
have consistently worse distant metastasis-free survival. TIMER analysis, however, did
not suggest a relationship between GPSM2 and immune infiltration patterns. Further
experiments are required to validate these results. Taken together, we propose that GPSM2
is a potential prognostic marker and therapeutic target for breast cancer.

GPSM1 is also known as AGS3, as it encodes the activator of G protein signaling 3.
GPSM1 gene has been found to be involved in cell division, reproduction, and differentia-
tion [49–51]. Recent studies have identified GPSM1 as a predisposition gene of premature
ovarian insufficiency [52], a plausible gene involved in regulation of skeletal muscle in dia-
betes mellitus [53], and to be overexpressed in prostate adenocarcinoma [12]. In our study,
analyses from Oncomine and UALCAN suggested different results: GPSM1 was found
to be under-expressed in breast cancer in the former database, while the latter indicated
the reverse. This inconsistency could be due to the heterogeneity of datasets and nature
of in silico analysis as a guide to further experimentally driven experiments, in vitro or
in vivo [54]. Subsequent analysis did not show clear relationships between GPSM1 and
survival time or immune infiltration levels in breast cancer.
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GPSM3, alternatively known as AGS4 or G18, encodes for the activator of G-protein
signaling 4, and was found to be overexpressed in breast cancer in our study. Previous
research has indicated that GPSM3 is important in inflammation and autoimmune diseases,
including rheumatoid arthritis and ankylosing spondylitis [55]. Furthermore, Robichaux
et al. found that GPSM3 played critical role in the chemokine signal processing in leuko-
cytes, and GPSM3-null mice exhibited significant neutropenia and leukocytosis [56]. These
findings could explain why expression levels of GPSM3 were moderately to strongly
correlated with all six types of immune infiltrate cells in breast cancer, using TIMER anal-
ysis. The immune system is indispensable in fighting cancer, and one of the most recent
FDA-approved treatments for breast cancer includes anti-PD-1, an antibody-based im-
munotherapy that inhibits checkpoint on T cells [57,58]. However, only a subset of patients
has been reported to see positive clinical response with such treatments. It is believed that
understanding the cellular proportions, heterogeneity, and spatial distribution of the tumor
immune microenvironment would help better stratify patients for whom immunotherapy
is most beneficial [59]. While breast cancer was previously regarded as relatively non-
immunogenic, it is now suggested that breast cancer is in fact rich in immune infiltrates,
with varied functions and prognostic values [60]. In this study, we propose that GPSM3
plays a potential role in the diagnosis and inflammation in breast cancer.

GPSM4 is more commonly known as PCP2 (Purkinje cell protein 2), and is traditionally
known to be highly expressed in cerebellar Purkinje cells and retinal bipolar neurons [61].
There are relatively few cancer-related reports about GPSM4. Reyes-Gibby et al. Reported
that GPSM4 could be a novel target gene for neuropathic pain in patients with head and
neck cancer [62]. In our study, Oncomine analysis showed that GPSM4 was differentially
expressed in only breast cancer (downregulated) and prostate cancer (upregulated), among
20 types of cancer. Lower transcription levels of GPSM4 were found to be significantly
related to worse distant metastasis-free survival outcome.

5. Conclusions

To summarize, our study proposed GPSM2 as a potential progsnotic marker and thera-
peutic target, and GPSM3 as a possible target for immunotherapy for breast cancer. Further
in-depth experiments are warranted to confirm the role of these two GPSM members and
their effectiveness as treatment for individuals with breast cancer.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/biomedicines9091144/s1. Supplementary Table S1: GPSM2 over-expression in Cancer
vs. Normal analyses (Oncomine). Supplementary Table S2: Statistics of GPSMs transcript lev-
els between subgroups of individuals with breast cancer (UALCAN). Supplementary Figure S1:
Distant metastasis-free survival (DFMS) analysis of GPSMs in breast cancer (Kaplan-Meier plot).
Supplementary Figure S2: Enrichment pathway analysis of GPSM family coexpressed genes in breast
cancer database (MetaCore).
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