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Abstract: The dysfunction of vascular endothelial cells is profoundly implicated in the pathogenesis
of atherosclerosis and cardiovascular disease, the global leading cause of death. Aquaporins (AQPs)
are membrane channels that facilitate water and glycerol transport across cellular membranes recently
implicated in the homeostasis of the cardiovascular system. Apolipoprotein-E deficient (apoE /")
mice are a common model to study the progression of atherosclerosis. Nevertheless, the pattern
of expression of AQPs in this atheroprone model is poorly characterized. In this study, apoE =/~
mice were fed an atherogenic high-fat (HF) or a control diet. Plasma was collected at multiple
time points to assess metabolic disturbances. At the endpoint, the aortic atherosclerotic burden
was quantified using high field magnetic resonance imaging. Moreover, the transcriptional levels
of several AQP isoforms were evaluated in the liver, white adipocyte tissue (WAT), and brown
adipocyte tissue (BAT). The results revealed that HF-fed mice, when compared to controls, presented
an exacerbated systemic inflammation and atherosclerotic phenotype, with no major differences
in systemic methylation status, circulating amino acids, or plasma total glutathione. Moreover, an
overexpression of the isoform AQP5 was detected in all studied tissues from HF-fed mice when
compared to controls. These results suggest a novel role for AQP5 on diet-induced atherosclerosis
that warrants further investigation.

Keywords: MRI (magnetic resonance imaging); endothelial dysfunction; high-fat diets; plaque burden

1. Introduction

Despite significant advances in the treatment of cardiovascular disease (CVD), it
remains the leading cause of mortality and morbidity among adults [1]. The major cause of
CVD is atherosclerosis that is elicited by the early impairment of endothelial function and
results in a chronic inflammatory condition in which arteries harden through the build-up
of lipid-rich plaque in the vessel wall [2].
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Aquaporins (AQPs) have been recently proposed to contribute to the homeostasis of
the cardiovascular system [3,4]. Aquaporins are channel-forming proteins that facilitate
water and small solutes transport across the plasma membrane driven by osmotic or solute
gradients [5,6]. These channels play a variety of important physiological roles in mam-
mals [7]. In humans, the 13 isoforms (AQP0-12) are categorized according to structural and
functional properties, where the orthodox aquaporins (AQPO0, 1, 2, 4, 5, 6, and 8) are mainly
water channels; aquaglyceroporins (AQP3, 7, 9, and 10) also transport small uncharged
solutes, such as glycerol and urea; and the less well-known S-aquaporins (AQP11 and 12)
are under investigation with respect to their subcellular localization and selectivity [8-10].
Recent evidence has shown that AQP3, 5, 8, and 9 also facilitate the permeation of the major
reactive oxygen species (ROS), hydrogen peroxide, being thus termed peroxiporins [11-13].
As facilitators of water and glycerol membrane permeation, aquaglyceroporins are crucial
for energy production in different organs [14,15]. In circumstances of negative energy
balance, glycerol produced by triacylglycerol (TAG) lipolysis in the white adipose tissue
(WAT) is released into the bloodstream via AQP7 and used in peripheral tissues as an
energy source [16,17]. In the liver, the main organ responsible for whole-body glycerol
metabolism, glycerol is taken up via AQP9 to be used for gluconeogenesis [18,19]. The
insulin-dependent glucose uptake is also induced by blood glycerol concentration that, by
using the AQP7 route, induces pancreatic 3-cells to secrete insulin [20]. Thus, the close
coordination of aquaglyceroporins in metabolic-related organs is crucial for control of
whole-body energy homeostasis and lipid accumulation [15,21]. The balance between
the two types of adipose depots, WAT, and brown adipose tissue (BAT) impacts energy
homeostasis through their specific metabolic and endocrine functions [22,23]. Adipose
tissue releases a large number of adipokines and bioactive mediators that influence not
only bodyweight homeostasis but also inflammation, which is a major driver of atheroscle-
rosis [24]. While WAT is an anabolic tissue involved in energy storage, with deleterious
consequences for metabolic health, BAT is catabolic and involved in energy production in
the form of heat, conferring beneficial effects on adiposity. In consequence, the browning of
WAT has been described as a potential strategy to target and control obesity that is causally
related to CVD [25]. Our previous work revealed that AQP7 and AQP9 are downregulated
along the browning process, which may be related to the physiological role of BAT in heat
production, contrasting with the anabolic/catabolic lipid metabolism in white adipose
cells [26].

Consistent with the vital role of AQPs in maintaining body water and energy home-
ostasis, alterations in their physiological functions have been related with the development
of cardiometabolic risk factors [22,23]. For instance, the functional importance of AQP1 to
maintain endothelial homeostasis and cardiovascular health in humans and mice has been
recently reported [4]. Moreover, our prior in vitro study confirmed endothelial AQP1 as a
candidate player in the setting of endothelial dysfunction, an early hallmark of atheroscle-
rosis and CVD [14]. Following the emergent importance of AQPs in health and disease [27],
these proteins are being viewed as promising novel therapeutic targets for several disorders
including the metabolic syndrome, a cluster of atherosclerotic cardiovascular disease risk
factors including visceral adiposity, insulin resistance, and dyslipidemia [15].

Apolipoprotein E deficient (apoE~/~) mice have been widely used as an animal model
to study the pathophysiology of atherosclerosis due to the striking similarities with humans
on the molecular mechanisms that lead to endothelial dysfunction and vascular plaque
formation [2—4,25,28,29]. Nevertheless, neither the pattern of AQPs expression in this
atheroprone model is characterized nor the corresponding influence of disease progression.
As aforementioned, the functional importance of AQPs on cardiovascular homeostasis has
been recently suggested. Thus, we postulated that an atherogenic diet would disturb AQPs
expression profile, allowing the identification of the AQPs isoforms related with vascular
toxicity. To investigate this possibility male apoE~/~ mice were fed high-fat (HF) or control
diets. We assessed systemic inflammation, other metabolic disturbances, and the extent
of vascular atherosclerotic lesions formation using biochemical analyses and high-field
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magnetic resonance imaging (MRI). After confirming a strong atherosclerotic phenotype in
the HF-fed mice, we determined the mRNA expressions of the orthodox isoforms, AQP1
and AQP5, and of the aquaglyceroporins AQP3, AQP7, and AQP9, in different metabolic
tissues (BAT, WAT, and liver).

2. Experimental Section
2.1. Animals and Diets

Seven-week-old male apoE ~/~ mice (Jackson Laboratory, Bar Harbor, ME, USA) were
fed one of the following diets prepared based on AIN 93M recommendations but with
different levels of fat/cholesterol (Research Diets, New Brunswick, NJ, USA). A control diet
(C, 5% w/w fat) or a High Fat diet (HF, 20% w/w fat and 0.15% cholesterol). Macronutrient
dietary composition is shown in Table A1l. Animals were housed in a room at 22 £ 2 °C
with a 12-h light-dark cycle with free access to food and water during 14 (£2) weeks. Diets
were refreshed weekly, at which time animals and their remaining food were weighed.
Food consumption was estimated as an average per mouse per day within each cage. All
procedures were performed in compliance with the Institutional Animal Care and Use
Committee of the Pennsylvania State University, which specifically approved this study.

2.2. Blood Collection

At different time points, blood was collected from the retroorbital sinus of anesthetized
animals into heparinized tubes and immediately put on ice. Within 30 min, plasma was
isolated by centrifugation at 2000 rpm, 15 min, at 4 °C and stored at —80 °C prior to further
biochemical analyses. Due to the limited volume of blood obtained, samples obtained at
different time-points were used in the subsequent biochemical analysis, as further detailed.

2.3. Biochemical Analyses
2.3.1. Systemic Methylation Index

The effect of 8 weeks of experimental diets on systemic methylation index was eval-
uated by the ratio of the plasmatic concentrations of S-adenosylmethionine (AdoMet) to
S-adenosylhomocysteine (AdoHcy) (AdoMet/AdoHcy ratio) quantified by liquid chro-
matography tandem-mass spectrometry (LC-MS/MS), as previously described [30].

2.3.2. Triacylglycerols

The effect of 10 weeks of experimental diets on the fasting plasma concentrations of
TAG were measured using a colorimetric assay (Cayman, Ann Arbor, MI, USA) following
the manufacturer’s protocol.

2.3.3. Cytokines

The effect of 12 weeks of experimental diets on the plasma concentrations of several
proinflammatory cytokines/adipokines (interleukin 6, IL-6; macrophage inflammatory
protein-1 alpha, MIP-1x; monocyte chemoattractant protein 1, MCP-1; and tumor necrosis
factor o, TNF-) were determined using MSD U-PLEX multiplex assay platforms (Meso
Scale Diagnostics, Rockville, MD, USA) following the manufacturer’s instructions.

2.3.4. Plasma Amino Acids and Glutathione

Plasma concentrations of amino acids and total glutathione after 12 weeks on each
diet were quantified by adequate methodology. Specifically, amino acids were deter-
mined by gas chromatography-flame ionization detector (GC-FID) using the Phenomenex
EZ:faastTM kit for physiological amino acid analysis (Phenomenex, Torrance, CA, USA)
according to the manufacturer’s instructions and as previously described in detail [31].
Total glutathione, defined as the total concentration of glutathione after reductive cleavage
of all disulfide bonds, was quantified by high-performance liquid chromatography (HPLC)
analysis with fluorometric detection, as previously described [32].
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2.3.5. Glucose

At the end of each experiment, fasting blood glucose levels were determined using a
glucometer (Contour, Bayer, Tarrytown, NY, USA) following the manufacturer’s instructions.

2.4. Tissue Collection

At the end-point mice were euthanized by carbon dioxide inhalation and aortas
were collected as previously described in detail [33]. Inguinal subcutaneous WAT and
interscapular BAT were removed and immediately snap-frozen in liquid nitrogen. Livers
were removed, weighted, sampled, and embedded in Optimal Cutting Temperature (OCT)
compound (Sakura Finetek, Torrance, CA, USA) or immediately snap-frozen in liquid
nitrogen. All samples were stored at —80 °C before further analyses.

2.5. Oil Red O Staining

Oil Red O staining was used to determine the distribution of lipid droplets in the
liver. The OCT-frozen samples were cut into 8-pum-thick sections, fixed in 4% formaldehyde
(Thermo Fisher Scientific, Waltham, MA, USA) for 10 min, and rinsed in deionized water
and dried at room temperature before Oil Red O staining (Sigma-Aldrich, St. Louis, MO,
USA). The sections were stained for 20 min with Oil Red O and rinsed in tap water for
5 min. Hematoxylin (Sigma-Aldrich, St. Louis, MO, USA) was counterstained to assist
tissue visualization, and the slides were stained for 1 min and rinsed in tap water for 5 min.
All of the representative images are at 400X magnification. The detailed information was
described previously [34].

2.6. RNA Extraction

Total RNAs from WAT, BAT, and liver were extracted using the Qiagen RNeasy lipid
tissue mini kit and Qiagen RNeasy mini kit, respectively (Qiagen, Germantown, MD, USA)
and were stored at —80 °C prior to analysis. To exclude possible DNA contamination, the
optional on-column DNA digestion with the RNase-free DNase (Qiagen) was performed
during RNA extraction. All procedures were conducted by following the manufacturer’s
protocol. The RNA concentrations were determined spectrophotometrically at 260 nm
using the NanoDrop 2000c (ThermoFisher Scientific, Waltham, MA, USA). The 260/280 nm
ratio was utilized to assess the purity of RNA samples. Only samples with 260/280 nm
ratios between 1.8 and 2.2 were used for cDNA synthesis. Additionally, agarose bleach
gels were used to qualitatively assess RNA integrity by visualization of the 28S and 18S
rRNA bands [35]. To generate cDNA for quantitative PCR, 500 ng of total RNA was
reverse-transcribed for 1 h at 42 °C using M-MLV reverse transcriptase (Promega, Madison,
WI, USA) and oligo(dT)15 Primer (Promega, Madison, WI, USA).

2.7. Quantitative PCR Analysis

RNA samples were reverse transcribed using M-MLV reverse transcriptase (Promega,
Madison, WI, USA) with oligo dT primers (Promega, Madison, WI, USA). Real-time
PCR reactions were carried out using a CFX96 Real-Time System C1000 (BioRad, Her-
cules, CA, USA), the TagMan Universal PCR Master Mix (Applied Biosystems, Fos-
ter City, CA, USA) and the following specific TagMan pre-designed gene expression
primers and probes (Applied Biosystems, Foster City, CA, USA: AQP1 (#Mm00431834_m1),
AQP3 (#Mm01208559_m1), AQP5 (#Mm00437578_m1), AQP7 (#Mm00431839_m10), AQP9
(#Mm00508094_m1), and Eef2 (#Mm00833287_g1) as previously described in [26]. The
Ct method (2-AACt) was used for relative quantification of target genes expression after
normalization with the Eef2 reference gene [36,37].

2.8. Quantification of Aortic Plaque Volume

Aortas were processed as previously described in detail [33]. Briefly, dissected aortas
were equilibrated to 0.1% Magnevist (Bayer HealthCare Pharmaceuticals Inc., Whippany,
NJ, USA), 0.25% sodium azide, PBS solution overnight at 4 °C, and plaque volume was
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determined by MRI using an Agilent 14T micro imaging system (Agilent Technologies, Inc.,
Santa Clara, CA, USA). After acquisition MR data was reconstructed using Matlab (The
Mathworks Inc., Natick, MA, USA) and data segmentation was performed using Avizo
9.5 (Themo Fisher Scientific, Waltham, MA, USA). The lumen of the aorta, the different
plaques, and the aorta wall were manually segmented. Quantification of plaque volume
was obtained using the material statistics function on the segmented aorta and the results
were expressed as the % of plaque volume in relation to the total segmented volume.

2.9. Statistical Analysis

Statistical analyses were performed in GraphPad Prism 7 (GraphPad Software, La
Jolla, CA, USA), with statistical significance set to p < 0.05. For two-group comparison, an
unpaired Student’s t-test was used. For more than two groups, a one-analysis of variance
(ANOVA) was performed, followed by Tukey’s.

3. Results and Discussion

To investigate whether a HF diet would disturb the expression of AQPs in an atheroscle-
rosis prone model, we fed apoE~/~ mice HF or control diets. Only male mice were included
to control for the known effect of gender on atherosclerosis in this strain [38].

3.1. Diet Consumption, Body and Liver Weights, and Liver Histology

The results showed that HF mice consumed significantly less food than the mice fed
a control diet (Figure 1A), nevertheless due to the higher energy density of the HF diet,
more calories were consumed by HF-fed mice versus controls (Figure 1B). As expected, HF
mice gained more weight compared to controls [39,40] (Figure 1C). No differences were
observed in absolute liver weights (g) between the two groups of mice. The values (mean
+ SEM, n = 10/group) were 1.17 £ 0.09 and 1.22 + 0.13, for controls and HF, respectively.
The relative liver weights were also similar in the two groups (Figure 1D).
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Figure 1. The effect of control and High-Fat (HF) diets on food (A) and calories (B) intake, and on
animal growth (C) and relative liver weights (D). Data shown are the mean 4= SEM (n = 10 per group);
*p <0.05; ** p < 0.01 control versus HF.
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Oil Red O staining showed that livers from HF-fed mice presented more macrovesic-
ular lipid droplets of Oil Red O positive staining than controls (Figure 2). Ballooned
hepatocytes and sinusoids capillarization, on the other hand, were also exacerbated in
the HF-fed mice, showing more inflated hepatocytes, as compared to the control mice,
indicating liver damage by the HF diet. This finding is consistent with a previous study, in
which hepatic fat accumulation was reported in apoE~/~ mice after seven weeks of a diet
containing similar amounts of fat and cholesterol as the HF-diet used in this study [41].

Figure 2. The effect of the experimental diets on liver morphology and hepatic lipid deposition
(n = 3-4/group). The images selected as representatives are at 400x magnification. Red: neutral
lipid; purple: nuclei.

3.2. Blood Biochemistry

We next evaluated the effect of the HF diet on several biochemical parameters. The
results showed that the mice fed a HF diet had significantly increased fasting plasma
TAG (Figure 3A) and glucose levels (Figure 3B), thus confirming the major metabolic
disturbances elicited by the HF diet previously described by others [31,41,42]. In fact, male
apoE~/~ mice fed HF-diet are a widely used model of insulin resistance [43], a condition
where aquaglyceroporins expression and function are affected [15,44,45].

3.2.1. Systemic Methylation Index

The ratio of the metabolites, S-adenosylmethionine (AdoMet) to S-adenosylhomocysteine
(AdoHcy), or AdoMet/AdoHcy measures the cell methylation potential [46—48]. AdoMet
is the universal methyl donor to cellular methyltransferases, originating the methylated
substrate and the metabolite AdoHcy. Importantly, AdoHcy may negatively regulate the
activity of those same methyltransferases. Thus, a decreased AdoMet/AdoHcy ratio reflects
a hypomethylating environment. In previous cell studies we have observed that a decrease
in AdoMet/AdoHcy ratio downregulated AQP1 expression and promoted an atherogenic
endothelial phenotype [14]. Yun et al. have reported that a diminished methylation index was
present in wild type mice fed HF diets [49]. These observations led us to measure the systemic
concentrations of AdoMet and AdoHcy in this study. Nevertheless, the results revealed
similar plasmatic AdoMet/AdoHcy ratios in both groups of animals, thus showing that the
systemic methylation index was not affected by the HF diet (Figure 3C) in apoE~/~ mice.

3.2.2. Plasma Glutathione

The role of AQPs as facilitators of hydrogen peroxide membrane permeation, a major
reactive oxygen species (ROS), has been recently reported [50]. Importantly, ROS build-up
is a main pathophysiological mechanism favoring the establishment and progression of
atherosclerosis [47]. Glutathione is a major cellular antioxidant that neutralizes hydrogen
peroxide to water. Thus, we measured the systemic levels of total glutathione in our
animals. The results, shown in Figure 3D, revealed similar plasma levels of glutathione
in both groups of animals thereby suggesting that the bioavailability of this tripeptide is
intact in the HF-mice. In support of this possibility, the plasma levels of three amino acids
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that form glutathione, i.e., glutamate (Figure 3E), glycine (Figure 3E), and cysteine (data
not shown) did not differ between these two diets. We do acknowledge however that the
measurement of the concentrations of both the free and reduced glutathione forms would
be necessary to give a functional measure of this major antioxidant system.
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Figure 3. The effect of control and High-Fat (HF) diets on circulating concentrations of triacylglycerols
(A), glucose (B), S-adenosylmethionine to S-adenosylhomocysteine ratio (AdoMet/ AdoHcy) (C), total
glutathione (D), and amino acids (E). (Ala, alanine; Gly, glycine; Val, valine; Leu, leucine; Ile,
isoleucine; Thr, threonine; Ser, serine; Pro, proline; Asn, asparagine; Asp, aspartate; Met, methionine;
Hyp, hydroxyproline; Glu, glutamate; Phe, phenylalanine; Gln, glutamine; Orn, ornithine, Lys, lysine;
His, histidine; Tyr, tyrosine; Trp, tryptophan). Data shown are the mean + SEM (n = 6-9 per group);
*p <0.05;** p < 0.01; *** p < 0.001; HF versus control.

3.2.3. Plasma Amino Acids

Next, we evaluated the plasmatic levels of amino acids to visualize any changes driven
by the HF diet that could suggest disturbed metabolic pathways to be further related with
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diet- induced effects on AQPs expression. In fact, recent developments have begun to
shed light on associations between compromised cardiometabolic function and altered
intermediary metabolism of amino acids [51]. In the present study, the plasma amino
acid levels of the essential amino acids were not different between two groups (Figure 3E).
Thus, the concentrations of the branched chain amino acids (BCAA), Tyr, and Phe, which
were previously implicated in heart failure, a form of CVD [51-53], were similar in both
the HF-fed and control groups. As shown in Table Al, both diets contained the same
amount of casein, which was the only protein source. Because essential amino acids
cannot be synthetized endogenously, this observation suggests that the metabolic pathways
responsible for utilization and catabolism of essential amino acids are intact in the HF-fed
animals. Among the remaining amino acids, significantly lower levels of alanine (Ala),
asparagine (Asn), lysine (Lys), serine (Ser), and proline (Pro) were found in the plasma of
the HF-fed mice compared to the control group (Figure 3E), suggesting that the HF diet
resulted in a decreased protein turn-over state that is consistent with preferential utilization
of the dietary fat as energy fuel [54].

3.2.4. Systemic Inflammation

Finally, we determined the effect of the diets on plasma proinflammatory cytokines, in-
cluding interferon gamma (IFN-y), interleukin 6 (IL-6), macrophage inflammatory protein-1
alpha (MIP-1oc/CCL3), and tumor necrosis factor alpha (TNF-«) [42,55,56]. IFN-y is a proin-
flammatory mediator that is expressed in atherosclerotic lesions [57]. IL-6 is a pleiotropic
cytokine with both pro- or antiatherogenic effects but which exacerbates atherosclerosis in
murine species [58,59] MCP-1 is an inflammatory chemokine with a critical role in the initi-
ation of atherosclerosis [60]. TNF-« is another major proatherogenic molecule that sustains
the progression of the vascular lesions and atherosclerosis [42]. As expected, feeding mice
with HF diet significantly elevated the systemic concentration of most cytokines, when
compared to the control diet-fed mice (Figure 4). This observation is in agreement with
the positive effect of dietary fat on systemic inflammation and with the well-established
atherogenic effect of a HF diet in apoE_/ ~ mice [61,62]. In fact, inflammation is central to
all stages of atherosclerosis establishment and progression.

3.3. Volume of Atherosclerosis

A method based on ex-vivo MR imaging was used to visualize and quantify the aortic
volume of fatty plaque in HF-fed mice versus controls. The results revealed a profound
difference of the atherosclerosis burden between the two groups of animals (Figure 5).
Plaque volume throughout the whole aorta was significantly increased in the HF group
compared to the control group; the atherosclerotic lesions predominantly distributed in
the aortic arch and in the areas surrounding the branching points of the major arteries,
which includes the brachiocephalic artery (BCA). As a result, the difference between HF-
aortas and control aortas in these two highly susceptible regions, aortic arch and BCA,
was even more pronounced than in the whole aortas. Interestingly, despite this massive
difference of vascular lesions between HF-fed mice and controls both groups of animals
presented similar plasma concentrations of the BCAA Val, Leu and Ile, and of Tyr and Phe
(Figure 3), which were previously suggested to have a significant role in the pathogenesis
of atherosclerosis and CVD [51-53]. The increased systemic inflammation observed in
HF-fed mice, however, (Figure 4) is consistent with this augmented arteriosclerotic plaque
burden observed in these mice. Taken together, these observations are in agreement
with the well-established atherogenic effect of dietary fat [63]. Having induced a strong
atherosclerotic phenotype with HF diet in apoE~/~ mice, when compared to controls, we
determined the expression levels of the orthodox AQP isoforms, AQPI and AQP5, and of
the aquaglyceroporins AQP3, AQP7, and AQP9, in both groups of mice.
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HEF versus control.

3.4. Expression of Aquaporins in Liver and Adipose Tissues

The expression of AQPs with impact on metabolism and endothelial function (AQP1,
AQP3, AQP5, AQP7, and AQP9) [14] was evaluated in three distinct metabolic tissues: liver,
WAT and BAT. Liver is the organ responsible for the plasma glucose levels maintenance,
thus, in a situation of negative energy balance or exercise, glucose is produced in the liver
and released to the bloodstream [64]. When the body is in a state of positive energy balance
and plasma glucose levels are high (as in the HF-fed mice), energy is stored in WAT in
the triacylglycerol form, to be hydrolyzed in case of energy demands. BAT is a tissue that
burns excess fat by thermogenesis [65].

All of the investigated AQP isoforms were detected in liver, WAT, and BAT, however,
each in a tissue-specific profile (Figure 6A,CE, black bars). In liver, and as previously
described, AQP9 was the most highly expressed isoform [18]. Moreover, AQP1, AQP3,
AQP7, and AQP5 were also detected in liver, although at lower levels than AQP9 (Figure
6A). While AQP9 has been described as responsible for glycerol influx in hepatocytes, no
specific function has been attributed to any other hepatic AQP isoform [66]. Concerning
the impact of the HF diet on the hepatic AQPs expression levels, we observed that AQP3
was the most affected isoform, with the HF-fed mice presenting levels that were around
80-fold more than controls. Nevertheless, since the overall expression level of AQP3 was
lower than the most abundant isoform AQP9, an increase in AQP3 expression may not
have significantly impacted the total glycerol efflux in hepatocytes. Interestingly, however,
AQP3 is also a hydrogen peroxide channel [67], and thus its upregulation might represent
an increase in oxidative stress in the tissue. This possibility is favored by the fact that the
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hepatic expression levels of another peroxiporin, AQP5, were also significantly upregulated
by the atherogenic diet. In fact, overall oxidative stress is a major driver of the strong
atherogenic phenotype observed in these HF-fed animals [46,48]. Additionally, the results
showed that hepatic AQP1 was significantly downregulated by the HF-diet whereas the
levels of AQP9 remained unaltered (Figure 6B). One limitation to our study is the fact
that AQP9 immunolocalization was not performed, which would show whether it is
correlated with gene expression or liver pathology. By histopathological analysis we could
confirm the presence of hepatic fat accumulation in the HF-fed mice. Nevertheless, the
lack of markers of hepatic fibrosis in the present study prevents us to further elucidate
the relationship between hepatic AQPs expression and the development of atherosclerosis.
However, a study in patients with morbid obesity did not find any relationship between
AQP9 expression in the liver and the degree of hepatic steatosis or fibrosis [68]. Therefore, it
seems that regulation of fatty liver deposits is not influenced by AQP9 expression. Thus, it
is unlikely that animals fed the atherogenic diet and with liver fat deposition show altered
hepatic aquaglyceroporin expression profile.
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Figure 5. Differences in aortic atherosclerosis burden between mice fed the different diets. (A) Representative images (both
sides of the same aorta are shown) of the visualization of the arteriosclerotic plaque (colored in red) using 14T-magnetic

resonance imaging (MRI) in aortas from mice fed control or high-fat diets (BCA, brachiocephalic artery). (B) 14T-MRI volumetric

assessment of the atherosclerotic plaque in different aorta segments. Data shown are the mean 4+ SEM (n = 8-10 per group).
*** p <0.001, HF versus control.
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Figure 6. Aquaporins gene expression in apoE =/~ mice fed control or atherogenic High-Fat (HF) diets. AQP1, AQP3, AQPS5,
AQP7 and AQP9 expression in liver (A), WAT (C) and BAT (E) in mice fed control or HF diets and respective fold-change
in HF-fed animals relative to controls [liver (B); WAT (D); and BAT (F)]. Results are mean + SEM (n = 8-10 per group).
*p <0.05 ** p <0.01; *** p < 0.001; all HF versus control.

Interestingly, the association of an inadequate AQP1 function with an atherogenic
phenotype has been previously reported albeit in other contexts. For example, we observed
that endothelial dysfunction under hypomethylating stress lessened AQP1 expression
in vitro [14], and others reported that the targeted deletion of the AQP1 gene favored
atherosclerosis progression in apoE~/~ mice [4]. In the present study, and as discussed
above, the AdoMet/AdoHcy ratio was not affected by the HE-diet, so we can exclude a
disturbed systemic methylation index as causing the observed HF-induced hepatic AQP1
downregulation.

In WAT, we have detected abundant levels of AQP1, AQP3 and AQP7 mRNAs, while
AQP5 and AQP9 were present in low amounts (Figure 6C) [16,66]. A strong induction
of AQP5 expression of around 15-fold was observed in mice fed HF diet. As aforemen-
tioned, AQP5 is a peroxiporin whose expression has been related with oxidative stress in
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rodents [69] and humans [13]. We have previously reported dysregulation of endothelial
AQPS5 expression associated with endothelial dysfunction [14], suggesting AQP5 is closely
related to a dysbalanced redox state that favors the atherosclerosis progression. In addition,
our present results show that AQP3 and AQP9 expression is impaired in WAT from mice
fed HF diet (Figure 6D). Knowing that AQP3 and AQP9 are the most abundant aquaglyc-
eroporins in mice adipose membranes [26], their downregulation might represent a cellular
strategy to avoid excess glycerol efflux to be used in liver.

BAT presented high levels of AQP7 gene expression, the most representative isoform
in this tissue, and low levels of AQP1, AQP3, AQP5, and AQP9 mRNAs (Figure 6E). In the
BAT of HF-fed mice, AQP3 was downregulated, AQP9 and AQP5 were increased around
4- and 60-fold, respectively, while AQP1 and AQP7 expression was unaltered (Figure 6F).
The downregulation of AQP3 in parallel with the dramatic upregulation of AQP5, suggests
an impairment of glycerol movements coupled to increased sensitivity to oxidative stress,
similar to the observed in WAT.

The AQPs expression pattern in the three analyzed tissues revealed tissue-specific
differences, inherent to their predicted metabolic role. However, AQP5 expression was
consistently induced by HF diet across WAT, BAT, and liver. Since AQPS5 facilitates hydro-
gen peroxide permeation in rodents and humans, its upregulation suggests the presence
of an unbalanced redox state [13,69]. Here, we have detected similar plasma levels of
total glutathione, the major intracellular antioxidant that neutralizes hydrogen peroxide,
in both groups of animals, thereby suggesting that the bioavailability of glutathione was
intact in the HF-fed mice. Nevertheless, this similar glutathione bioavailability does not
translate into a similar antioxidant capacity and could only be evaluated by determining
the concentration of the reduced and oxidized glutathione forms. AQP5 dysfunction has
been associated with a vast array of phenotypes, and evidence suggests that AQP5 upregu-
lation promotes tumor cell proliferation [70,71]. Studies correlating AQPS5 to obesity are
scarce; however, a link between hypothalamus AQP5 and adipocyte gene expression was
reported, indicating a possible regulatory coordination [72]. Interestingly, AQP5 is crucial
for mice adipocyte differentiation [73] and AQP5-KO mice have lower body weight than
controls [74]. Altogether, these data suggest that the increased AQP5 expression observed
in WAT may indicate an increase in adipocyte differentiation to accommodate the excess
fat in HF diet.

4. Conclusions

In conclusion, the present study contributes to a better characterization of the well-
established apoE~/~ mouse model by reporting that the pattern of AQPs expression in
these mice is disturbed, in a tissue-specific manner, by an atherogenic HF diet. The present
report suggests a novel relation between diet, AQP5, and atherosclerosis that warrants
further investigation and may ultimately open the door to the development of effective
new treatments for CVD.
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Appendix A

Table A1. Macronutrient composition of the experimental diets.

Control Diet High Fat Diet
g Kcal g Kcal
Casein 180 720 184 736
L-Cysteine 3 12 3 12
Corn starch 431 1725 217 868
Maltodextrin 10 155 620 93 372
Sucrose 100 400 102 408
Cellulose 35 0 35 0
Cocoa butter 0 0 155 1395
Primex 25 225 0 0
Corn oil 25 225 25 225
Cholesterol 0 0 11 0
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