

MDPI

High Antiproliferative Activity of Hydroxythiopyridones Over Hydroxypyridones and their Organoruthenium Complexes

Md. Salman Shakil ^{1,#}, Shahida Parveen ^{2,3,#}, Zohaib Rana ¹, Fearghal Walsh ², Sanam Movassaghi ², Tilo Söhnel ², Mayur Azam ¹, Muhammad Ashraf Shaheen ³, Stephen M.F. Jamieson ⁴, Muhammad Hanif ^{2,*}, Rhonda J. Rosengren ^{1,*}, and Christian G. Hartinger ^{2,*}

- ¹ Department of Pharmacology and Toxicology, University of Otago, Dunedin 9016, Dunedin, New Zealand.
- ² School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand, http://hartinger.auckland.ac.nz/
- ³ Department of Chemistry, University of Sargodha, Sargodha 40100, Pakistan.
- ⁴ Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
- [#] These authors contributed equally to this work.
- * Correspondence: m.hanif@auckland.ac.nz (M.H.); rhonda.rosengren@otago.ac.nz (R.J.R.); c.hartinger@auckland.ac.nz (C.G.H.)

Table of Contents

Additional XRD, NMR spectroscopic and cell biological data

	1 b ·MeOH	1d
CCDC	2049245	2049246
Empirical formula	$C_{15}H_{19}NO_{3}$	C13H13NOS
Formula weight / g mol-1	261.31	231.32
Temperature / K	100	100
Crystal system	triclinic	triclinic
Space group	<i>P</i> -1	<i>P</i> -1
a / Å	7.5960(3)	6.9685(3)
b / Å	10.0395(3)	8.2820(3)
c / Å	10.4920(4)	11.1698(4)
α/°	112.378(2)	110.175(2)
β/°	107.967(2)	93.567(2)
γ/°	94.975(2)	108.548(2)
Volume / ų	684.56(4)	562.85(4)
Z	2	2
Qcalc / g cm ⁻³	1.268	1.365
μ / mm-1	0.088	0.264
F(000)	280.0	244.0
Crystal size / mm ³	$0.28\times0.14\times0.12$	$0.4 \times 0.28 \times 0.15$
Radiation	MoK α (λ = 0.71073)	MoKα (λ = 0.71073)
2Θ range for data collection / °	5.796 to 50.498	5.49 to 50.5
Index ranges	$-9 \le h \le 9$	$-8 \le h \le 8$
	$-12 \le k \le 12$	$-9 \le k \le 9$
	$-12 \le l \le 12$	$-13 \le l \le 13$
Reflections collected	12123	10428
Independent reflections	$2472 [R_{int} = 0.0537,$	$2028 [R_{int} = 0.0428,$
	$R_{sigma} = 0.0411$]	$R_{sigma} = 0.0300$]
Data/restraints/parameters	2472/0/179	2028/0/147
Goodness-of-fit on F ²	1.030	1.088
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0384$, $wR_2 = 0.0900$	$R_1 = 0.0320, wR_2 = 0.0877$
Final R indexes [all data]	$R_1 = 0.0559$, $wR_2 = 0.0996$	$R_1 = 0.0337$, $wR_2 = 0.0896$
Largest diff. peak/hole / e Å ⁻³	0.26/-0.18	0.28/-0.25

 Table S1. X-ray diffraction analysis measurement parameters.

Table S2. Selected bond lengths [Å] and angles [°] for 1b and 1d.

Bond lengths Å / angles °	1b	1d
C4–O2/S	1.2802(18)	1.7188(15)
C3–O1	1.3640(17)	1.3582(17)
C3–C4	1.428(2)	1.421(2)
C2–C3	1.373(2)	1.378(2)
O2/S-C4-C3-O2	1.93	0.57

Figure S1. (a) π -stacking interaction found in the molecular structure of **1b** with the shortest distance at 3.312 Å indicated as dashed, red lines; (b) Inter- and intramolecular H bond formation between two molecules of **1b** and co-crystallized methanol indicated as a dashed, blue lines.

Figure S2. Stacking of four molecules of **1d** and π -stacking interaction found between two molecules of **1d** with the shortest distance at 3.523 Å indicated as a dashed, red line.

Table S3. Selectivity index (SI) of potent hydroxythiopyridone derivatives (1d and 1e) in different
human cancer cell lines. SI values were calculated considering human prostate epithelial PNT1A cell
line as normal cells.

Compound	EC50 (μM) PNT1A	Selectivity Index				
		A549	NCI-	MDA-	MDA-	PC3
			H522	MB-231	MB-468	
1d	1.29 ± 0.06	3.58	4.61	0.46	0.75	3.91
1e	1.12 ± 0.02	3.50	4.86	0.42	0.33	0.77

Figure S3. Cell cycle analysis in A549 and NCI-H522 cells exposed to **1d** and **1e**. A549 (1 × 10⁶ cells per dish) cells were seeded in 10 cm cell culture dishes and NCI-H522 (3.0×10^5 cells per well) cells were seeded in 6-well plates and left to attach for 24 h at 37 °C. (**a**) A549 cells were treated with 0.72 μ M of **1d** and 0.64 μ M of **1e** while (**b**) NCI-H522 cells were treated with 0.56 μ M of **1d** and 0.46 μ M of **1e**, both for 6 and 12 h. Vehicle control cells were incubated with DMSO (0.5%). Bars indicate the mean proportion of cells in the different cell cycle phases (% of total) ± SEM (n = 3). Data were analyzed with a two-way ANOVA coupled with a Bonferroni post-hoc test. No statistical significances were observed (p < 0.01).

Figure S4. Effect of 1d and 1e on (a) acetyl-H3, and cyclin D1 and (b) B1 expression in A549 cells.

Figure S5. Effect of 1d and 1e on (a) acetyl-H3, and cyclin D1 and (b) B1 expression in NCI-H522 cells.

Figure S6. Number of live, apoptotic and necrotic NCI-H522 cells following treatment with **1d** and **1e**. NCI-H522 (3.0×10^5 cells per well) cells were seeded in 6-well plates. Representative flow cytometry image of live (Q1), apoptotic (early apoptotic: Q2; late apoptotic: Q3) and necrotic (Q4) NCI-H522 cells were treated with 2× the EC₅₀ of **1d** and **1e** for 12 h (a) and 24 h (b). Vehicle control cells were treated with DMSO (0.5%). PI: Propidium iodide.

Figure S7. ¹H NMR spectrum of 1d in d_6 -DMSO.

Figure S8. ¹H NMR spectrum of 1e in d_6 -DMSO.

Figure S9. ¹H NMR spectrum of **1f** in d_4 -MeOD.

Figure S10. ¹H NMR spectrum of **2a** in d_4 -MeOD.

Figure S11. ¹³C{¹H} NMR spectrum of 2a in d_4 -MeOD.

Figure S12. ¹H NMR spectrum of 2b in CDCl₃.

Figure S13. $^{13}C{^{1}H}$ NMR spectrum of 2b in CDCl₃.

Figure S14. ¹H NMR spectrum of 2c in d_4 -MeOD.

Figure S15. ¹³C $\{^{1}H\}$ NMR spectrum of 2c in d_{4} -MeOD.

Figure S16. ¹H NMR spectrum of 2d in CDCl₃.

Figure S17. $^{13}C{^{1}H}$ NMR spectrum of 2d in CDCl₃.

Figure S18. ¹H NMR spectrum of 2e in CDCl₃.

Figure S19. $^{13}C{^{1}H}$ NMR spectrum of 2e in CDCl₃.

Figure S20. ¹H NMR spectrum of 2f in CDCl₃.

Figure S21. ¹³C{¹H} NMR spectrum of 2f in CDCl₃.

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).