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Abstract: Colorectal cancer (CRC) is heterogeneous and deadly, and the exact cause of the disease is
unknown. Recent progress indicated that CRC is not a single disease, but a group of diseases with
significant heterogeneity. Three previous CRC subtyping systems: microsatellite instability (MSI),
consensus molecular subtypes (CMS), and tumor-node-metastases (TNM) stage were evaluated
for their molecular and clinical implications. Results suggested that the MSI and CMS systems are
prognostic and predictive mostly in early-stage CRC. As the stage remains an influential factor for
CRC subtype analysis, we developed a new subtyping system named stage supervised CRC subtypes
(SSCS), in order to better stratify CRC biologically and clinically. Our subtyping system can be used
to classify CRC patients into five subtypes (SSCS1-5). SSCS1 was found to have the highest frequency
of MSI-H cases compared to the remaining four subtypes. SSCS2 had the most favorable prognosis,
whereas the worst prognosis was seen in SSCS4. SSCS3 had cell cycle and metabolism-related gene
sets upregulation, and SSCS5 subtype was enriched with amplicon-associated gene sets. Moreover,
tumor-infiltrating fibroblast was found to be predictive for poor disease-free survival (DFS) only
within the SSCS4 subtype. Conventional dendritic cells (cDC), on the contrary, were associated with
favorable DFS in the SSCS3 subtype. Our study provides a new subtyping system SSCS, which can
be used for better stratify CRC patients compared to current standards. Further exploration of the
subtype-specific cell types has the potential to be novel therapies for CRC.

Keywords: colorectal cancer; tumor heterogeneity; stage supervised CRC subtypes (SSCS); tumor-
infiltrating cell

1. Introduction

Colorectal cancer (CRC) starts in the colon or rectum, and is the third most prevalent
cancer in the world. CRC is more common in developed countries than in developing
countries. Genetic and environmental risk factors such as family history, aging, smoking,
obesity, physical inactivity, and chronic inflammation are strongly linked to CRC.

CRC is heterogeneous in terms of distinct clinical outcomes and diverse molecular
features. Thus, clinical stage and molecular status have been extensively used to classify
CRC into homogeneous groups. Tumor-node-metastases (TNM) staging system as recom-
mended by the American Joint Committee on Cancer (AJCC) is to determine the extent
of the cancer or how far it has spread. CRC can be classified into four major stages (I-IV)
based on the TNM system. The clinical outcomes of CRC vary greatly by the stage at
the time of diagnosis [1,2]. Those diagnosed with early stages of CRC (stages I and II)
generally have higher survival rate than advanced stages cases (stages III and IV) [1]. Two
distinct genome instabilities, namely chromosomal and microsatellite instability (CIN and
MSI) are hallmarks of CRC, representing useful systems to stratify patients for treatment.
Aneuploidy can lead to CIN, and about 70% CRC cases have CIN, where chromosomes
are incorrectly duplicated or deleted [3]. Loss of heterozygosity (LOH), mitotic recom-
bination and gene conversion contribute to the CIN phenotype. However, markers and
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criteria for CIN have not been clearly confirmed. In addition, LOH analyses are prone to
many inaccurate results [4]. Defect in DNA mismatch repair (dMMR) can lead to MSI [5].
Microsatellites, also called simple sequence repeats (SSRs), which are widely distributed
throughout the genomes of many organisms. The majority of microsatellites are located
in the non-coding regions and are without biological effect [6]. Others are presented in
coding or regulatory regions, which can affect phenotypes and predisposition to diseases.
MSI is typically detected by PCR-based amplification of specific microsatellite markers [7].
A small portion (~15%) of CRC arises from the MSI [5]. High frequency microsatellite insta-
bility (MSI-H) CRCs are heavily infiltrated by immune cells, making them ideal candidates
for immunotherapy, and are associated with favorable outcomes [8,9]. Although MSI status
can guide immunotherapy treatment decisions, its prognostic and predictive relevance is
often limited [10,11].

With the advance of high-throughput molecular technologies, a growing number of
large-scale genome-wide profiling studies were conducted to investigate the CRC hetero-
geneity in greater depth than before [12–17]. The most recently well recognized subtyping
system for CRC developed by the Colorectal Cancer Subtyping Consortium (CRCSC)
suggested that there are four consensus (CMS1-CMS4) and one non-consensus (NOLBL)
subtypes of CRC [18]. CMS1 (14%) is microsatellite unstable, hypermutated, and have
strong immune activation; CMS2 (37%) has marked WNT and MYC signaling activation;
CMS3 (13%) tumors displayed prominent metabolic dysregulation; CMS4 (23%) malignan-
cies have noticeable transforming growth factor–β activation, and stromal invasion; and the
remaining 13% are NOLBL samples without assigned consensus labels CMS subtypes have
been shown to provide molecularly and clinically distinct clusters compared to CIN and
MSI groups. However, as the majority of the patients included in the original identification
of CMS subtypes derived from early stage CRC, making it difficult to provide prognostic
values for advanced cases [19–21].

Thus, in our study, we first systematically evaluated the clinical relevance and molec-
ular features of previous CRC subtyping systems; followed by developing a new CRC
subtyping system SSCS, taking the tumor stage as an independent factor; and lastly, char-
acterization of the identified subtypes.

2. Methods
2.1. CRC Cohort Datasets

The datasets used in the study include: TCGA colorectal dataset (TCGA in short),
CPTAC colon cancer dataset (CPTAC in short), and four CRC Gene Expression Omnibus mi-
croarray datasets (GSE14333, GSE39582, GSE33113, and GSE37892; GEO in short) (Table 1).

TCGA mRNA expression profile was downloaded from the TCGAcrcmRNA pack-
age (version 1.14.0), which contains 450 primary CRC level 3 (processed) data gener-
ated by HiSeq and GenomeAnalyzer platforms. Processed CPATAC mRNA expres-
sion data, which contains 105 primary tumors, was downloaded from LinkedOmics
(http://linkedomics.org/cptac-colon/; Accessed on 15 August 2019). Patient clinical meta-
data such as age, gender, MSI status, CMS labels, and patient survival information were
downloaded from cBioPortal (http://www.cbioportal.org; Accessed on 15 August 2019),
LinkedOmics and/or associated publications [18,22]. Processed and merged GEO mRNA
expression and clinical data of 914 CRC (only non-MSI-H patients were included) were
obtained from the mcsurvdata package (version 1.11.0) [23]. The details on processing of
raw Affymetrix microarray samples, correcting potential technical effects (such as sample’s
center of origin, batch, age, gender, TNM stage and MSI status), and merging the four
microarray datasets were described in the associated vignettes [23].

http://linkedomics.org/cptac-colon/
http://www.cbioportal.org
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Table 1. Patient’s distributions from three previous CRC subtyping systems.

System Label Character Classification Disadvantage TCGA CPTAC GEO

Stage

Early Better
prognosis

Supervised No molecular basis

247 (56.7%) 54 (51.4%) 485 (53.1%)

Advanced
ECM and cell
proliferation
pathways up

189 (43.3%) 51 (48.6%) 429 (46.9%)

MSI

MSI-H Immune
pathways up

Supervised
High heterogeneity

within the non-MSI-H
group

70 (16.0%) 24 (22.8%) 0 (0)

Non-MSI-H
Significant

proportion of
patients

366 (84.0%) 81 (77.2%) 914
(100.0%)

CMS

CMS1 MSI-H

Unsupervised Has an unassigned
group

59 (13.5%) 14 (13.3%) 44 (4.8%)

CMS2
Canonical

cancer
pathways up

150 (34.4%) 33 (31.4%) 369 (40.4%)

CMS3 Metabolic 50 (11.5%) 16 (15.3%) 105 (11.5%)

CMS4 EMT 104 (23.9%) 21 (20.0%) 212 (23.2%)

NOLBL Unassigned 73 (16.7%) 21 (20.0%) 184 (20.1%)

Stage + MSI

Early_MSI-H More MSI-H
patients

Supervised
Non-distinction

between early- and
advanced-cases in

MSI-H patients

53 (12.1%) 14 (13.3%) -

Early_non-MSI-H Oxidation
pathway up 194 (44.5%) 40 (38.1%) -

Advanced_MSI-H Fewer patients 17 (3.9%) 10 (9.5%) -

Advanced_non-
MSI-H

Worst
prognosis 172 (39.5%) 41 (39.1%) -

Stage + CMS

CMS1-4 (in
early-stage) Distinctive

Supervised
CMS with poor
performances in
advanced case

214 (59.0%) 47 (56.0%) 405 (55.5%)

CMS1-4 (in
advanced-stage)

Non-
distinctive 149 (41.0%) 37 (44.0%) 325 (44.5%)

SSCS

SSCS1 MSI-H

Supervised +
unsupervised

No tumor grade
information

129 (29.6%) 29 (27.6%) 257 (28.1%)

SSCS2
ECM pathway
down; better

prognosis
118 (27.1%) 25 (23.8%) 228 (25.0%)

SSCS3

Cell cycle
pathway up;

cDC
infiltration

79 (18.1%) 20 (19.1%) 183 (20.0%)

SSCS4

Fibroblast
infiltration;

worst
prognosis

45 (10.3%) 7 (6.7%) 79 (8.6%)

SSCS5 Amplicon
pathway up 65 (14.9%) 24 (22.8%) 167 (18.3%)

2.2. Gene Set Enrichment Analysis (GSEA)

Before GSEA, limma package (version 3.48.3) [24] was used for differential expression
analysis between one patient group versus the remaining groups in the transcriptome data.
The resulting fold changes were used as the inputs for GSEA.

MsigDB annotated gene set collections (version 7.2 C2 and C5) with the number of
genes ranging from 10 to 500 were selected for GSEA analysis implemented in the piano
package (version 2.10.0) [25]. The p-values were estimated by GSEA with 1000 permutations
and adjusted by calculating the false discovery rates (FDR). The other parameters were set
as default. Top significantly dysregulated gene sets (FDR adjusted p-value < 0.05) ranked by
enrichment scores were chosen for each patient group, respectively, and used for heatmap
visualization. Specifically, a data matrix was generated with rows defined by the selected
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enriched/depleted gene sets, and columns by −log10 (adjusted p-value) for each patient
group. Hierarchical clustering was then used to cluster the gene sets into groups. Finally,
a heatmap was plotted using the package pheatmap (version 1.0.12) [26] to visualize the
gene sets patterns among patient groups.

2.3. Survival and Cox PH Regression Analysis

Kaplan–Meier method and log-rank test were used to estimate and compare disease
free survival (DFS) and overall survival (OS) among patient groups. Kaplan–Meier survival
analysis with pairwise comparisons between patient groups were also performed by using
the survminer R package (version 0.3.0) [27]. FDR corrected p-values of less than 0.05 were
considered statistically significant.

Multivariate Cox PH regression model was used to estimate hazard ratios (HRs)
with 95% confidence intervals (CIs) for DFS and OS among patient groups. Covariates in
the model included age at diagnosis, gender, CIN status (high and low; when available),
and tumor site (left and right). CRC originating in the descending colon, sigmoid colon,
rectum, splenic flexure, or rectosigmoid junction were considered left-sided cancers; and
CRC originating in the ascending colon, cecum, hepatic flexure, or transverse colon were
categorized as right-sided tumors [28]. Ggforest function from the survminer package
(version 0.3.0) [27] was used to construct forest plots, which showed HRs and log-rank
p-value for DFS and OS among patient groups.

2.4. Unsupervised Clustering and Random Forest Classifiers

TCGA early and advanced CRC cases were employed for unsupervised classification
by cluster analysis, respectively. DFS-associated genes were pre-selected by univariate
Cox PH regression analysis, with Wald test p-values no more than 0.05. Highly variable
genes with MAD scores greater than 0.5 were then chosen for consensus clustering using
the ConsensusClusterPlus package (version 4.1.0) [29]. Consensus clustering consisted of
1000 iterations of PAM clustering for each rank k (from 2 to 8), with 0.9 subsampling ratio,
and agglomerative average linkage and Spearman correlation was conducted to identify
the attributes of each consensus cluster. Gap statistics were calculated over a range of
clusters k (from 2 to 8) to determine the optimal cluster number.

The top 50 most important features were selected to construct random forest classifiers
for CRC early- and advanced-stage cases in the TCGA cohort, respectively. The classifiers
were built with 1000 trees using the randomForest package (version 4.6-14) [30] in R. The
two classifiers were then employed to assign patients in the CPTAC and GEO cohorts into
corresponding subtypes.

2.5. Statistical Analyses

Statistical analyses were conducted by the software R, version 3.6.3. The enrichment
scores of infiltrated-immune and stroma cells for each sample was estimated using xCell
(xcell.ucsf.edu; Accessed September-2019) [31]. Cox PH analysis was performed for each
cell type to identify independent predictors of DFS and OS, respectively. The statistically
significant cell types in the univariate Cox analysis (Wald test p-value less than 0.05) were
selected for further investigation. Pairwise Wilcoxon rank-sum test was performed to eval-
uate the differences of continuous variables (such as age, ImmuneScore, and StromaScore)
among patient groups. Chi-squared test was used to investigate the associations of CRC
subtypes with gender, MSI, and CMS labels. FDR adjusted p-value of less than 0.05 was
considered statistically significant for all tests.

3. Results
3.1. Evaluations of Three Previous CRC Subtyping Systems

Three CRC subtyping systems (TNM stage, CMS and MSI status) were investigated in
terms of their biological implications and clinical relevance. CRC can be grouped into four
major stages (I-IV) based on the TNM system. Stage II and stage III CRC make up most
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of all cases in the TCGA, CPTAC, and GEO datasets (Figure S1). As the tumor progresses
from the curable non-invasive stage (I-II, early) to the metastatic stage (III-IV, advanced)
with a less favorable prognosis, we consider the tumor stage as a binary variable (early and
advanced) in the analysis. Based on mRNA expression profiles, CRC was classified into
four consensus subtypes (CMS 1-4) with distinguishing molecular and clinical features and
one non-consensus subtype (NOLBL) [18]. According to MSI status, about 15% of CRC
were MSI-H, where the microsatellite markers were unstable, in contrast to the remaining
85% non-MSI-H cases.

A total of 436 CRC patients from the TCGA dataset have clinical stage information,
and among them there were 247 early- and 189 advanced-stage cases, respectively (Table 1).
CPTAC dataset contains 54 (early) and 51 (advanced) colon cancer patients. A total of
914 CRC patients from four independent GEO datasets were combined into one dataset,
namely GEO. Of them, 485 were from early stages, and 429 were from advanced stages
(Table 1). Gene-level fold changes between advanced- and early-stage cases for these
three datasets’ transcription data were used as the inputs for Gene set enrichment analysis
(GSEA), respectively. A total of 92 most highly dysregulated common pathways among
the three datasets (FDR adjusted p-value < 0.001; Table S1) were selected for heatmap
visualization. Consistent results were observed among the three cohorts such as gene sets
were regulated towards the same direction (both up- and down-regulation), and more
gene sets were down-regulated than up-regulated in advanced cases (65 vs. 27) (Figure 1a).
Down-regulated gene sets include multiple mitochondrial- and metabolism-related signing
pathways, however, extracellular matrix (ECM) and cell proliferation-associated gene sets
were up-regulated in advanced-stage CRC (Figure 1a). Taken together, this may imply that
as tumor progression proceeds, CRC epithelial cells decreased their metabolism and, on
the contrary, showed rapid proliferation and metastasis.

CMS and MSI status labels were obtained from the associated data sources [18,22,23].
The associations between CMS labels and patients’ molecular features were well described
in [18]. There were 70 (16.0%) and 24 (22.8%) MSI-H patients in the TCGA and CPTAC
datasets, respectively (Table 1). No MSI-H patients were present in the combined GEO
dataset, thus was excluded for the GSEA analysis regarding the MSI status. A total of 537
common gene sets were significantly dysregulated between MSI-H and non-MSI-H patients
in the TCGA and CPTAC datasets (FDR adjusted p-value < 0.001; Table S2). More than 99%
of these gene sets were up-regulated in the MSI-H patients (Table S2 and Figure 1b), these
include numerous innate and adaptive immune pathways, which agree well with previous
studies [8,9].

We next used the Cox proportional hazard (PH) regression model to evaluate the
effects of the three subtyping systems on patients’ disease-free survival (DFS) and overall
survival (OS), respectively. Confounder factors such as age, gender, tumor site (left and
right), and CIN status (H: high and L: low) were also evaluated when available. Age
hazard ratio (HR) values were all close to 1, indicating that age did not affect survival
(Figures 1c–e and S2). Gender, tumor site, MSI status, and CIN (when available) all showed
no significant effects (log-rank p-value > 0.05) on either DFS or OS (Figures 1c–e and S2).
Advanced-stage was a significant poor prognostic factor for DFS (log-rank p-value < 0.05;
HR >1), and this was also true for the CPTAC cohort (Figure 1d), where relatively shorter
follow up time (<15 months) and fewer patients (~100) were available compared to the other
two cohorts (Figure 1c,e). Advanced-stage was also a poor prognostic factor for OS in the
TCGA cohort (Figure S2). CMS labels were not evaluated in the CPTAC dataset, as too short
survival time to do sufficient estimation (Figure 1d). CMS1 was a poor prognostic factor for
DFS in the TCGA dataset, and the HR was 2.52 (95% confidence interval: 1.02–6.2), whereas
CMS4 predicts poor DFS in the GEO dataset with HR as 1.58 (1.08–2.3) (Figure 1c,e). CMS
labels showed inconsistent effects on survival (specifically DFS), implying that further
investigations are necessary.
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Figure 1. Molecular and clinical relevance of three previous CRC subtyping systems. (a). A p-value heatmap representing
dysregulated gene sets between advanced- and early-stage of CRC (early-stage was used as control). (b). A p-value heatmap
representing dysregulated gene sets between MSI-H and non-MSI-H CRC (non-MSI-H group was used as control). In the
heatmaps, columns correspond to different cohorts, and rows to gene sets. Values in the heatmaps were −log10 (FDR
adjusted p-value) transformed. Red color indicates up-regulated gene sets, and green means down-regulated gene sets
in the control groups. Gene sets were grouped into different functional categories, with representative functional names
shown on the right hand of the heatmaps, respectively. Forest plots of Cox PH regression models illustrated the HRs, 95%
CIs and log-rank p-values for different subtyping systems (stage, MSI, CMS, etc.) and confounder factors (age, gender, etc.)
for DFS in the TCGA (c), CPTAC (d), and GEO (e) cohorts. Log-rank p-value significance levels were given by stars: * <0.05,
and ** <0.01.

3.2. TNM Stage Remains an Influential Factor for CRC Subtype Analysis

We then evaluated the combination effects of the three previous CRC subtyping
systems on clinical significance and biological implications. There will be four different sce-
nario options to consider: Stage + MSI, Stage + CMS, MSI + CMS, and Stage + MSI + CMS.
The last scenario was not considered due to lack of data and complexity in the subsequent
analysis. As the MSI classification results were more skewed (15% MSI-H vs. 85% non-MSI-
H) compared to the Stage (~51% early vs. 49% advanced) and MSI systems (14% CMS1
vs. 37% CMS2 vs. 13% CMS3 vs. 23% CMS4); and the combination of MSI + CMS systems
will produce 2 × 4 = 8 clusters, which will further decrease its statistical significance, the
scenario of MSI + CMS was also not considered in the study.

For the Stage + MSI scenario (stratifying the patients both by Stage and MSI systems),
patients were separated into four groups: Early_MSI-H, Early_non-MSI-H, Advanced_MSI-
H, and Advanced_non-MSI-H (Table 1). Groups were compared to each other in the
TCGA and CPTAC cohorts. MSI-H patients were more likely to be in early-stage than
advanced-stage in both TCGA (53 in early vs. 17 in advanced) and CPTAC (14 vs. 10)
datasets (Table 1). In the TCGA cohort, where the patient numbers were sufficient to do
pairwise comparisons of survival curves between groups, indicated that the Advanced_non-
MSI-H patients have poorer DFS and OS compared to Early_non-MSI-H patients (FDR
adjusted p < 0.05) (Figures 2a,b and S3). All the other paired differences were not significant
(Figures 2b and S3). Fold changes between one group and the others were employed for
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GSEA analysis. A total of 94 most highly dysregulated common pathways between TCGA
and CPTAC datasets (FDR adjusted p-value < 0.001; Table S3) were selected for heatmap
visualization. We found multiple immune-related pathways were up-regulated in the
four MSI-H patient groups (TCGA_Early MSI-H, TCGA_Advanced-MSI-H, CPTAC_Early
MSI-H, and CPTAC_Advanced-MSI-H) (Figure 2c). For non-MSI-H groups, several signal
transduction-related gene sets were enriched in the advanced cases, and few oxidation-
associated pathways were highly enriched in early cases (Figure 2c). In sum, we saw
significant clinical and molecular differences between early and advanced cases in non-
MSI-H patients under this scenario. However, for MSI-H patients, we did not see significant
differences between early and advanced cases.
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adjusted p-value) transformed. Red color indicates up-regulated gene sets, and green means down-regulated gene sets in the
corresponding groups. Gene sets were grouped into different functional categories, with representative functional names
shown on the right hand of the heatmaps accompanied by a colored line, respectively (such as maroon for immune-related,
orange for EMT-related, and blue for metabolism-related gene sets).

363 (83.2%) out of the 436 patients in TCGA dataset have available CMS labels (exclud-
ing those with NOLBL) were selected for the Stage + CMS scenario investigation. Similarly,
84 (80.0%) and 730 (79.9%) patients in CPTAC and GEO datasets were chosen under this
scenario. Thus, a total of eight groups generated for each dataset: CMS1-4 (in early-stage
cases) and CMS1-4 (in advanced-stage cases) (Table 1). Fold changes between one group
versus the others in a dataset were employed for the GSEA analysis. To better compare the
overall gene sets patterns, 89 most highly dysregulated common pathways across the three
datasets (FDR adjusted p-value < 0.001; Table S4) were selected for heatmap visualization.
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The enriched gene sets within each CMS clusters agree well with previous report [18],
such as immune-related pathways enriched in CMS1; a large collection of canonical cancer-
associated pathways up-regulated in CMS2 and CMS1; metabolic pathways in CMS3;
and EMT-related pathways enriched in CMS4 (Figure 2d). However, CMS labels showed
inconsistent effects on DFS as shown before, that is CMS1 was a poor prognostic factor in
the TCGA dataset, whereas CMS4 predicts poor DFS in the GEO dataset (Figure 1c,e). The
situation was even worse for OS, where no significant differences were observed among the
CMS labels (Figure S2). Note that we used the NOLBL (unlabeled samples) as the reference
group, while Guinney et al. [18] chose the CMS2 as the reference for the multivariate Cox
analysis. As the DFS seems to be a better clinical endpoint here, we only consider the
DFS under this scenario. Although not reaching statistically significant differences when
performing the pairwise comparisons of survival curves in the TCGA early and advanced
cases, respectively, CMS1 was more likely to be a poor prognostic factor for DFS in the
early patients than in advanced patients (Figure S3). More importantly, from the GEO
dataset, pairwise comparisons of survival curves between CMS subtypes, indicated that
CMS4 predicts poor DFS in the early cases (CMS4 vs. CMS2, CMS4 vs. CMS 3; BH adjusted
p < 0.05), but not in the advanced cases (Figure S3).

Taken together, we evaluated the clinical significance and biological implications of
the Stage + MSI and Stage + CMS scenarios, and found that these two scenarios work well
only for a subset of the patients, that is, Stage + MSI for non-MSI-H cases and Stage + CMS
for early patients. Altogether, the TNM stage remains an influential factor for CRC subtype
analysis. This motivates us to develop a new system to better stratify CRC in terms of
prognostic and oncologic values, taking the TNM stage as an independent factor.

3.3. Identification of Five Stage Supervised CRC Subtypes

In our subtyping system, namely stage supervised CRC subtypes (SSCS), we began by
employing a supervised binary splitting of CRC patients into two large groups (early and
advanced); followed by applying an unsupervised clustering of these two groups, sepa-
rately; early and advanced classifiers were then built to assign patients into corresponding
subtypes. TCGA data was used as the training set, CPTAC and GEO were considered for
the two validation datasets (Table 1).

A total of 247 early and 189 advanced cases can be found from the TCGA cohort as
mentioned above (Table 1). First, 1850 genes were selected with Wald test p-value no more
than 0.05 under univariate Cox PH model analysis in the early CRC cases. Then, 1111 genes
with MAD > 0.05 were subsequently chosen for consensus clustering. The number of genes
selected for advanced cases were 1079 for pre-selection, and 533 for final unsupervised
learning, respectively (Table S5). The consensus matrices resulting from the consensus
PAM clustering were displayed as heatmaps for each rank k (from 2 to 6) that contains
the cluster memberships (Figure 3b–f,h–l). Gap statistics were calculated to determine
the optimal cluster numbers, and a peak was found at k = 2 for early cases, and k = 3 for
advanced cases (Figure 3a,g). Thus, a total of 5 subtypes (SSCS1-2 for early cases, and
SSCS3-5 for advanced cases) were determined in the TCGA cohort. The distribution of our
subtyping system (SSCS) in the TCGA cohort was SSCS1 29.6%, SSCS2 27.1%, SSCS3 18.1%,
SSCS4 10.3%, and SSCS4 14.9% (Table 1).

In order to classify CRC patients, we built two random forest classifiers (one for early
cases and the other for advanced cases) based on the top 50 genes selected according to
the feature importance ranking scores in the TCGA early and advanced cases, respectively
(Table S5). Classifiers’ misclassification rates in the training dataset (TCGA) were all zeros.
54 and 485 early cases as well as 51 and 429 advanced cases can be found from the CPTAC
and GEO cohorts, respectively. The classifiers were then employed to classify the patients
from the CPTAC and GEO cohorts into corresponding subtypes: SSCS1-5 (Table 1). SSCS1
was the largest subtype, accounting for approximately 27.6–29.6% of all cases in each
cohort, followed by SSCS2 (~25%). The smallest subtype was SSCS4, with the percentage
of patients less than 10.5% in the three cohorts, respectively (Table 1).
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3.4. Molecular Features of the Five Subtypes

Fold changes between a subtype versus the remaining subtypes in a cohort were
employed for GSEA analysis, respectively. A total of 103 most highly dysregulated gene
sets selected from the TCGA cohort (FDR adjusted p-value < 0.05; Table S6) were used
for heatmap visualization. In the heatmap, gene sets with the absolute values of −log10
(adjusted p-value) greater than 1.3 (adjusted p-value < 0.05) were considered significantly
altered. Gene sets were basically regulated towards the same direction (both up- and
down-regulation) among the three cohorts (TCGA, CPTAC, and GEO), although some
were not statistically significant in the CPTAC cohort (Figure 4a). SSCS1 and SSCS4
subtypes were enriched with ECM-related gene sets; SSCS2 and SSCS3 subtypes have
cell cycle- and metabolism-related gene sets upregulation; and SSCS5 subtype enriched
with amplicon associated gene sets (Figure 4a and Table S6). Moreover, subtype-specific
enriched/depleted patterns can be found from the gene sets heatmap. For example,
immune-related gene sets were up-regulated in SSCS1, and ECM related gene sets were
down-regulated in SSCS2 (Figure 4a and Table S6). Through functional characterization of
the SSCS subtypes illustrates the underlying mechanisms and pathophysiology of CRC.

We next investigated the relationships among SSCS labels with patients’ characteristics,
and the results suggested no significant associations between SSCS with patients’ age and
gender (data not shown). Patients’ subtyping results by using CMS and MSI systems were
also compared to the SSCS labels. From the TCGA cohort, 85% of the patients with the
SSCS4 labels were CMS4 patients, and the remaining 15% were from CMS2; in contrast to
the SSCS5, where 62% of the patients were with the CMS2 labels (Figure 4b). Similar trends
can be seen from the CPTAC and GEO cohorts, such as SSCS4 patients corresponding to
CMS4, and the large proportion of the patients from SSCS2 and SSCS5 have CMS2 labels
(Figure 4c,d), although the patient’s proportions have minor changes compared to the
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TCGA cohort (Figure 4b). The frequency of MSI-H cases was highest in SSCS1 (64.2% in
TCGA, and 47.6% in CPTAC) compared to the remaining four subtypes (Figure 4e,f).
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percentage intersections between the SSCS and MSI labels in the TCGA (e) and CPTAC (f) cohorts.

3.5. Prognostic Value of SSCS

There were significant differences in both DFS and OS among the five SSCS subtypes
(Figures 5a–d and S4). Pairwise comparison of survival differences among patient groups
showed that SSCS2 had the best DFS and OS; SSCS4 had the worst; and the remaining
three subtypes had intermediate survivals (Figures 5b,d and S4). Multivariate Cox PH
regression analysis supported these findings (Figure 5e–g). The associations of SSCS labels
with patient survival adjusted for age, gender, and other factors were significant (log-rank
p-value < 1 × 10−4) with high HRs for SSCS4 and SSCS3, and low HRs for SSCS2, implying
that SSCS4 is a poor prognostic factor for DFS, which has been observed from the three
cohorts; and SSCS2 had significantly improved DFS in the TCGA cohort (HR 0.17, 95%
CI 0.08–0.36, p < 0.001), although the difference in the GEO and CPTAC cohorts were not
statistically significant (Figure 5e–g).
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The enrichment scores for 64 cell components in the tumor microenvironment (TME),
spanning multiple innate and adaptive immune, extracellular matrix, and other cell types
were estimated by using a gene signature-based method, xcell [31]. Three additional
scores (immune, stroma, and microenvironment scores) were obtained by summing all
immune, stromal, and immune plus stromal cell types, respectively [31], which were
used to represent the tumor purity of each sample. For the TCGA training cohort, SSCS1
and SSCS4 had the highest average ImmuneScore and StromaScore compared to the
remaining SSCS subtypes, respectively (Figure S5). Pairwise comparisons of StromaScores
among the SSCS subtypes indicated that the differences between SSCS4 and the other four
subtypes were all significant (adjusted p-value < 0) (Figure S5). Only SSCS1 and SSCS5
have significant differences in their ImmuneScores (adjusted p-value < 0). SSCS4 also has
the highest average MicroenvironmentScore, which is the summation of the ImmuneScore
and StromaScore. All pairwise comparisons of MicroenvironmentScore between SSCS4
or SSCS1 with the remaining subtypes were significant (adjusted p-value < 0) (Figure S5).
The pairwise comparisons of the ImmuneScore, StromaScore, and MicroenvironmentScore
were also evaluated in the CPTAC and GEO cohorts (Figure S5). The SSCS4 stands out to
have the highest TME scores, which indicated that the patients classified into the SSCS4
subtype have relatively lower tumor purities.

From the TCGA cohort, we found the abundances of a subset of TME cell types
have prognostic power as determined by using the univariate Cox analysis (Wald test
p-value < 0.05). More specifically, of the 64 cell types investigated, neuron was identified
to be significantly associated with poor DFS and OS ((beta coefficients > 0; Wald test
p-value < 0.05; Table S7). Of note, neuron is one of the main active cell types within the en-
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teric nervous system (ENS), which is interrelated with the immune system [32]. Fibroblast
was significantly associated with poor DFS (beta coefficients > 0; Wald test p-value < 0.05;
Table S7), whereas memory CD4+ T and conventional dendritic cells (cDC) were sig-
nificantly associated with favorable DFS (beta coefficients < 0; Wald test p-value < 0.05;
Table S7). Two other cell types, namely naive B and naive CD4+ T cells, were identified
to be significantly associated with poor OS (beta coefficients < 0; Wald test p-value < 0.05;
Table S7).

We next evaluated the six TME cell types (neuron, fibroblast, memory CD4+ T, cDC,
naive B and naive CD4+ T cells) prognostic performances within the SSCS subtyping
system. For each cell type, Cox regression models were built to stratify the patients within
each SSCS subtype, and log-rank tests were utilized to test the survival differences between
the high- and low-risk groups, respectively. No cell types can be used to stratify the patients
into prognostic groups for OS (Table 2). Two cell types (fibroblast and cDC) were identified
to be useful for identifying high- and low-risk groups within the SSCS subtyping system for
DFS (log-rank p < 0.05; Table 2). More specifically, tumor-infiltrating fibroblast was found
to be predictive for poor DFS only within the SSCS4 subtype (Table 2). From the TCGA
SSCS4 patients (n = 45), we built a Cox model and calculated the median risk score (−0.059).
The model was applied to classify the SSCS4 patients both from the TCGA (n = 45) and
GEO (n = 79) cohorts into high-risk (>−0.059) and low-risk (<−0.059) groups. Compared
with patients with low-risk scores, patients with high-risk scores had shorter DFS (TCGA:
HR 4.9, 95% CI 1.7–14.3, p = 0.001; GEO: HR 1.9, 95% CI 1.0–3.6, p = 0.045) (Figure 6a,b).
cDC, on the contrary, was associated with favorable DFS in the SSCS3 subtype. Cox model
was built by using the abundance of the cDC, and patients were classified into high-risk
(<0.054) and low-risk (>0.054) groups based on the median risk score (0.054) determined
in the SSCS3 subtype from the TCGA cohort (n = 79). Patients with low-risk scores had
favorable DFS (TCGA: HR 1.9, 95% CI 1.0–3.4, p = 0.035; GEO: HR 1.7, 95% CI 1.0–2.8,
p = 0.037) (Figure 6c,d).

Table 2. Log rank p-values from survival analysis for the six TME cell types.

Subtype Neuron Fibroblast Memory
CD4+ T cDC Naive B Naive

CD4+ T

DFS

SSCS1 0.062 0.500 0.980 0.320 0.680 1

SSCS2 0.080 1 0.130 0.330 0.130 1

SSCS3 0.200 1 0.059 0.008 ** 0.830 1

SSCS4 0.290 0.001 ** 0.540 0.570 0.870 1

SSCS5 0.710 1 0.320 0.520 1 0.540

All 0.064 0.120 0.090 0.008 ** 0.140 0.460

OS

SSCS1 0.710 0.190 0.510 0.810 0.750 1

SSCS2 0.260 1 0.086 0.630 0.390 1

SSCS3 0.170 1 0.190 0.058 0.450 0.870

SSCS4 0.270 0.340 0.120 0.560 0.310 0.620

SSCS5 0.580 0.200 0.058 0.570 1 1

All 0.100 0.210 0.610 0.510 0.810 0.720
** Significant difference p < 0.01.
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infiltrating fibroblast in the TCGA SSCS4 patients (n = 45), which can be used to classify the SSCS4 patients both from the
TCGA (a) and GEO (b) cohorts into high- and low-risk groups. Another Cox model built by using the TME-associated cDC
in the TCGA SSCS3 patients (n = 79), which can be used to classify the SSCS3 patients both from the TCGA (c) and GEO
(d) cohorts into high- and low-risk groups.

4. Discussion

We systematically evaluated the molecular and clinical implications of three previous
CRC subtyping systems: TNM stage, MSI and CMS. TNM stage is one of the most important
determinants of survival, and it is essential for complementarity with other established
systems for better treatment decision-making in CRC. Although MSI-H has been used as a
biomarker for immunotherapy and predicting prognosis, MSI-H only accounts for about
15%, and substantial heterogeneity still exists within the remaining 85% non-MSI-H patients.
CMS is a well-defined classification system [18], but we and others [19–21] have found its
applications in advanced-stage CRC cases is limited. Revealing CRC heterogeneity based
solely on TNM stage, MSI, or CMS is incomplete. When any of the two systems were
considered simultaneously, however, only applicable for a subset of the patients. More
specifically, TNM stage + MSI for non-MSI-H cases and TNM stage + CMS for early stage
patients. TNM stage provides additional insight into CRC heterogeneity, and remains an
influential factor for CRC subtype analysis.

Variations in genomic features and clinical outcomes have been observed in CRC
within the same tumor stage. One of the best examples is that De Sousa et al. defined
three molecular and clinical distinct subtypes from a cohort of 90 patients with stage II
CRC [15]. Previous studies [33,34] have identified several stage-independent variables
such as MSI status and tumor grade, which correlated with patients’ clinical outcomes.
For example, as mentioned earlier, MSI-H patients, who usually have good prognosis, are
more common in early stages than late stages of CRC. Indeed, in our study, we found that
a higher percentage of MSI-H patients were distributed into the SSCS1 subtype, which
derived from early cases and have favorable clinical outcomes. Moreover, early- and
advanced-cases have significant clinical and molecular differences only for non-MSI-H
patients. According to several multivariate statistical analyses [33,34], higher tumor grade
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is a stage-independent prognostic factor in CRC associated with adverse outcomes. In
the current study, due to lack of the information, we did not take the tumor grade into
consideration when classifying the patients. Future investigations of grade relating to the
CRC heterogeneity is needed.

In the current study, we developed a new CRC subtyping system SSCS, which takes
the TNM stage as an independent factor. Although the four TNM stages of CRC generally
showed significant differences in both DFS and OS (Figure S1), the assignment of tumor
stage for each patient is subjective and depends on experience. As there are no molecular
level information involved in the four TNM stages, in our study, we did a binary split of the
TNM stage into early- and advanced-stages (advanced cases have local or distant metastasis,
which is distinguishable from the early cases). By integrating supervised stage information
into the unsupervised machine learning frameworks, a total of five CRC subtypes (SSCS1-5)
were identified and described. Patients with early-stage CRC were classified into two
subtypes (SSCS1-2), which generally have good prognosis. MSI-H patients were basically
classified into the SSCS1 subtype. Multiple cell cycle and metabolism-related gene sets
were upregulated, and ECM related gene sets were down-regulated in the SSCS2 subtype.
Advanced-stage CRC is either metastatic or locally invasive at the time of diagnosis. Three
advanced-stage CRC subtypes (SSCS3-5) were identified from the study. Although SSCS3
and SSCS2 subtypes have been enriched with similar functional categories of gene sets,
SSCS3 patients have relatively worse survival compared to SSCS2 patients. SSCS4 subtype
has low tumor purities and was associated with the worst clinical outcomes. Of note,
high frequency of the mesenchymal CMS4 patients were classified into the SSCS4 subtype,
indicating the reliability and validity of our results. The SSCS5 subtype has relatively
good survival compared to the other two advanced-stage subtypes, and was enriched with
amplicon-associated gene sets.

Tumor microenvironment consists of multiple cell types including tumor cells, fibrob-
lasts, lymphocytes, and many other cell types. The non-cancerous cells are important in
cancer treatment as well as considered to be independent prognostic factors for clinical
outcome prediction. For example, tumor-infiltrating lymphocyte (TIL) therapy is by far the
most effective treatment for advanced melanoma [35]. Tumor-infiltrating fibroblasts, or
called cancer associated fibroblasts (CAFs), are one of the key components within the TME,
which is involved in the formation of the extracellular matrix in tumor tissues. Integrating
CAF-targeted agents with existing therapies could provide benefit in treating cancer pa-
tients [36]. Moreover, activated tumor-infiltrating fibroblasts correlated with lymph node
metastasis, and can be used to predict worse DFS and OS in breast cancer patients [37].
High levels of TILs were associated with improved survival in CRC [38]. In our study,
we investigated 64 TME cell types, and determined the relevance of the abundance of
two cell types to clinical outcomes within the SSCS subtyping system. More specifically,
tumor-infiltrating fibroblast was found to be predictive for poor DFS only within the SSCS4
subtype. cDC, which are antigen-presenting cells that drive T-cell cytokine responses [39],
were associated with favorable DFS in the SSCS3 subtype. Further exploration of the sub-
type specific TME cells has the potential to be novel therapeutic targets for the treatment
of CRC.

5. Conclusions

In summary, CRC is heterogeneous and should not be treated as a single disease.
Histopathological features such as the TNM stage can be useful for unsupervised classifica-
tion of CRC. Our newly proposed CRC subtyping system SSCS could not only yield better
stratification results than the current standards, but also help us gain more insights into
CRC heterogeneity and its implications for therapy.
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