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Abstract: Long non-coding RNAs (lncRNAs) are functional RNAs longer than 200 nucleotides. Due
to modern genomic techniques, the involvement of lncRNAs in tumorigenesis has been revealed;
however, information concerning lncRNA interplay in multiple myeloma (MM) and plasma cell
leukemia (PCL) is virtually absent. Herein, we aimed to identify the lncRNAs involved in MM to PCL
progression. We investigated representative datasets of MM and PCL patients using next-generation
sequencing. In total, 13 deregulated lncRNAs (p < 0.00025) were identified; four of them were chosen
for further validation in an independent set of MM and PCL patients by RT-qPCR. The obtained
results proved the significant downregulation of lymphocyte antigen antisense RNA 1 (LY86-AS1)
and VIM antisense RNA 1 (VIM-AS1) in PCL compared to MM. Importantly, these two lncRNAs
could be involved in the progression of MM into PCL; thus, they could serve as promising novel
biomarkers of MM progression.

Keywords: multiple myeloma; plasma cell leukemia; long non-coding RNA; next-generation se-
quencing; biomarkers; disease progression

1. Introduction

Diseases characterized by clonal lymphoplasmacytic cell proliferation and high im-
munoglobulins production are known as plasma cell dyscrasias [1,2]; they range from
premalignant disease (MGUS—monoclonal gammopathy of unknown significance) to
aggressive multiple myeloma (MM) [3].

MM represents 10% of hematological malignancies [4], with an incidence rate of
4.8/100,000 in the Czech Republic [5] and global age-standardized incidence rates between
0.1/100,000 and 5.3/100,000 [6]. MM is characterized by the aberrant expansion of malig-
nant clonal plasma cells (PCs) inside the bone marrow (BM) microenvironment and the
presence of abnormal monoclonal proteins in the serum and/or urine [7].

The physiological differentiation of B cells with rearranging somatic DNA in B-cell
progenitors via VDJ recombination [8], somatic hypermutation, and class switch recombi-
nation involves double-stranded DNA breaks. Some can fuse to other breaks in the genome
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that involve oncogenes, giving rise to a subclone of cells with a growth advantage that may
lead to MGUS and, eventually, MM [9].

MM used to be diagnosed based on the so-called CRAB features (hypercalcemia,
renal insufficiency, anemia, and bone lesions). The International Myeloma Working Group
(IMWG) updated the diagnostic criteria of MM in 2014 by the addition of myeloma-defining
events; thus, a MM diagnosis is now based on the presence of at least one myeloma-defining
event and plasmacytoma or ≤10% of clonal PCs [10].

Plasma cell leukemia (PCL) is a rare but most aggressive form of plasma cell dyscrasias
with an incidence rate of 0.057/100,000 in the Czech Republic [11] and 0.04/100,000 in
Europe [12]. In 1974, the renowned American hematologist Dr. Kyle used the percentage
and absolute count of circulating PCs (cPCs) for the intuitive determination of a PCL
diagnosis [13]. cPCs have a capability of entering the peripheral blood because of their
independence from the BM microenvironment caused by the presence of further molecular
aberrations and the diverse expression of chemokine receptors and adhesion molecules
promoting tumor growth outside of the BM, the inhibition of apoptosis, and escape from
the immune system [14].

Today, the presence of more than 20% of cPCs and their absolute count greater than
2 × 109 per liter in the peripheral blood are the accustomed criteria for a PCL diagnosis [15].
However, many patients do not meet the absolute count criteria because of leukopenia
or a poor BM reserve as the result of intensive treatment, chemotherapy, malnutrition,
or myelodysplasia [15,16]. Thus, an update was suggested by the IMWG and WHO,
proposing that only percentage criteria should be required for the disease diagnosis [17]. It
was demonstrated that the presence of ≥5% cPCs in MM patients has a similar adverse
prognostic impact on PCL patients, indicating that a lower threshold for the definition of
PCL should be adapted in the future [18,19].

Based on the presence of previously diagnosed MM, PCL may be divided into two
groups: primary PCL (pPCL) and secondary PCL (sPCL). pPCL patients have no history
of previously diagnosed MM, and they are approximately 10 years younger than sPCL
patients, with the highest incidence between 52 and 65 years. Despite a high sensitivity
to chemotherapy, an aggressive clinical course with short remissions and reduced overall
survival (OS) is present [20,21]. The median OS is under 1 year for pPCL patients receiving
conventional chemotherapy [22–24]. A prolonged OS was described in patients who
received lenalidomide–dexamethasone induction and underwent transplantation (median
28 months) [24]. On the other hand, sPCL represents a leukemic transformation of refractory
MM. It is diagnosed in 1.8–4% of MM patients [25] for a median time of progression of
20–22 months [26]. However, these patients usually fail the treatment regimens [14], and
their median OS is approximately 6–11 months [27].

Long non-coding RNAs (lncRNAs) are non-coding RNA molecules longer than
200 nucleotides (nt) that lack a protein-coding capacity [28]. They are key regulators
of mRNA decay, alternative splicing, nuclear import, embryonic stem cell pluripotency,
and other biological processes in eukaryotic cells [29–32]. LncRNAs can function at the
transcriptional, post-transcriptional, and chromatin modification levels. Based on their
structures, they operate as guides, signals, decoys, or scaffolds [33,34]. The deregulated ex-
pression of lncRNAs has been described in neurodevelopmental diseases and cancers [34].
LncRNAs may be clinically relevant, as they function as either oncogenes or tumor sup-
pressors in hematopoietic development [35]. So far, several different lncRNAs have been
implicated in MM pathogenesis [36–39], including initiation and progression in MM and
PCL [40].

A recent study by Carrasco-Leon et al. [41] described the impact of lncRNAs on
the behavior of MM, as their transcriptional dynamics approach revealed an exclusive
expression of 989 lncRNAs in MM, from which 89 lncRNAs were de novo epigenomically
activated. The attribution of lncRNA expression profiles to the survival predictions of
MM patients was discussed in the study by Zhou et al. [42], who developed a lncRNA
focus risk model. Shen et al. [43] investigated deregulated lncRNAs in MM and revealed
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the correlation between the high expression of LAMA5AS1 and the better prognosis
of MM patients. Interestingly, Ronchetti et al. [37] developed a comprehensive catalog
of deregulated lncRNAs in MM and listed lncRNAs with proximal genes to suggest a
possibility of cis-regulatory relationships involved in MM pathogenesis.

As previous reports indicated the involvement of lncRNAs in the pathogenesis of
plasma cell dyscrasias, the aim of this study was to compare the expression profiles of
these molecules in the BM plasma cells (BMPCs) of MM and PCL patients in a two-phase
biomarker study using a high-throughput approach, including next-generation sequencing
(NGS) and subsequent RT-qPCR validation. Further, the expression of selected lncRNAs
was correlated with the clinical–pathological data of patients. To the best of our knowledge,
no similar study has been previously published.

2. Materials and Methods
2.1. Patient Characteristics and Sample Preparations

Thirty-four MM BMPC samples and twenty-three PCL (12 pPCL and 11 sPCL) BMPC
samples were obtained for this study. Based on the previous studies [18,19], the cut-off
for PCL was set at 5% of the cPCs. The diagnosis was confirmed by a histopathological
examination, biopsy, and flowcytometry. All the patients were diagnosed at the University
Hospital Brno between the years 2000 and 2020 and signed an informed consent form
approved by the ethics committee of the hospital in accordance with the current version of
the Helsinki Declaration. The clinical characteristics of the patients, as well as previous
therapies of sPCL patients, are summarized in Tables S1 and S2.

The BMPCs were enriched by anti-CD138+ immunomagnetic beads and magnetic
activated cell sorting with AutoMACS (MiltenyiBiotec) was used for their separation with
≥90% purity as previously described [44]. The samples were stored at −80 ◦C and thawed
only once.

2.1.1. RNA Isolation

The total RNA was extracted from frozen-dry CD138+ pellets using the miRNeasy
Mini kit (Qiagen, Germany) according to the manufacturer’s instructions. The concen-
tration of isolated RNA was determined using the fluorometric quantification on Qubit
4.0 with the RNA Broad Range Assay kit (Thermo Fischer Scientific, MA, USA), and the
quality of the extracted RNA was verified with RNA Integrity Number (RIN) determination
using Broad Range RNA Screen Tape and Buffer on 2200 TapeStation (all from Agilent
Technologies, CA, USA).

2.1.2. Next-Generation Sequencing

For NGS, 11 PCL samples and 6 MM samples were used. Ribosomal RNA (rRNA)
was depleted using the Ribo-Zero-Gold rRNA Removal kit (Illumina, CA, USA) according
to the manufacturer´s recommendations with 1000-ng input of RNA. rRNA-depleted
RNA was quantified using the RNA High Sensitivity Assay kit on Qubit 4.0 (Qiagen,
Germany). The successful depletion of rRNA was verified on 2200 Tape Station, performing
agarose electrophoresis with High Sensitivity RNA Screen Tape and Buffer (all from Agilent
Technologies, CA, USA). Subsequently, the cDNA libraries were prepared from rRNA-
depleted samples using the NEBNext Ultra II Directional RNA Library Prep kit and
NEBNext Multiplex Oligos (Dual Index Primers Set 1) (all from Illumina, CA, USA). The
concentrations of the prepared cDNA libraries were determined on Qubit 4.0 using the
dsDNA High Sensitivity Assay kit (Qiagen, Germany), and the cDNA library fragment
lengths were determined on 2200 TapeStation using High Sensitivity D1000 Screen Tape and
Buffer (all from Agilent Technologies, CA, USA) [45]. Finally, the paired-end sequencing
(2 × 75 nucleotides) of 2.1-pM libraries was performed on the NextSeq 500 Sequencing
System using the NextSeq 500/550 High Output kit v.2 (all from Illumina, CA, USA).
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2.1.3. RT-qPCR Validation

Validation of the NGS results was performed on 28 MM samples and 12 PCL samples
using RT-qPCR. The isolated RNA was reverse-transcribed using the High-Capacity cDNA
Reverse Transcription kit from Thermo Fisher Scientific (MA, USA) to synthesize cDNA
from 1000 ng of RNA. An analysis of four significantly deregulated lncRNAs was performed
using the TaqMan™ Gene Expression Master Mix (Thermo Fisher Scientific, CA, USA) and
individual TaqMan assays for the selected lncRNAs (Life Technologies, Table S3) on the
QuantStudio™ 3 Real-Time PCR System (Thermo Fisher Scientific, CA, USA).

2.1.4. Statistical Analysis

Quality control of the sequencing data (RNA-seq reads) was performed using fastqc.
The sequences were mapped on the human reference genome GRCh38 using the STAR
aligner (version 2.2.1) [46]. Further analyses were performed using the R/Bioconductor
packages [47]. The GENCODE database of lncRNAs version 32 was used for feature
counts by applying the Rsubread package procedure [48]. The filtered read counts were
pre-normalized by adding normalization factors within the edgeR package and further
between-sample normalized by the voom function in the limma package [49–51]. After the
determination of the normalized expression levels, the differentially expressed lncRNAs
between the PCL and MM patients were screened by applying block linear model fitting
and a Bayes approach from the limma package. The obtained p-values were adjusted for
multiple testing using the Benjamini–Hochberg method.

The RT-qPCR data were analyzed using the relative quantification approach 2−∆Ct in
which the ∆CT was calculated as follows: ∆CT = CTtargetlncRNA − CTPPIA. PPIA was chosen
as a housekeeping gene for normalization using the TATAA Reference Gene Panel (TATTA
Biocenter, Göteborg, Sweden) and the GeNorm and NormFinder software programs of
GenEx (bioMCC, Freising, Germany) on the selected 9 MM and 9 PCL samples, with
PPIA as the most stable across the samples (Figure S1). The associations of two categori-
cal/categorical and continuous variables were tested using the two-sided nonparametric
Mann–Whitney U test. The correlation of two continuous variables was assessed using
two-sided Spearman’s correlation (SPSS software, IBM Corp. Released 2017, Version 25.0).
p-values of less than 0.05 were considered statistically significant. The sensitivity and
specificity were calculated using the receiver operating characteristic (ROC) analysis.

3. Results
3.1. Deregulation of lncRNAs in the Exploration Phase

NGS was performed on 11 PCL and 6 MM BMPCs samples to identify the lncRNA
expression patterns. The sequenced samples contained, on average, 58.686.298 ± 11.700.608
reads, and the proportion of pure reads mapped to the genome was > 98%. The sequencing
Q30 of each sample was higher than 93%, indicating a good base quality for the downstream
analyses. The sequencing output of the prepared libraries resulted in 17,910 different
lncRNAs. A further analysis involved 7895 lncRNAs with more than one read per million
in all the analyzed samples. In total, 52 different lncRNAs were found to be significantly
deregulated between the MM and PCL samples with an adjusted p < 0.001 (Table S4). From
those, 13 lncRNAs were observed to be deregulated between these two groups with an
adjusted p-value ≤ 0.00025 (Figure 1).
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Figure 1. Hierarchical clustering and heatmap visualizing 13 lncRNAs differentially expressed
between six multiple myeloma (MM) samples (yellow) and eleven plasma cell leukemia (PCL)
samples (blue) (p ≤ 0.00025) in the exploration phase of the study. Red represents high expression
levels, and green represents low expression levels.

3.2. Validation of Selected lncRNAs Deregulated between MM and PCL Samples

For further validation on a larger cohort of the 28 MM and 12 PCL samples, RT-
qPCR was performed, analyzing the expression of four candidate lncRNAs: lymphocyte
antigen antisense RNA 1 (LY86-AS1), MIR9-3 Host Gene (MIR9-3HG), VIM antisense RNA
1 (VIM-AS1), and Prostate Cancer-Associated Transcript 7 (PCAT7). The selection of the
validated lncRNAs was based on the statistical significance (adj p < 0.001), fold change
level (|logFC| > 1.5), their average expression (average log expression values > 3), and
previous data from published papers.

The results revealed that LY86-AS1 (p < 0.001) and VIM-AS1 (p = 0.0286) are signifi-
cantly upregulated in MM patients compared to PCL patients (Figure 2 and Table S5). As
the differences in the expression levels of MIR9-3HG (p = 0.1965) and PCAT7 (p = 0.3763)
between the MM and PCL samples were not statistically significant, they were excluded
from any further analyses.

3.3. ROC Analyses of lncRNAs LY86-AS1 and VIM-AS1

A ROC curve analysis was performed to identify the optimal cut-off values for two
deregulated lncRNAs by the maximization of the sum of the sensitivity and specificity.
For LY86-AS1, the ROC analysis showed an ability to distinguish MM patients from PCL
patients with a sensitivity of 92% and specificity of 79%, with the area under the curve
(AUC) = 0.8884 using the cut-off value of ≤0.0000812 (p < 0.0001) (Figure 3A). In the
case of VIM-AS1, the ROC analysis showed a sensitivity of 67%, specificity of 82%, and
AUC = 0.7202, with a cut-off value of ≤ 0.00112 (p < 0.05) (Figure 3B). Unfortunately, the
combined analysis of both lncRNAs did not lead to an increased sensitivity or specificity.
These results indicate the potential diagnostic value of identified lncRNAs and imply the
possibility of improved discrimination between the MM and PCL diagnoses.
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Figure 2. Comparison of the expression levels of lncRNA lymphocyte antigen antisense RNA 1
(LY86-AS1) and VIM antisense RNA 1 (VIM-AS1) in patients with multiple myeloma (MM) and
plasma cell leukemia (PCL). The lncRNAs levels in a validation cohort of patient samples, with
the data presentation as the median value of the normalized lncRNA expression and interquartile
range (25,75) with the standard deviation. The values were compared using the Mann–Whitney
U-test. The expression levels were defined as the 2−∆Ct values normalized to the PPIA expression
levels.* p < 0.05, **** p < 0.0001.
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Figure 3. Receiver operating characteristic (ROC) curves for lncRNAs LY86-AS1 (A) and VIM-AS1
(B) that were found to be significantly deregulated in bone marrow plasma cells (BMPCs) of multiple
myeloma (MM) and plasma cell leukemia (PCL) patients in the validation phase of the study.

3.4. Expression of lncRNA VIM-AS1 Is Associated with the Light Chain Characteristics in
PCL Patients

A Spearman bivariate correlation was performed with continuous quantities to assess
the correlation between the lncRNA expression levels and clinical parameters of the patients.
In the MM patients, LY86-AS1 showed a trend of negative correlation with the thrombocyte
count (r = −0.323), but the correlation was not significant (p = 0.094). A comparison
between the lncRNA relative quantification and baseline characteristics was performed
using the Mann–Whitney U test with categorical variables. It revealed the correlation of
the VIM-AS1 levels with kappa light chain (p = 0.048). The correlations with the other
clinical–pathological data of the patients, as well as the results of the cytogenetics, were
not statistically significant.

4. Discussion

Non-coding RNA molecules were considered genetically accumulated waste. How-
ever, as new techniques were introduced into the research, it was discovered that up to 90%
of the total genome sequences are transcriptionally active, but only 2% are represented by
protein-coding genes [29]. Soon after, lncRNAs became the subject of intensive translational
research, especially for their participation in key cellular actions and functions [52]. Thus,
there was no surprise that they are involved in the tumorigenesis of many malignant
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diseases [53–55], including plasma cell dyscrasias [56]. Both PCL and MM have been
systematically studied for the deregulated expression of lncRNA-based biomarkers, such
as markers of prognostic estimations, predictive evaluations of treatment effectiveness or
disease diagnosis, stratification, and classification [57].

Interestingly, PCL patients with lower levels of cPCs have the same poor prognosis,
which challenges the disease definition. The topic on the definition of PCL and the dis-
tinction between PCL and MM is currently being discussed in the international myeloma
community. The first diagnostic criteria for PCL were established in 1974 by Noel P. and
Kyle R.A. as the presence of an absolute plasma cell count more than 2 × 109/L and >20%
of the total white blood count. These criteria are still followed by the WHO [58,59]. The
passing criteria (before 1974) did not consider the investigation of PC clonality, as the first
primitive electric cell sorting device was reported only up to 1965 [60]. It is important
to distinguish the cause of reactive plasmacytosis by PC phenotype determination, as it
can mimic PCL in patients with a variety of infections (such as Staphylococcal sepsis) or
neoplastic conditions [61,62].

Suggestions for updated diagnostic, response, and progression criteria with an ad-
justed clonality assessment by flow cytometry for the diagnosis of PCL were discussed by
the IMWG in 2013, especially in relation to the minimalization of risk of early death with
onset therapy induction [14]. Bezdekova et al. [63] discussed a need to determine the flow
cytometry criteria, which reduces the original cut-off to at least 10%, as the number of cPCs
is correlated with a shorter OS. Similarly, Granell et al. [18] described the impact of cPCs
on the survival of patients with MM and stated that the presence of ≥ 5% cPCs in these
patients has a similar prognostic impact as PCL. Therefore, we used the same cut-off for
our PCL criteria.

Using NGS, we determined 52 lncRNAs with significantly different expressions be-
tween the MM and PCL BMPC samples, for which the diagnostic criteria were set up at
the presence of more than 5% of cPCs in the peripheral blood. Four lncRNAs (VIM-AS1,
MIR9-3HG, LY86-AS1, and PCAT7) were chosen for the validation phase on the inde-
pendent set of BMPC samples from the MM and PCL patients. LncRNA LY86-AS1 and
lncRNA VIM-AS1 were significantly upregulated in the MM patients in comparison to the
PCL patients (p ≤ 0.05) The subsequent ROC revealed that it was possible to distinguish
between the MM and PCL patients with a high sensitivity and specificity for both lncRNAs.

When evaluating the cohort of MM and PCL patients, VIM-AS1 was found to be
negatively correlated with kappa light chains in the PCL patients. The expression levels
of the chosen lncRNAs were not significantly correlated with the available biochemical
parameters, but there was a trend of a negative correlation between lncRNA LY86-AS1
and the thrombocyte count in the MM patients. Thrombocytopenia is a common sign
of MM [64]. In the study by Li et al. [65], a relation between autoimmune idiopathic
thrombocytopenic purpura and an increased level of lncRNA was described. It is suggested
that lncRNAs affect and mediate the functions of the gene network in this disease [65].

There are currently no known studies describing the correlation between the dereg-
ulated level of lncRNA expressions and MM or PCL, and therefore, their significance in
the pathogenesis processes of these diseases remains unclear. The decreased expression of
lncRNA LY86-AS1 was described in type 2 diabetes mellitus patients compared to a healthy
control group [66] and was identified as a gender-associated lncRNA negatively correlated
with the Braak stage of Alzheimer´s disease [67]. There is also evidence of LY86-AS1
involvement in various cancers, such as central nervous system cancer, breast carcinoma,
metastatic melanoma, astrocytoma, and lung adenocarcinoma [68]. Interestingly, poly-
morphism rs12192707 in this lncRNA was associated with changes in the immune system
response in pemphigus foliaceus patients [69], and similar effects could be found also in
MM patients. Nevertheless, further studies are needed. The deregulated expression of
lncRNA VIM-AS1 was described in type 2 diabetes mellitus [70], in gastric cancer, with a
role in activating the Wnt/β-catenin pathway [71], prostate cancer [72], breast cancer [73],
and many others, indicating its role in the pathogenesis of numerous diseases. Importantly,
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the sponging of miR-29, a key miRNA in hematological malignancies [74], by VIM-AS1
was confirmed in diabetic retinopathy [75]. However, deeper knowledge of its function
and contribution to MM initiation and progression is still missing.

One of the subjects of possible future research following this work remains the corre-
lation of the acquired information with the survival of MM and PCL patients in order to
interpret the prognostic potential of LY86-AS1 and VIM-AS1. However, the limitations of
this study included the relatively small sample size caused by the low incidence of PCL;
therefore, additional laboratory and clinical studies on a larger cohort of patients could
contribute to a better understanding of the roles of lncRNAs in the pathogenesis of MM
and PCL.

5. Conclusions

In this study, we aimed to investigate if lncRNA molecules are deregulated between
MM and PCL patients. We showed that lncRNAs LY86-AS1 and VIM-AS1 are signifi-
cantly upregulated in a MM compared to a PCL diagnosis and might be involved in the
progression of the disease. Nevertheless, the exact mechanisms remain unclear.
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