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Abstract: In an emergency, drug repurposing is the best alternative option against newly emerged
severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. However, several bioactive
natural products have shown potential against SARS-CoV-2 in recent studies. The present study
selected sixty-eight broad-spectrum antiviral marine terpenoids and performed molecular docking
against two novel SARS-CoV-2 enzymes (main protease or MP™ or 3CLP™) and RNA-dependent
RNA polymerase (RdRp). In addition, the present study analysed the physiochemical-toxicity-
pharmacokinetic profile, structural activity relationship, and phylogenetic tree with various com-
putational tools to select the ‘lead” candidate. The genomic diversity study with multiple sequence
analyses and phylogenetic tree confirmed that the newly emerged SARS-CoV-2 strain was up to 96%
structurally similar to existing CoV-strains. Furthermore, the anti-SARS-CoV-2 potency based on a
protein—ligand docking score (kcal/mol) exposed that the marine terpenoid brevione F (—8.4) and
stachyflin (—8.4) exhibited similar activity with the reference antiviral drugs lopinavir (—8.4) and
darunavir (—7.5) against the target SARS—CoV —MP™. Similarly, marine terpenoids such as xiamycin
(—9.3), thyrsiferol (—9.2), liouvilloside B (—8.9), liouvilloside A (—8.8), and stachyflin (—8.7) exhibited
comparatively higher docking scores than the referral drug remdesivir (—7.4), and favipiravir (—5.7)
against the target SARS-CoV-2—RdRp. The above in silico investigations concluded that stachyflin is
the most ‘lead” candidate with the most potential against SARS-CoV-2. Previously, stachyflin also
exhibited potential activity against HSV-1 and CoV-A59 within ICsg, 0.16-0.82 pM. Therefore, some
additional pharmacological studies are needed to develop ‘stachyflin’ as a drug against SARS-CoV-2.

Keywords: marine terpenoids; SARS-CoV-2; molecular docking; toxicity and drug—likeness profiles

1. Introduction

Coronavirus disease—2019 (COVID-19) has been considered one of the most destruc-
tive pandemics in the 21st century [1]. The uncertain outbreak and rapid transformation
with a higher morbidity and mortality rate create a global health emergency [2]. The
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WHO reports >233 million infected cases and >4.7 million deaths from SARS-CoV-2 up to
1st October 2021 [1]. Recent reports suggest that among the coronavirus family, the mutated
SARS-CoV-2 strain single—stranded RNA virus (ssRNA) spreads much faster when com-
pared with previously reported SARS and Middle East Respiratory Syndrome (MERS) [3,4].
Evidence suggests that approximately 75-80% of genomic similarity between current strains
and existing CoV strains is crucial for rapid drug and vaccine development [3-5]. Facts sug-
gest that the UK—based SARS-CoV-2 (B.1.1.7), South Africa—based (B.1.351 and C.1.2), and
India—based (B.1.617.2) are the most contagious variants. The B.1.617.2 (delta) is considered
a super—spreader infectious strain with higher mortality rates in India and several other
Asian continents [1]. Identifying or locating potential —cum—putative therapeutic agents
is a challenging task [6-9]. In contrast, computational—based or artificial-intelligence
drug discovery platform plays a crucial role in finding several ‘lead drug candidates’ in
minimum time and cost to accelerate the drug development and further pharmacologi-
cal validation.

From a drug discovery point of view, main protease (MP™), spike glycoprotein
(S—protein), RdRp, envelop protein (E—protein), membrane protein (M—protein), and nu-
cleocapsid (N—protein) are some important drug targets that are associated with viral —host
interaction for assembly, and formation/replication of virus genomes in the host cell [10-13].
In addition, there are several ideal targets in the host side, namely, angiotensin—converting
enzyme 2 (ACE2) and receptor transmembrane serine protease 2 (TMPRSS2), which plays
a crucial role during viral entry and fusion of the viral genome [4,13]. Overall, MP™ and
RdRp are the two putative targets for drug development [13,14].

The FDA’s drug approval rate has decreased in the last two decades because most
synthetic drug entities/candidates commonly fail in clinical for side effects or higher
toxicity profiles [15-18]. Indeed, from the history of drug discovery, natural products
always play a significant role as a parental source for mainstream medicine attributed to
their multi—factorial activity and lesser toxicity. Marine diversity is a substantial resource
for potential bioactive chemical constituents with a wide range of therapeutic applications.
Antibacterial (e.g., aztreonam, tetracycline, erythromycin, imipenem, vancomycin, etc.),
antiviral (e.g., vidarabine), anticancer (e.g., brentuximab vedotin, ecteinascidin 743, etc.),
and antitubercular agents (e.g., rifampicin) are some notable mainstream drugs derived
from marine chemosphere [19-22].

The present study selected sixty-eight antiviral terpenoids isolated from marine al-
gae, soft coral, sponge, sea cucumber, fungus, bacteria, etc., from an extensive literature
search (Table 1). Then, we have assessed the anti-SARS-CoV-2 potency of each terpenoid
through an advanced molecular docking study using two putative drug targets, MP™ and
RdRp. In addition, various bioinformatics and cheminformatics tools analyzed the potency,
drug—ability, and toxicity profiles of terpenoids [23-26]. Previously, selected terpenoids
exhibited broad-spectrum potent antiviral activity (ICsy/ECsg) against coronavirus—19
(CoV-19), antienterovirus 71 (EV71), influenza subtype HIN1 or swine flu (HIN1), human
cytomegalovirus (HCMV), human immune deficiency virus (HIV-1), human metapneu-
movirus (HMPV), herpes simplex-1 virus (HSV-1), rhinovirus, and vesicular stomatitis
virus (VSV), etc. from different enzymatic assays (Table 1).

Table 1. Selected sixty —eight marine terpenoids with broad —spectrum antiviral potency against different viral strains.

Name of the Terpenoid Marine Source .. .. Recorded
SI. No. (Terpenoid Type) (Organism Type) Antiviral Activity 1Cso/ECs (uM) References
AcDa-1 Dictyota menstrualis .
1. (Diterpene) (Algae) HIV-1 1C50: 35-70 [27]
Acetyl ehrenberoxide B Sarcophyton ehrenbergi .
2 (Diterpenoid) (Soft coral) HCMY ECs0:22.0 [26]
3 Alismol Litophyton arboretum HIV-1 1Cs0:7.20 [29]

(Sesquiterpenoid) (Soft coral)
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Table 1. Cont.

Name of the Terpenoid Marine Source .. .. Recorded
SI. No. (Terpenoid Type) (Organism Type) Antiviral Activity 1Cso/ECs (uM) References
Aphidicolin Cephalosporium aphidicola .
4. (Diterpene) (Sponge) HSV, HCMV ICsp: 0.59 [30]
Atomaric acid Stypopodium zonale .
5 (Meroditerpenoid) (Brown algae) HMPV 1Cs0: 7.96 [31]
Avarol Dysidea avara .
6. (Sesquiterpene hydroquinone) (Sponge) HIV-1 IGs0: 0.30 [52]
Brevione F Penicillium sp. .
7 (Spiroditerpenoid) (Fungus) HIV-1 ECso: 147 [33]
Brianthein V Briarurn asbestinum .
8. (Diterpene) (Soft coral) CoV-A59 ECs: 83.75 [34]
Brianthein Y Briarurn asbestinum )
9. (Diterpene) (Soft coral) CoV-A59 ECsq: 702.98 [34]
Brianthein Z Briarurn asbestinum HSV-1 . )
10. (Diterpene) (Soft coral) CoV-A59 ECso: 147.87 [34]
Bromophycolide A Callophycus serratus . L0
1. (Diterpene benzoate) (Red algae) HIV-1 [Cs0:91-9.8 [34]
Capillobenzofuranol Sinularia capillosa .
12. (Furano—sesquiterpenoid) (Soft coral) HCMV ECs0:13.5 [35]
Capilloquinol Sinularia capillosa
13. (Diterpene quinoid) (Soft coral) HCMV EDso 11.24 [36]
Curcuphenol Didiscus axeata .
14. (Sequiterpene) (Sponge) HCV ECsp: 31.2 [37]
15 Cyanthiwigin B Myrmekoderma styx HIV-1 ECs0: 42.1 [38]
’ (Diterpene) (Sponge) HBV ECsp: >333.33
Da-1 Dictyota menstrualis 10
16. (Diterpene) (Brown algae) HIV-1 1Cs0:10-40 (271
Dehydrofurodendin Lendenfeldia sp. Can_
17. (Sesterterpene) (Sponge) HIV-1 1Cs: 3.2—-5.6 [39]
Dolabelladienol A Dictyota pfaffii ) )
18. (Diterpene) (Brown algae) HIV-1 ECs9: 2.9 + 0.2 [40]
Dolabelladienol B Dictyota pfaffii . . )
19. (Diterpene) (Brown algae) HIV-1 ECso: 4.10 [40]
Ehrenbergol A Sarcophyton ehrenbergi ) )
20. (Diterpenoid) (Soft coral) HCMY 1Csp: 152.1 [41]
Ehrenbergol B Sarcophyton ehrenbergi . )
21 (Diterpenoid) (Soft coral) HCMV 1Cs0: 1373 [41]
Ehrenbergol C Sarcophyton ehrenbergi .
22. (Diterpenoid) (Soft coral) HCMV EGso: 5291 [28]
Epispongiadiol Spongia sp. . i )
23. (Diterpene) (Sponge) HSV-1 1Csp: 37.65 [42]
Epitaondiol Stypopodium zonale .
24 (Meroditerpenoid) (Brown algae) HMPV 1Cs0: 245 [31]
Erythro-N-dodecanoyl-doco Litophuton arboreum
25. sasphinga-(4E,8E)-dienine Py HIV-1 ICsp: 4.80 [43]
. . (Soft coral)
(Sesquiterpenoid)
Gyrosanol A Sinularia gyrosa .
26. Diterpenoid Soft coral HCMV 1Cs0: 2.60 [35]
p
Gyrosanol C Sinularia gyrosa .
27. Diterpenoid (Soft coral HCMV 1Cs0:3.70 [35]
p
Halitunal Halimeda tuna
28 (Diterpene aldehyde) (Green seaweed) CoV-A59 ICs0: 56.49 [44]
2. Helioporin A Heliopora coerulea HSV-1 ICso: 12.19 [45]

(Diterpene)

(Blue coral)
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Table 1. Cont.

Name of the Terpenoid Marine Source .. .. Recorded
SI. No. (Terpenoid Type) (Organism Type) Antiviral Activity 1Cso/ECs (uM) References
Helioporin B Heliopora coerulea . )
30. (Diterpene) (Blue coral) HSV-1 ICs0: 4.84 [45]
Hyrtiosal Hyrtios erectus . ,
31. (Sesterterpenoid) (Sponge) HIV-1 1Cs0: 9.60 [46]
Ilimaquinone Dysudea arenaria .
32. (Sesquiterpenoid quinones) (Sponge) HIV-1 ICso: 164 [47]
Integric acid Xylaria sp. . = )
33 (Sesquiterpenoid) (Ascomycetous fungi) HIV-1 1Cs0: 520 48]
Isospongiadiol Spongia sp. . .
34. (Diterpene) (Sponge) HSV-1 1Csp: 6.02 [42]
Liouvilloside A Staurocucumis liouvillei
35. (Trisulfated triterpene HSV-1 1Cs0: 6.96 [49]
glycoside) (Sea cucumber)
Liouvilloside B Staurocucumis liouvillei
36. (Trisulfated triterpene HSV-1 1Cs: 6.93 [49]
glycoside) (Sea cucumber)
Lobohedleolide Lobophytum sp. .
37. (Cembrane diterpenoid) (Soft coral) HIV-1 1Cs0:10.90 [50]
Mycaperoxide A Mycale sp. HSV-1, 0e
38. (Norsesterterpene) (Sponge) VSV 1Cs0: 06-4.0 [51]
Mycaperoxide B Mycale sp. HSV-1, . B
39. (Norsesterterpene) (Sponge) VSV ICs0: 0.58-2.35 511
eyssono eyssonnelia sp. - 50: 6.
40 Pey: 1A Pey. lia sp HIV-1 ICsp: 6.40 52]
’ (Sesquiterpene hydroquinone) (Red algae) HIV-2 1Csp: 21.30
eyssono. eyssonnelia sp. - 500 4.

4 Pey: 1B Pey. lia sp HIV-1 ICsp: 4.30 52]
’ (Sesquiterpene hydroquinone) (Red algae) HIV-2 1Csp: 14.70 g
4 Pseudopterosin P Pseudopterogorgia elisabethae HSV-1 & VZV, ECs0: 2.90 53]
’ (Diterpene glycoside) (Sponge) HCMV ECsp: 2.60 g

. Verongida and Dictyoceratida
13,  Puupehedione sp. HIV-1 1Cso: 3.01 [54]
(Shikimatesequiterpene) (Sponge)
44 Reiswigin A Epipolasis reiswigi HSV-1 & VSV ECsp: 6.57 [55]
iterpene onge oV- 50: 65.
) Diterp. Spong CoV-A59 ECsp: 65.7
45 Reiswigin B Epipolasis reiswigi HSV-1 & VSV, ECsp: 6.62 [55]
’ (Diterpene) (Sponge) CoV-A59 ECs: 66.22 g
Rietone Alcyonium fauri .
46. (Triprenylhydro—quinone) (Soft coral) HIV-1 1C50:9.32 (561
Secopseudopterosin H Pseudopterogorgia elisabethae HSV-1, VZV & .
47 (Diterpene glycoside) (Sponge) HCMV 1Cs0:>10 [53]
Seco—pseudopterosin I Pseudopterogorgia elisabethae HSV-1,VZV & .
48. (Diterpene glycoside) (Sponge) HCMV 1Cs0: >10 [53]
Secocrassumol Lobophytum crissum . /,
49. (Seco—cembranoid diterpene) (Soft coral) HCMY 1Cs0: 12.69 [43]
Sinuleptolide Sinulariana nolobata .
50. (Diterpene) (Soft coral) HCMV EDso: 5.51 [57]
Smenospongine Dysudea arenaria . .
SL. (Sesquiterpenoid quinone) (Sponge) HIV-1 1Cs0: 176.1 471
Smenotronic acid Dysudea arenaria . )
52. (Sesquiterpenoid quinone) (Sponge) HIV-1 ICs0: 1304 [47]
Solenolide A Solenopodium sp. - .
53 (Diterpenoid lactone) (Marine octocoral) Rhinovirus, HSV 1Cs0: 070 (58]
54 Solenolide E Solenopodium sp. Rhinovirus, HSV ICsp: 28.40 58]

(Diterpenoid lactone)

(Marine octocoral)
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Table 1. Cont.

Name of the Terpenoid Marine Source .. .. Recorded
SI. No. (Terpenoid Type) (Organism Type) Antiviral Activity 1Cso/ECs (uM) References
Spongiadiol Spongia sp. . . )
55. (Furanoditerpene) (Sponge) HSV-1 1Cs0: 075 [42]
. Stachybotry sp. HH1
56. Stachybogrisephenone B ZSDS1F1-2 EV71 ICsp: 30.10 [59]
(Sesquiterpenoid) (Sponge)
Stachyflin Stachybotrys sp. RF—7260 .
57. (Terpenoid) (Fungus) HIN1 ICsp: 0.003 [60]
Strongylin A Strongylophor ahartmani .
58. (Sesquiterpene hydroquinone) (Sponge) HIN1 1Cs0: 18.89 [61]
Thyrsiferol Laurencia venusta HSV-1, CoV—-A59, .
5. (Triterpene) (Red algae) VSV EDso: 016-0.82 (6]
Thyrsiferyl-23-acetate Laurencia venusta HSV-1, CoV-A59, .

60. (Triterpene) (Red algae) VSV EDso: 0.15-0.77 [62]
61 Usneoidol E Cystoseira usneoides HSV, ICsp: 7.62 [63]
’ (Meroterpene) (Brown seaweed) VSV 1Csp: 7.83 -
62 Usneoidol Z Cystoseira usneoides HSV, 1Cs: 8.47 [63]
’ (Meroterpene) (Brown seaweed) VSV ICsp: 13.13 N
Venustatriol Laurencia venusta HSV-1, CoV-A59, .

63. (Triterpene) (Red algae) VSV EDso: 0.16-0.82 [62]
Xiamycin . .
64 (Pentacyclic Bruguiera gymnorrhiza HIV ICs0: 5-20 [64]
’ indolosesquiterpene) (Marine mangrove bacteria) ’
7B-acetoxy-24-methyl cholesta- .
65. 5-24(28)-diene-3,19-diol Litophyton arboreum HIV-1 ICso: 4.85 [43]
(Sesquiterpenoid) (Soft coral)
(7Z)-Lobohedleolide Lobophytum sp. . .
66. (Cembranoid diterpene) (Soft coral) HIV-1 ECs0: 13.93 [50]
8,10,18-trihydroxy-2,6- . ..
67. dolabelladiene Dictyota pfaffi HSV-1 ECso: 5.10 [65]
(Diterpene) (Brown algae)
17-dimethyl Lobophytum s
68. amino-lobohedleolide PRYLLT Sp- HIV-1 ICs0: 8.80 [50]
(Soft coral)

(Cembranoid diterpene)

CoV-19, coronavirus-19; EV71, antienterovirus 71; HIN1, influenza subtype HIN1 or swine flu, HCMV, human cytomegalovirus; HIV-1,
human immune deficiency virus-1; HMPV, human metapneumovirus; HSV-1, herpes simplex-1 virus; VSV, vesicular stomatitis virus.

2. Material and Methods

2.1. Ligand and Receptor Preparation

In the current study, a total of sixty—eight antiviral marine terpenoids with active
concentration (ICsy/ECsg in pM) against the specific virus were selected from previously
published literature (Table 1). Each terpenoid as a therapeutical candidate is known as a lig-
and during the computational investigation against SARS-CoV-2. The chemical structures
were retrieved with individual database IDs and simplified molecular—input line—entry
system (SMILES) code. Other relevant information on ligands was collected from the
PubChem (https:/ /pubchem.ncbi.nlm.nih.gov; assessed on 25 December 2020) and Chem-
Spider database (http://www.chemspider.com/ assessed on 25 December 2020). Primarily
the retrieved terpenoids as ligands in (.sdf) and (.mol) file formats from databases and then
converted to one of the widely accepted formats, i.e., (.pdb) by adding explicit hydrogens
to it using the software BIOVIA Discovery Studio Visualizer—2019 (BIOVIA-DSV-2019
(Academic version, San Diego, California, USA) [26,66]. Next, the energy minimization
and geometry optimization with the Universal force field and Steepest Descent algorithm
using Avogadro software to maintain the ligand structure stability and error—free was
carried out. Four reference antiviral drugs, darunavir (PubChem ID: 213039) and lopinavir
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(PubChem ID: 92727) as viral protease inhibitors and favipiravir (PubChem ID: 492405)
and remdesivir (PubChem ID: 121304016) as RdRp inhibitors were used (Figure 1).
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Figure 1. A schematic presentation for screening of most potential anti-SARS-CoV-2 candidates from selected sixty—eight

marine terpenoids using bioinformatics tool.

Furthermore, we have retrieved three—dimensional (3-D) crystallographic protein
structures of MP™ (PDB ID: 6WTT, composed with 310 amino acids at 2.15 A resolution)
and RdRp (PDB ID: 7BW4, composed with 923 amino acids at 3.70 A resolution) from the
protein data bank (https:/ /www.rcsb.org/; assessed on 25 January 2021) were used as
targets for molecular docking study. Then, separate the chain—A structure and removed
attached water molecules, ligands before docking study. From literature and structural
analysis with BIOVIA-DSV-2019 confirmed that MP™ (6WTT) is a homodimer protein
structure that contains a ligand with other heteroatoms [67]. Thus, as per the attached
ligand site interactions, we have selected nearly the same X-, Y- and Z-coordinates within
54 x 68 x 60 dimensions with a grid spacing of 0.375 A. The specified coordinates mostly
covered the catalytic active site residues, from 40 to 190 position amino acids of 6WTT
during docking study. Similarly, the large size RdRp (7BW4) was analyzed and found
no ligand attachment in the retrieved structure. As per literature information, the RdRp
structure contains seven critical catalytic motifs (A-G), including the core catalytic subunit,
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nsp12 bound with nsp7 —nsp8 heterodimer binding site. Thus, we have mainly targeted
the entire residues and designed 116 x 118 x 120 dimension with 0.615 A spacing grid box
covering amino acids residues, 60 (nsp7) to 761 (the critical catalytic residues of motif C) [68].
Then, we docked each ligand in the above-specified grid box and recorded the docking
score individually.

In addition, we have also analysed the structural elements, such as percent and
position of x-helix, extended strand, 3-turn, random coil, etc., taking protein sequence of
both targets with protein secondary structure analysis tool, SOPMA (https:/ /npsa-prabi.
ibep.fr/cgi-bin/npsa; assessed on 10 February 2021). As a result, the retrieved SARS-CoV-
2-Mpro structure consisted of 24.19% «-helix, 26.77% an extended strand, 10% (-turns,
and 39.03% a random coil. Similarly, the SARS-CoV-2-RdRp contained 41.60% «-helix,
19.50% an extended strand, 7.69% p-turn, and 31.20% random coil. After ligand and target
structure preparation, a systematic computer-aided drug design (CADD) module was
followed to select the potential ‘lead” against SARS-CoV-2 (Figure 1).

2.2. SARS-CoV-2: Genomic—Diversity and Phylogenetic Tree Analyses

Genomic diversity analysis is one of the crucial aspects in drug discovery to know
the impact of genetic mutations, target identification, and pathogenesis before developing
any lead drug candidates. Therefore, the genomic diversity of newly emerged SARS-
CoV-2 was studied to understand the inherited property and genetic differentiation from
previously reported CoV strains. Thus, we have projected the genomic similarity (in
percentage) of emerging SARS-CoV-2 with previously reported strains of the CoV family
through computational tools. Then analysed genomic diversity in the form of sequence and
structural similarity (homology protein model) with their distinct taxa with PSI-BLAST
(Position—Specific Iterated —BLAST) method using the tool Phyre2 (http://www.sbg.bio.
ic.ac.uk/phyre2/; assessed on 10 February 2021) and ClustalOmega (https://www.ebi.ac.
uk/tools/msa/clustalo/; assessed on 10 February 2021).

From extensive sequence—structure analyses, we found that the target SARS-CoV-
2—MP™® structure (PDB ID: 6WTT) has 96% identical to the previously reported SARS-
CoV—MP™ structure (PBD ID: 2DUC), 51% equivalent with HKU4-CoV—MP™ (PDB ID:
2YNB), and 45% similar with CoV-NL63 structure (PDB ID: 3TLO) (Figure 2A-D). Similarly,
another target structure, SARS-CoV-2—RdRp (PDB ID: 7BW4) has 97% of structural similar-
ities with previously reported SARS-CoV —RdRp structure (PDB ID: 6NUS), 18% of similar
with enterovirus A71 (PDB ID: 3N6M), and 17% with human rhinovirus—RdRp (PDB ID:
1XR?7). Then, using the protein sequence of the above PDB IDs constructed a phylogenic
tree, followed by the Neighbor—Joining method. The phylogenic tree illustrated that the
SARS-CoV-2—MP™ (relationship value, 0.025) and SARS-CoV-MP™ (relationship value,
0.020) were characteristically identical as presented in the same node/branch of the tree
(Figure 2). Thus, the genomic diversity results suggest that the SARS-CoV-2 is a genetically
modified strain of the CoV family and the mutated /modified genetic information may be
helpful for drug development against SARS-CoV-2.


https://npsa-prabi.ibcp.fr/cgi-bin/npsa
https://npsa-prabi.ibcp.fr/cgi-bin/npsa
http://www.sbg.bio.ic.ac.uk/phyre2/
http://www.sbg.bio.ic.ac.uk/phyre2/
https://www.ebi.ac.uk/tools/msa/clustalo/
https://www.ebi.ac.uk/tools/msa/clustalo/
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Figure 2. Analysis of genomic diversity SARS-CoV-2 taking sequence and structure of MP™ enzyme. (A) sequence—level
analysis of SARS-CoV (PDB ID: 2DUC) as the most similarity with SARS-CoV-2 (PDB ID: 6WTT) from PSI-blast;
(B) Structural superimpose of both SARS-CoV-MP™ and SARS-CoV-2—MP™; (C) Multiple sequence analysis between
top four homology models during PSI—blast and (D) Three—dimensional protein visualization of four similarity structure
of MP™ in a different color; and (E) Phylogenetic analysis with chosen top four homology models by the Neighbour-Joining
method to know the genomic similarity and inherited feature of currently emerged SARS-CoV-2.
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2.3. Virtual Screening by Molecular Docking Study

The present study used the PyRx 0.8 platform and AutoDock 4.2 software for molecu-
lar docking study against two SARS-CoV-2 targets (SARS-CoV-2—MP™ and -RdRp). Then,
we have employed the BIOVIA-DSV-2019 software to visualize molecular interactions of
protein—ligand complexes obtained from the docking study. The virtual screening was
repeated twice to get the most errorless—cum—convenient protein—ligand binding energy
or docking score (kcal/mol). Based on the docking score, the most potent six terpenoids
were again docked manually in AutoDock to confirm the ligand’s crystallographic binding
mode and appropriate docking score through 3-D and two—dimensional (2-D) molecu-
lar interactions with targets using the software BIOVIA-DSV-2019. Briefly, the ligand’s
binding affinity with the target protein’s active side is measured as docking score by the
number and type of interactions between ligand and amino acids residues of the functional
binding pocket. Finally, we have selected the most potential marine terpenoids based on
molecular docking score, types of interaction/bonding (hydrogen bond/ van der wall
bond /pi—pi interaction, etc.), and the bond length (A) with specific amino acid residues of
the target protein. According to AutoDock software, a docking score in higher negative
value exhibited ligand is considered the highest potency.

2.4. Physicochemical—Lipinski’s Rule of Five Profile Analyses

Lipinski’s rule of five (RO5) developed at Pfizer, states that a molecule should not
exceed 500 g/mol in molecular weight (MW), the water-octanol of the partition coefficient
(LogP) should be less than 5, the number of hydrogen donors (H-bd) groups <5, and the
number of hydrogen acceptors (H-ba) groups <10. These parameters generally dictate the
absorption and permeation of a drug. All criteria’s limitations are multiple of 5 (the name
as rule of five) [69,70]. Introduced further restrictions regarding the polar surface area
(PSA), the flexibility of molecules given by the number of rotatable bonds (PSA < 140 A2
and number of rotatable bonds <10). The physicochemical features—standardized RO5
profiles of each marine terpenoid were recorded and analyzed using the bioinformatic tool,
Swiss—ADME (http:/ /www.swissadme.ch/; assessed on 12 February 2021) to predict the
drug suitability profiles in comparison to reference drugs.

2.5. Toxicity and Pharmacokinetic Profile Prediction

The toxicity profile plays a vital role during the validation and acceptance of the human
recommendation of any drug candidates. Several possible toxicity profiles, such as hepa-
totoxicity, carcinogenicity, immunotoxicity, mutagenicity, cytotoxicity, toxicity class, and
lethal dose (LDsp), were predicted using the ProTox tool (http:/ /tox.charite.de/protox_II/;
assessed on 12 February 2021). Several pharmacokinetic parameters such as blood —brain
barrier (BBB), Gastrointestinal absorption (GI—abs.), P-glycoprotein, etc., and absorption,
distribution, metabolism, excretion, and toxicity (ADME/T) profiles also recorded using
SwissADME tool.

2.6. Overall Drug Likeness and SAR Analyses

The overall drug—likeness score or drug suitability value of terpenoids and reference
drugs were predicted using the tool Molsoft (http://molsoft.com/mprop/; assessed on
24 February 2021), which guided further experimental validation of a chemical entity.
Similarly, structural activity relationship (SAR) is a theoretical and versatile approach in the
drug development module to know the chemical composition related to biological activity
and possible inhibition mechanisms. Herein, the SAR analysis of potential terpenoids
was analyzed and compared with reported antiviral ICsq (1M) values and docking scores
(kcal/mol). This study used the ChemDraw Ultra 18.2 software to visualize the 2-D
chemical structure of terpenoids during SAR analysis.


http://www.swissadme.ch/
http://tox.charite.de/protox_II/
http://molsoft.com/mprop/
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3. Results and Discussion
3.1. Virtual Screening by Molecular Docking Study

The molecular docking scores (kcal/mol) from high—throughput virtual screening
results of individual terpenoids and reference FDA—approved antiviral drugs against
two drug targets are recorded (Table 2). Additionally, selected protein—ligand docking
complex interactions were visualized (Figure 3). Based on the docking score, the brevione
F (—8.4 kcal/mol), stachyflin (—8.4 kcal/mol), xiamycin (—8.4 kcal/mol), strongylin
A (—8.3 kcal/mol), thyrsiferol (—8.2 kcal/mol), capillobenzofuranol (—8.0 kcal/mol),
epitaondi—ol (—8.0 kcal/mol), and avarol (—7.9 kcal/mol) were some potential terpenoids
that exhibited potency similar to the reference antiviral drugs, lopinavir (—8.4 kcal/mol)
and darunavir (—7.5 kcal/mol) against SARS-CoV-2-MP™. Similarly, docking score of xi-
amycin (—9.3 kcal/mol), thyrsiferol (—9.2 kcal/mol), liouvilloside B (—8.9 kcal /mol), liou-
villoside A (—8.8 kcal/mol), stachyflin (—8.7 kcal/mol), venustatriol (—8.7 kcal/mol), bre-
vione F (—8.6 kcal/mol), thyrsiferyl—23—acetate (—8.6 kcal /mol) were some most potential
terpenoids that exhibited higher docking score against SARS-CoV-2-RdRp, when com-
pared with remdesivir (—7.4 kcal/mol) and favipiravir (—5.7 kcal/mol) the reference drugs
(Figure 3). Overall, most terpenoids exhibited equivalent anti-CoV potency when com-
pared with reference drugs. Thus, these potential terpenoids could be considered an alter-
native/ complementary therapeutic candidate for further experimental/pharmacological
evaluation mainstream application against SARS-CoV-2.

Table 2. Recorded individual docking scores (kcal/mol) against SARS-CoV-2 MP™ and RdRp, drug-likeness, lethal dose
(kg/mg), bioavailability score, toxicity profiles, toxic class, using the tools, PyRx, Molsoft and ProTox, respectively.

Docking Score Drug Likeness LDs, BA Toxicity Profiles
S1.No- = Cproracrem RdRp Score Score (mg/kg)  Score HT CG IT MG CT TC
1. —74 —67 0.42 1400 0.55 - - - - v
2. -7.0 -71 ~1.02 2000 0.55 - - - - v
3. —65 ~7.0 ~1.03 1200 0.55 - - - v
4, —68 —6.9 ~0.15 500 0.55 - - [ - - v
5, —78 -7.1 0.58 750 0.56 - - - - v
6. -79 -75 0.41 2300 0.55 - - - - \%
7. —84 —86 0.06 5 0.55 - - - I
8. —65 -75 ~0.77 7 0.55 - i
9. —6.6 -7.0 0.29 7 0.55 - I
10 ~7.0 —6.6 ~0.99 7 0.55 - [ ] - I
1 —74 ~80 0.28 1000 017 - - - v
12 ~8.0 -73 0.29 500 0.55 - - - - v
13 -77 -77 ~0.75 500 0.55 - - - - v
14 —54 —6.1 0.28 1500 0.55 - - - - v
15 ~7.2 -71 0.03 2200 0.55 - - - \%
16 —64 —62 0.20 750 0.55 - - - - v
17 -75 -57 ~1.14 600 0.55 - - - - v
18 —68 -7.0 ~0.17 5000 0.55 - - - v
19 —6.7 —6.8 ~0.17 5000 0.55 - - - v
20 —34 -33 ~1.28 500 0.55 - - - i
21 —29 -35 —041 500 0.55 - - - I
22 -3.0 -32 —041 500 0.55 - [ - I
23 —67 -7.0 —0.34 79 0.55 - - - - - it
24 ~80 ~80 —0.41 1000 0.55 - - - v
25. —68 -77 ~1.08 2000 0.55 - - - - - v
26. -71 ~79 ~0.10 1016 0.55 - - - v
27. —6.1 -7.0 ~0.81 2000 0.55 - - - v
28. —65 —6.8 —0.54 950 0.56 - - v
29. -78 -75 ~0.78 500 0.55 - - - v
30 —65 —77 —0.63 4000 0.55 - - - v
31 -78 -78 ~0.29 79 0.55 - - - - i
32 -73 —72 0.10 2800 0.56 - - v
33. —6.7 —65 0.25 5000 0.56 - - - v
34, -7.1 -71 —0.25 79 0.55 - - - - il
35 -7.3 -88 0.50 4000 017 - - - v
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Table 2. Cont.
) Docking Score Drug Likeness LDs, BA Toxicity Profiles
S1.No- = Cerosscree RdRp Score Score (mg/kg)  Score HT CG IT MG CT TC
36. —-7.5 —8.9 0.45 4000 0.17 | | || \%
37. —6.7 -7.3 —1.40 1000 0.56 | | | | v
38 —6.9 —-7.5 —0.25 10000 0.56 | | | VI
39. —6.4 —6.8 —0.69 10000 0.55 | | \Y!
40. —6.3 -7.3 —0.48 2300 0.55 | | | A%
41. -75 -71 0.09 860 0.55 | | | v
42. -7.7 -7.6 0.56 3000 0.55 | | | | A%
43. —-7.8 -7.9 —0.47 105 0.56 | | | III
44. —6.1 —6.5 —0.28 5000 0.55 | | | | \%
45. —6.1 —6.0 —0.11 400 0.55 | || | | I\Y%
46. —6.1 —7.4 —0.32 400 0.55 | | | v
47. —-74 -7.3 0.29 3000 0.55 | | | | \Y%
48. —6.9 —-7.5 1.08 3000 0.55 | || | | \%
49. -71 —6.4 0.41 3000 0.55 | | | v
50 —8.0 —-7.5 —1.12 1000 0.55 | | | I\Y%
51 —-7.2 —-7.5 0.29 100 0.56 | | 1
52. —-7.2 —-7.0 —0.07 8 0.56 | | 1I
53. —6.5 —-7.0 —0.40 7 0.55 | | I
54 —-7.5 —-7.3 —0.27 750 0.55 | | | I
55 —-7.5 -7.3 —0.34 79 0.55 | | || | | 111
56 —6.0 —6.4 —-0.27 3200 0.55 | | A%
57 —8.4 —8.7 0.34 4000 0.55 | || \
58 —8.3 —74 0.39 1000 0.55 | | | | | v
59. —8.2 —-9.2 —0.33 2600 0.55 | | \%
60. —8.0 —8.6 —0.40 5000 0.55 | | | v
61 —6.7 —6.2 0.47 2000 0.55 | | | | v
62. —6.3 —6.7 0.47 2000 0.55 | || | | v
63. -7.6 -8.7 -0.33 2600 0.56 | A%
64. -84 -9.3 —0.02 1000 0.56 | | | v
65. —6.8 -7.8 —0.08 2000 0.55 | | | | | v
66. —-7.3 —-7.6 —0.84 1200 0.56 | | || | I\Y%
67. -7.6 —6.9 —0.04 5000 0.55 | | | v
68. —6.6 —-7.0 —0.25 1000 0.55 | | || | I\Y%
69 —-7.5 0.60 245 0.55 | 1T
70 -84 1.10 5000 0.55 | | | A%
71 ND —5.7 —0.87 2000 0.55 | | v
72 ND —7.4 0.13 1200 0.17 | | | | v

Serial number 69 to 72 represents standard drugs, 69—darunavir, 70—lopinavir, 71—favipiravir and 72—remdesivir; BA, bioavailability
score; CG, carcinogenicity; CT, cytotoxicity; LDsy, fifty percent lethal dose (mg/kg); HT, hepatotoxicity; IT, immunotoxicity; MG, muta-
genicity; TC, toxicity class. Different colors mainly represented each chemical’s toxicity profiles; green color represented the chemical is
safe/non-toxic, light cyan-color moderates secure, while red color harmful/toxic and soft brick moderate safe for human health.

Based on previous reports, the listed sixty —eight marine terpenoids showed antiviral
activity against EV71, HCMV, HIV-1, HIN1, HSV-1, VSV, Rhinovirus, and CoV (see the
reference in Table 1 for individual experimental study). Among these, several terpenoids
ICs0/EDs( value was <1 uM against some specific virus. For example, the stachyflin exhib-
ited anti—H1NT1 activity at ICsg = 0.003 uM; thyrsiferyl-23-acetate activity against HSV-1,
CoV-A59 and VSV was within range of EDs5 = 0.15-0.77 uM; thyrsiferol and venustatriol
displayed potency against HSV-1, CoV-A59 and VSV within EDsy = 0.16-0.82 uM; avarol
exhibited ICsp = 0.30 uM against HIV-1; aphidicolin exhibited ICsy = 0.59 uM against HSV,
HCMYV; mycaperoxide A exhibited IC5p = 0.6—4.0 pM against HSV-1 and VSV; mycaper-
oxide B exhibited ICsy = 0.58-2.35 uM against HSV-1, and VSV, solenolide A exhibited
IC509 = 0.70 uM against rhinovirus and HSV; and spongiadiol exhibited IC5y = 0.75 pM
against HSV-1, were recorded (Table 1). Specifically, five terpenoids namely halitunal,
thyrsiferol, thyrsiferyl-23-acetate, reiswigin A, and venustatriol, were tested against CoV
strains [34,44,55,62]. From a potential point of view, the current molecular docking re-
sults also verify and support the previous antiviral experimental records of terpenoids as
exhibited similar types of efficacies against SARS-CoV-2 (Table 2).
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Figure 3. Graphical presentation of protein—ligand molecular interactions in the 3-D and 2-D arrangement of three

most potential terpenoids against two different drug targets using the software, BIOVIA—DSV. The left side images,

(A) Interaction of the stachyflin (—8.5 kcal /mol); (B) Interaction of thyrsiferol (—8.4 kcal/mol); (C) Interaction of xiamycin
(—8.4 kcal/mol) and (D) Interaction of the reference drug, lopinavir (—8.4 kcal/mol) against SARS-CoV-2—MP™ (PDB
ID: 6WTT); (E) Interaction of xiamycin (—9.3 kcal/mol); (F) Interaction of thyrsiferol (—9.2 kcal/mol); (G) Stachyflin
(—8.8 kcal/mol); and (H) Interaction of the reference drug remdesivir (—7.4 kcal/mol) against SARS-CoV-2—RdRp (PDB

ID: 7BW4), respectively.

Generally, terpenoids are more diverse groups of secondary metabolites that exhibited
a broad —spectrum inhibition with multiple types of mode of action during the treatment
against several diseases [71-76]. Most plant and marine terpenoids showed potent antiviral
activity in cell lines; however actual mode of inhibition is still under investigation [77-79].
Especially, terpenoids showed virucidal activity against the various viruses by direct inacti-
vation of free viral particles, avoiding host interaction, induced cell cycle arrest at GO or
G1 phase, and overall target to inhibit viral replication in host-cell [6,80,81]. In the SARS-
COV-2 case, several terpenoids were displayed potent activity in different cell lines and
mostly computational investigation without proper mode of inhibition. Hypothetically, ter-
penoids target to attach with angiotensin—converting enzyme-2 to avoid host—interaction
and replication targeting MP™ and RdRp of SARS-COV-2 [6,80,82]. At this stage, more
computational investigation, drug chemistry, and SAR analysis may help to explore more
drug-action information. In addition, like virucidal activity, terpenoids showed potent
antibacterial activity by disturbing membrane permeability and cell morphology, reducing
salt tolerance, inhibiting biofilm pathways, and targeting the cell membrane synthesis
pathways [75,83]. Similarly, it showed potential antiparasitic/antimalarial activity by
binding with hemin part of infected erythrocytes like the mainstream chloroquine [73,84],
anticancer by disruption of microtubules, suppress the cyclin D1, apoptosis, and cell cy-
cle arrest [74,85], treat neuro—disorder by inhibiting the neurotransmitters GABA and
cannabinoid receptor-2 [86,87], antidiabetic potency by activating the «-adrenoreceptors to
increase the release of an opioid peptide (3-endorphin [72,73,88].
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On the other hand, the CADD is an ideal platform in the current drug development
module to accelerate the ‘lead’ selection by a target—specific approach. [26,66]. Molecular
docking mainly expresses a candidate’s biological potential against a particular target
enzyme/protein associated with disease initiation and proliferation by molecular interac-
tion/binding affinity [26,66]. However, sometimes molecular docking produces ambiguous
results; as indicated, proper ligand and protein structure analysis should follow to get
proper outputs. For example, Hosseini et al. performed a docking against MP™ with PDB
ID: 6LU7_A (similar to our target MP™ PDB ID: 6WTT) with several standard drugs. From
which, the lopinavir displayed three docking scores: —7.26 from the Glide, —9.3 from
AutoDock Vina, and —81.57 from rDock software [89]. Thus, docking programs/software
are algorithm-specific, represented in different patterns from software to software. For
example, AutoDock, ArgusLab, Glide represents in negative sign, while Hex, PathDock,
HDOCK like docking program represents in positive sign. In addition, there is no standard
range of docking score or potentiality has been established. The only comparison between
desire ligands and stand drugs of docking score are the ideal option to select the best
potential candidates from many—still, several improvements in molecular docking study
under investigation and hopefully shoutout this issue soon. Indeed, including docking
score and several other predictions such as physicochemical, cytotoxicity, drug—likeness,
and pharmacokinetics profiles through various computational tools also help select the
most potential lead chemicals. Molecular docking, like other computational-based drug
analyses, helps reduce time and experiments during the selection of potential candidates
based on training set candidates. Overall, experimental/clinical work on compounds’
activity, toxicity, and pharmacokinetics results is the actual validator for mainstream drug
use [33,48,49].

3.2. Physicochemical—Lipinski’s Rule of Five Profile Analyses

The physicochemical property or the well recommended RO5 properties of sixty-eight
marine terpenoids are summarized in Table S1. Based on the standard RO5, most of the
marine terpenoids obey the RO5 rule. Briefly, the RO5 violation occurs when the chemical’s
molecular weight is more than 500 g/mol, XLogP value more than five, H—bond accepter
number more than 10, and the tPSA value more than 142 A [23,69,70]. Broadly, eleven
compounds violate based on molecular weight, twenty-one violates XlogP values, two
disrupt the H-bond acceptors and donors’ suitable drug-able values mentioned in the
ROS. In addition, except for the most potential candidate, the stachyflin and other marine
products slightly violate one or two parameters of RO5. Besides, three drugs (darunavir,
lopinavir, and remdesivir) from four reference drugs also violate the RO5 rules. Thus,
physicochemical and RO5 profile prediction and analysis to select potential drug-able oral
drug candidates at the early or preclinical stage are ideal approaches and mostly accessible
through bioinformatic and chemoinformatic tools.

3.3. Toxicity and Pharmacokinetic Profile Prediction

The computationally predicted hepatotoxicity, carcinogenicity, immunotoxicity, mu-
tagenicity, and cytotoxicity profiles of marine compounds and referral drugs (kg/body
weight) are recorded (Table 2). This type of prediction is statistical reports of previously
registered training set compound in the ProTox tool. This toxicity data confirmed that most
marine compounds are safe related to their hepatotoxic, carcinogenic, and mutagenic pro-
files, as indicated in green and light green. However, some issues with immunotoxicity are
marked in red and pale pink [90,91]. For example, the selected drug stachyflin with toxicity
class five (V) indicated a non—toxic/safer chemical. According to toxicity class, higher
toxicity class is considered to be higher in safety. Out of sixty-eight marine terpenoids,
fifteen compounds were under the toxicity class of V-toxicity. Besides five terpenoids (in
class-I and -II), most terpenoids displayed under class-III and IV from toxicity class as
indicated as minor in toxicity. Resultant data reveals the reference drug lopinavir to be
safer than other drugs. This study claims marine terpenoids to be safer based on their high
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LDs value and toxicity concentration. Thus, toxicity prediction through the computational
tool offers the advantages of determining highly toxic compounds early, and can reduce
experimental and animal toxicity studies.

Similarly, computational tools can predict possible ADMET properties for a chemical
according to the training set chemical present in the system. The ADMET properties of all
marine terpenoids and reference drugs are recorded in Table S2. Only eight terpenoids and
reference drug darunavir and favipiravir showed low gastrointestinal absorption properties.
Similarly, thirty-four terpenoids with all three drugs (except favipiravir) manifest strength
to cross the blood-brain barrier. Additionally, CYP1A2, CYP2C19, CYP2C9, CP2D6, and
CYP3A4 inhibition activity also predict an average condition as consumption/loss of drug
concentration before target inhibition inside the body. The skin permeability (LogKp) value
of terpenoids is similar to the reference drugs [69]. According to the tool, SwissADME, more
negative LogKp values indicated lower permeability as LogKp depends on the molecular
size and lipophilicity of a compound. The predicted ADMET properties of terpenoids were
similar to the reference drugs, which gives a positive indication to develop a potential
drug. Generally, ADMET properties can be consistently measured in mice models in the
end session of the drug development. Nevertheless, prediction with computational tools is
also beneficial to know the probable information, and that could be helpful to reduce the
resource and in vivo experiments in current drug development [92].

3.4. Overall Drug Likeness and SAR Analyses

The drug-likeness or drug suitability score associated with the physiological, phar-
macokinetics, and toxicity profile was also predicted (Table 2). From the drug-likeness
record, twenty-eight terpenoids showed positive drug-likeness with a range of 0.03-1.08,
while the compound seco—pseudopterosin I displayed the most favorable score of 1.08.
Terpenoids namely, avarol (0.06), bromophycolide A (0.28), capillobenzofuranol (0.29),
liouvilloside A (0.50), liouvilloside B (0.45), stachyflin (0.34), strongylin A (0.39) exhib-
ited the positive drug-likeness scores. On the other hand, epitaondiol (—0.41), thyrsiferol
(—0.33), thyrsiferyl-23-acetate (—0.40), venustatriol (—0.33), and xiamycin (—0.02) exhib-
ited negative drug—likeness scores. Overall, terpenoids such as acDa-1, pseudopterosin P,
seco-pseudopterosin I, usneoidol E, and usneoidol Z were selective compounds possessing
drug suitability profiles, active docking score, and safer toxicity classes. Similarly, lopinavir
also showed 1.10, while the favipiravir exhibited —0.87. According to the molsoft tool, the
drug—likeness between >0 and <2 is a suitable score for a chemical. Thus, the computa-
tional investigation indicated that some selective terpenoids have enough potential profiles
to convert ‘lead’ to ‘drug’. Mostly, the CADD is a potential and cost-effective tool in current
drug discovery and even pharmaceutical companies during lead drug selection.

From SAR analysis, brevione F, stachyflin, strongylin A, and xiamycin terpenoids
contain some common pharmacophores, where the hydroxy (-OH) group differentiates
them within reported antiviral activity and current docking score (Figure 4A). For example,
thyrsiferol exhibited antiviral activity within EDsy = 0.16-0.82 uM, and thyrsiferyl-23-
acetate exhibited antiviral activity within ED5y = 0.15-0.77 pM against HSV-1, CoV-A59,
and VSV. Similarly, thyrsiferol showed the docking scores, —8.3 and —7.4; and thyrsiferyl-
23-acetate showed —8.2 and —9.2 kcal/mol against two targets of SARS-CoV-2, respectively.
Furthermore, the SAR analysis revealed that a slight variation in recorded experimental
and computational results between both compounds is due to the acetaldehyde group
(CH3CHO) in thyrsiferyl-23-acetate structure as well showed comparatively less activity
than thyrsiferol (Figure 4B). Another pair of broad —spectrum antiviral marine diterpenes,
reiswigin A and B from marine sponge (Epipolasis reiswigi), exhibited potential activity
against HSV-1 and VSV with an ECsg value, 6.57 and 6.62 uM, respectively. In addition,
both diterpenes exited their potency against CoV-A59 strain with ten times higher ECs
value, 65. 7 and 66.2 uM [55]. According to SAR analysis, both chemical structures
are slightly different by attachment of isobutane in reiswigin A and isobutene reiswigin
B at the tail end (Figure 4C). The attachment of isobutene mostly slightly reduces the
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antiviral activity. From computational results, a similar docking score against SARS-CoV-
MPT, non—toxic profiles (class-V and IV) with negative drug-likeness scores, —0.28 and

—0.11 (Table 2).

Brevione F

Xiamycin

B

HO

Thyrsiferol “

Venustatriol

Reiswigin A Reiswigin B

Brianthein V Brianthein Y Brianthein Z
E
2 OH
/O OH o] o] s HO
o) o/
i OH
Mycaperoxide A Mycaperoxide B Peyssonol A Peyssoncl B

Figure 4. A schematic presentation during the structural—activity relationship (SAR) on various sets (A-F) of marine

terpenoids. The chemical structures were generated using the software ChemDraw 18.2 Ultra.

On the other hand, the polyfunctional chlorine attached diterpenoids, brianthein-V, -Y,
and -Z from Briarurn asbestinum (a marine soft coral), displayed anti-CoV against CoV—A59
strain with higher ECsy values, 83.75, 702.98, and 147.87 pM, respectively [34]. From
SAR analysis, cyclodecene (C1gHjg), cyclohexene oxide (C¢H19O), and y-butyrolactone or
dihydrofuran-2(3H)-one (C4H¢O,) with chlorine in each in all three structures. Indeed, the
presence of two methyl butyrate, one methyl acetate with a methyl—like group attachment
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within cyclodecene ring in brianthein-V, one methyl butyrate, two methyl acetate with
a hydroxy group attachment with cyclodecene ring in brianthein-Y, and three methyl
acetate with a hydroxy group attachment with cyclodecene ring differentiate the struc-
ture and activity too (Figure 4D). Similarly, brianthein-V showed a higher docking score,
—7.0 kcal/mol against SARS-CoV-MP™, and brianthein-V showed a higher docking score,
—7.5 kcal/mol against SARS-CoV-2—RdRp. However, brianthein-Y potential positive
drug-likeness score, 0.29, while the other two derivatives showed negative scores, —0.77
and —0.99, with the same toxicity class-II and LDsj value 7 mg/kg. Overall, the assembly
of all functional groups in all three structures with slight variation showed poor activity
with higher cytotoxicity, which may be due to presence of two corrosive/toxic functional
groups, cyclohexene oxide and y-butyrolactone with a chlorine atom.

Another pair of cyclic norsesterterpene peroxides, mycaperoxide A and B from marine
sponge (Mycale sp.), exhibited potential antiviral activity against HSV-1 and VSV with ICsg
values, 0.6—4.0 and 0.58-2.35 uM, respectively [51]. According to SAR, both structures are
nearly equal with an extra -CHjz group, and the position -OH is changed mycaperoxide B as
the chemical formula Cp4HyO5 and Cp5Hy405. However, the presence of additional -CHjs
group and position of -OH group comparatively higher the antiviral activity (Figure 4E).
From computational investigation also showed similar types of results as slightly varies in
molecular docking score with similar LDs5g, bioavailability, and toxicity classes. Neverthe-
less, both chemicals showed a negative drug-ability score, —0.25 and —0.69. In addition,
peyssonol A and B are another pair of sesquiterpene hydroquinones derived from marine
red alga (Peyssonnelia sp.) and exhibited anti—HIV (HIV-1 and HIV-2) activity [52]. Com-
batively, peyssonol B displayed potential activity against HIV-1 at an ICs( value, 4.30 uM,
and against HIV-2 at 14.70 uM than peyssonol A at 6.40 21.30 uM, respectively [52]. The
SAR analysis also confirmed that the presented an acetaldehyde and bromine atom in
peyssonol A and peyssonol B structure contains a double bond in parent decahydron-
aphthalene nucleus, a methyl propionate in place of acetaldehyde, and no bromine atom
was present. Overall, the presence of single methyl propionate comparatively showed
higher anti-HIV activity than acetaldehyde and bromine combination (Figure 4F). Similarly,
peyssonol B showed a higher docking score, —7.5 kcal /mol against SARS-CoV-MP™, with a
positive drug-ability, 0.09 under toxicity class—IV. On the other hand, peyssonol A showed
a higher docking score, —7.3 kcal/mol against SARS-CoV-2—RdRp, a negative drug-ability,
—0.48 with higher non-toxic than peyssonol B with toxicity class-V (Table 2).

Overall, the SAR analysis confirmed that small attachment in the parent scaffold
directly influenced the biological activity, toxicity, and pharmacokinetics. Thus, dur-
ing drug development, SAR analysis also plays an essential role in biological activity
and toxicity profiles analysis of a series of drug candidates based on their chemical
structure [34,51,52,55,93-95].

The evolution of zoonotic viruses HIN1, Nipah, Ebola, and present SARS-CoV-2
was grown in any conditions followed the ‘theory of existence” with a newer genetic ar-
rangement through drug pressure or any environmental impacts [96,97]. Indeed, human
involvement in other ecosystems out of ethics for their benefits may be another factor
for developing such shocking outbreaks worldwide. The newly emerging SARS-CoV-2
is a novel and aggressive\e pathogen with the rapid development of newer variants and
transmission [2,3]. The global research community already spent enormous effort on its
genome study to get more information on evolution and pathogenesis and continue inves-
tigating active drug/vaccine candidates to control the pandemic. The study of genomic
diversity gives a few inherited characteristics that are most beneficial for locating potential
therapeutic candidates. After enormous efforts, some vaccine candidates are used without
FDA approval to control the emerging situation. However, the rapid genetic mutations
reduce the efficacy of proposed drug and vaccine candidates. Thus, success against such a
nasty virus is a challenge in front of the global scientific community.

In the meantime, worldwide laboratories share a massive amount of genomic in-
formation, which is most difficult to analyze without bioinformatics tools. Additionally,
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project many potential drugs and natural products against SARS-CoV-2 with the CADD
platform [18,79,98-100]. At present, several tools and databases of bioinformatics are avail-
able for gene analysis to vaccine/drug development. Mostly, systematic computational
screening is the most cost—effective and resource-saving approach towards select the ‘lead’
candidate(s) in the current drug development module [18,23,89,101]. Overall, bioinformat-
ics tools continuously explore hidden genomic information and mainly identified potential
natural lead candidates from different sources against SARS-CoV-2 for further experimental
study and validation [14,100,102].

Generally, natural resources are the most conservative sources for therapeutic pur-
poses since the primitive age. The toxicity, pharmacokinetics, and drug-likeness profiles
are the most crucial parameters for selecting potential candidates. Thus, bioinformatics
tools could be considered the most resource-saving approach to predicting drug—ability
activities early stage. The standardized RO5 rule based on physiological properties, toxic-
ity prediction, ADMET, and overall drug-likeness property analysis finds the drawback
of any selected candidates [69,103,104]. Mainly, toxicity profiles depend on the drug’s
chemical composition, while withdrawal decisions depending on its biological activity
concentration. Interestingly this study confirms that selected terpenoids exhibits antiviral
activity in lower concentrations while delivers no toxicity even after 10-fold concentra-
tion. On the other hand, several alternative techniques such as structural modification,
chemical conjugation, nano-drug delivery, and polymer-coated formulations with tools
of medicinal chemistry are available to improve the drug-ability profiles of most poten-
tial candidates [95,105,106].Overall, the above computational investigations with various
bioinformatic, chemoinformatic tools and perspective drug analysis by SAR can analyze
the potency, drug chemistry, and drug—ability to select potential ‘lead” candidates from
a plethora of broad-spectrum antiviral marine terpenoids, i.e., brevione F, stachyflin, and
xiamycin systematically and cost—effectively to counter the newly emerged SARS-CoV-2.

4. Conclusions

Currently, the global primary health system suffers from emerging SARS-CoV-2 or
COVID-19, and there are urgent necessities of potential regimens to control the gruesome
virus. Including drug repurposing, several natural products have been under various exper-
imental/clinical validation stages towards the control of SARS-CoV-2. Opportunistically,
locate the most potential drug ‘lead” candidates against SARS-CoV-2 from a broad-spectrum
antiviral marine terpenoids library through bioinformatics, cheminformatics, and medici-
nal chemistry tools may consider as a prudent approach in the current drug development
module. From an extensive computational drug development point of view, brevione
F, liouvillosides A and B, strongylin A, stachyflin, thyrsiferol, thyrsiferyl-23-acetate, and
xiamycin are some potential terpenoids based on strong binding —affinity with SARS-CoV-
2—MP™ and -RdRp enzymes and ideal drug—ability profiles comparatively higher than
the reference antiviral drugs (darunavir, favipiravir, lopinavir, and remdesivir). Overall,
docking score, drug-likeness, and toxicity profile concluded that the stachyflin is the most
potent, drug—able, and safe candidate that could use against SARS-CoV-2 after some
pharmacological validation.
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