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Abstract: Methylglyoxal (MGO) is a highly reactive α-dicarbonyl compound formed endogenously
from 3-carbon glycolytic intermediates. Methylglyoxal accumulated in plasma and urine of hyper-
glycemic and diabetic individuals acts as a potent peptide glycation molecule, giving rise to advanced
glycation end products (AGEs) like arginine-derived hydroimidazolone (MG-H1) and carboxyethyl-
lysine (CEL). Methylglyoxal-derived AGEs exert their effects mostly via activation of RAGE, a cell
surface receptor that initiates multiple intracellular signaling pathways, favoring a pro-oxidant
environment through NADPH oxidase activation and generation of high levels of reactive oxygen
species (ROS). Diabetic bladder dysfunction is a bothersome urological complication in patients with
poorly controlled diabetes mellitus and may comprise overactive bladder, urge incontinence, poor
emptying, dribbling, incomplete emptying of the bladder, and urinary retention. Preclinical models
of type 1 and type 2 diabetes have further confirmed the relationship between diabetes and voiding
dysfunction. Interestingly, healthy mice supplemented with MGO for prolonged periods exhibit
in vivo and in vitro bladder dysfunction, which is accompanied by increased AGE formation and
RAGE expression, as well as by ROS overproduction in bladder tissues. Drugs reported to scavenge
MGO and to inactivate AGEs like metformin, polyphenols, and alagebrium (ALT-711) have shown
favorable outcomes on bladder dysfunction in diabetic obese leptin-deficient and MGO-exposed
mice. Therefore, MGO, AGEs, and RAGE levels may be critically involved in the pathogenesis of
bladder dysfunction in diabetic individuals. However, there are no clinical trials designed to test
drugs that selectively inhibit the MGO–AGEs–RAGE signaling, aiming to reduce the manifestations
of diabetes-associated bladder dysfunction. This review summarizes the current literature on the
role of MGO–AGEs–RAGE–ROS axis in diabetes-associated bladder dysfunction. Drugs that directly
inactivate MGO and ameliorate bladder dysfunction are also reviewed here.

Keywords: dicarbonyl stress; RAGE; oxidative stress; polyphenols; metformin; alagebrium

1. Introduction

Methylglyoxal (MGO) is a highly reactive α-dicarbonyl compound endogenously
generated during the glycolytic pathway [1]. Hyperglycemia in diabetic and obese patients
markedly elevates the plasma and urine levels of MGO as a consequence of the glycolytic
overload [2]. The abnormal accumulation of MGO has been referred to as dicarbonyl stress,
which may be implicated in many diseases [3]. Methylglyoxal promotes post-translational
modification of peptides or proteins, ultimately leading to the formation of advanced
glycation end products (AGEs), the most studied of which include arginine-derived hy-
droimidazolone (MG-H1) and carboxyethyl-lysine (CEL) [1]. MGO also covalently modifies
DNA, leading to nucleic acid AGE formation, consisting mainly of guanine adducts. AGEs
bind their cell membrane-anchored ligand receptor, termed RAGE [4], triggering multiple
intracellular signaling pathways, including the activation of NADPH oxidase that leads
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to increased production of reactive oxygen species (ROS), thus contributing to generate
a pro-oxidant environment. Diabetic bladder dysfunction (DBD) is a highly prevalent
condition that may affect the detrusor, nerve fiber terminals, urothelium, and urethra, and
manifests as storage problems such as OAB and urge incontinence, and voiding problems
such as decreased sensation and increased capacity [5,6]. DBD may progress from detrusor
overactivity at initial stages to detrusor underactivity at advanced stages of this disease, a
condition defined by the International Continence Society (ICS) as contraction of reduced
strength and/or duration, resulting in prolonged bladder emptying and/or a failure to
achieve complete bladder emptying within a normal timespan [5,7–9]. The underactive
bladder comprises mostly voiding phase symptoms such as slow stream, intermittency,
hesitancy, feeling of incomplete emptying of the bladder, and urinary retention [10]. In-
creased capacity and decreased sensation, together with recurrent urinary tract infections,
may also be present in DBD [11,12]. Preclinical models of type 1 (streptozotocin, Akita
mice) and type 2 diabetes (high-fat diets, ob/ob and db/db mice) have provided further ev-
idence confirming the relationship between diabetes and obesity with voiding dysfunction.
However, little is known about the importance of MGO generation and, hence, AGEs–
RAGE activation in the pathophysiology of diabetic-associated bladder dysfunction [13].
Interestingly, in mice treated orally with MGO for prolonged periods, voiding spot assays
in conscious mice and urodynamic evaluation in anesthetized mice revealed significant
increases in total void volume, volume per void, micturition frequency, and nonvoiding
contractions number, along with enhanced in vitro bladder contractility [14]. In addition,
elevated levels of MGO, AGEs, RAGE, and ROS were found in bladder tissues from mice
chronically treated with MGO, pointing out that they could be important markers of DBD
pathophysiology [15]. Similar data were obtained in bladder tissues of diabetic obese ob/ob
mice [16]. The antihyperglycemic drug metformin [17–19] and polyphenols like resveratrol
and epigallocatechin-3-gallate [20] can directly scavenge MGO, explaining, at least in part,
their capacity to ameliorate diabetes-associated bladder dysfunction. However, no clinical
trials exist aiming to test inhibitors of the MGO–AGEs–RAGE signaling as potential drugs
to prevent and treat manifestations of diabetes-associated bladder dysfunction. Therefore,
the design and development of new drugs that inhibit the MGO–AGEs–RAGE axis may
become an interesting approach for the prevention and treatment of bladder dysfunction in
diabetic conditions. The present review aimed to provide an updated overview on bladder
dysfunction in diabetic and obesity conditions in animals and humans, emphasizing the
MGO–AGEs–RAGE signaling pathway as a potential mechanism implicated in the patho-
physiology of this disorder, focusing on bladder overactivity. Drugs that inactivate MGO
or inhibit AGEs formation in parallel to reducing diabetic-associated bladder dysfunction
are also reviewed here.

2. Lower Urinary Tract Symptoms (LUTS) and Overactive Bladder (OAB) Syndrome

Urinary bladder function is regulated by a complex interaction of efferent and afferent
fibers from the autonomic nervous system and somatic innervation [21]. An imbalance
between these systems leads to lower urinary tract symptoms (LUTS), which comprise
storage, voiding, and post-micturition symptoms [5]. Storage symptoms consist of al-
tered bladder sensation, increased daytime frequency, nocturia, and urgency incontinence,
whereas voiding symptoms consists of hesitancy, intermittency, weak or irregular stream,
straining, and terminal dribble. Post-micturition symptoms include dribbling and sensa-
tion of incomplete voiding. The storage symptoms are generally more bothersome than
voiding or post-micturition symptoms, as observed in both men and women. Overactive
bladder (OAB) syndrome is a subgroup of storage symptoms consisting mainly of urinary
urgency. In men, LUTS typically occur in association with bladder outlet obstruction (BOO)
secondary to benign prostatic hyperplasia (BPH), despite that it may occur independently
of BOO or prostatic diseases, whereas in women, the most frequent LUTS is stress urinary
incontinence [22]. Epidemiological studies have shown OAB to be a widely prevalent con-
dition in men and women [5,23], with an incidence of 16.6% in a sample from Europe [24],
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16.9% in women and 16.0% in men in a sample from the USA [25], and an overall prevalence
of OAB of 18.9% in a South American population [26,27]. Epidemiological studies applying
the ICS definition of OAB across multiple countries found a prevalence of 11–13% [5]. LUTS
negatively impacts the social quality of life and sexual health of patients [28,29].

3. Association of Metabolic Syndrome and Diabetes with Urinary Bladder Dysfunction

Metabolic syndrome, the medical term for a combination of cardiometabolic risk
factors such as central obesity, hyperglycemia, hypertension, and dyslipidemia, is critically
involved in the onset of many cardiovascular diseases, being the leading cause of death
worldwide [30]. Outside the cardiovascular system, metabolic syndrome associated with
increased body mass index (BMI) represents an important risk factor for LUTS/OAB
and urinary incontinence [31–44], despite some studies showing no positive association
between metabolic syndrome and LUTS in men and women [45,46]. An association between
metabolic syndrome and interstitial cystitis/bladder pain syndrome (IC/BPS) has been
reported in women [47]. Elevated body mass index and diabetes also increase the risk of
urinary tract infections and pyelonephritis [48,49]. Metabolic syndrome is also associated
with LUTS secondary to benign prostatic hyperplasia [50–52]. Surgical and nonsurgical
weight loss leads to improvements in stress urinary incontinence [53], even though a
definite conclusion has not been achieved [54].

4. Bladder Dysfunction in Type 1 and Type 2 Diabetes in Patients and Animals

Diabetes mellitus is a chronic metabolic disease characterized by high blood sugar
levels (hyperglycemia) as a result of abnormal insulin production and/or insulin func-
tion. The most common and bothersome urological complication of diabetes mellitus
is DBD (or diabetic cystopathy), which affects more than 80% of individuals diagnosed
with diabetes [55–59]. The pathophysiology of DBD is multifactorial and may involve
alterations at all levels of the urinary tract, including the detrusor, urethra, urothelium, and
innervation [60]. Clinical DBD manifestations consist of storage bladder problems such as
OAB and urge incontinence, and voiding problems like poor emptying with resultant ele-
vated post-void residual urine [7,12]. Increased capacity and decreased sensation together
with recurrent urinary tract infections may also be present in DBD [11]. Preclinical models
of type 1 (T1DM) and type 2 diabetes (T2DM) have provided further evidence confirming
the relationship between metabolic diseases and bladder dysfunction [61–67].

T1DM can be mimicked by injection of streptozotocin (STZ) in rodents, a cytotoxic
glucose analogue that destroys pancreatic β-cells due to its high affinity for glucose trans-
porter 2 (GLUT2) [68,69]. Analysis of bladders from STZ-induced diabetes in male and
female rodents (rats and mice) revealed increased bladder mass [70–75], which is suggested
to represent a physical adaptation to increased urine production [76–78]. Despite that high
glucose levels and diabetic polyuria have been proposed as pathophysiological mechanisms
explaining bladder enlargement in the STZ model [79], a recent study comprising different
models of diabetes in rodents, including T1DM, did not confirm such a proposition [80].
Insulin administration can prevent, or even reverse, most of the morphological, functional,
and molecular bladder alterations in the STZ model [79,81–83]. Moreover, increases in both
volume and frequency of micturition [70,73], as well as in urinary frequency, capacity, and
number of nonvoiding contraction (NVCs) [66,84], have been reported in STZ-induced
diabetes, as revealed by urodynamic studies. Spontaneous voiding spot assays [85,86]
also revealed significant increases in voiding frequency, total voided volume, and mean
volume per micturition in STZ-injected mice [87], which are paralleled by in vitro detru-
sor overactivity [66,88]. However, after prolonged hyperglycemia and insulin resistance
in response to STZ, bladders may progress to an underactive detrusor and an inability
to produce an effective voiding [64] through mechanisms mediated by the activation of
NLRP-3 inflammasome [89]. Therefore, in STZ-induced diabetes, a temporal effect of
diabetes on bladder activity has been established, that is, an early phase of compensatory
followed by a later phase of decompensated bladder function [7,63,77,78]. In female Akita
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mice (T1DM model), diabetic bladder dysfunction also progresses from overactivity to
underactivity [90]. At the molecular level, the impairment of the nitric oxide—soluble
guanylate cyclase (sGC)—cyclic GMP signaling [82,91] and NLRP3 inflammasome activa-
tion in urothelial cells [89] have been proposed as a critical mechanism contributing to
bladder dysfunction. Nevertheless, conflicting data on different parameters of bladder
activity in animal models of STZ-induced diabetes models have been obtained, which
may possibly rely on both animal species and strain used, in addition to the disease time
course [77,78,92,93]. Experimental T1DM in rats and rabbits can also be induced using
alloxan, a hydrophilic unstable compound that shares a structure similar to glucose [94]. In-
creases in bladder weight, detrusor smooth muscle cells, capacity, and urinary output, along
with irregular bladder contractions, were observed in alloxan-induced diabetic rats [95–98].
In rabbits made diabetic by alloxan, an increase in bladder weight [99] and a reduction in
the vitro bladder contractions to carbachol were reported [100].

The main T2DM models that result in hyperinsulinemia and insulin resistance rely on
allowing animals free access to diets highly enriched in fats [101,102]. In addition to pro-
ducing the classical obesity-associated vascular dysfunction, male mice fed high-fat diets
progress to an overactive bladder phenotype, as evidenced mainly by filling cystometry
in anesthetized and awake rats and mice [103–105]. The resulting increased body weight,
hyperglycemia, and insulin resistance by prolonged high-fat diet intake in mice is also
accompanied by in vitro bladder overactivity as a consequence of high extracellular calcium
influx through L-type voltage-operated calcium [106–109]. The importance of calcium chan-
nels to bladder dysfunction has also been confirmed in diabetic db/db mice [110]. High-fat
diet-fed obese mice also display impaired urethral smooth muscle relaxations [111,112] and
prostate hypercontractility [105,113], which are suggested to contribute to the resulting
bladder overactivity. Impaired striated urethral muscle contractions were reported in
Zucker obese rats [114]. Contrasting to these studies, no evidence of bladder dysfunction
was observed in obese mice fed a high-fat diet for 16 weeks, as assessed by void spot
assays [115]. The temporal effects (up to 42 weeks) of different diets consisting of fructose,
cholesterol, and lard, at varying proportions and combinations, on 24 h urinary behavior
and conscious cystometry were investigated in rats [116]. Compared with the control
group, the total voided volume was lower in all experimental diets, and animals receiving
32.5% lard diet alone exhibited decreases in bladder capacity, mean voided volume, and
inter-micturition intervals that were indicative of an overactive bladder phenotype [116].

Leptin is a satiety hormone that is synthesized by adipocytes, the levels of which
increase with the adipose tissue mass [117]. Mice genetically deficient in leptin (ob/ob) or in
the leptin receptor (db/db) are hyperphagic, obese, hyperinsulinemic, and hyperglycemic,
and have been widely used as a T2DM model [118]. Similarly, in the STZ- or diet-induced
obesity models, ob/ob male mice exhibit bladder dysfunction characterized by increases in
urine volume and in vitro bladder smooth muscle contractions [119]. Increases in total void
volume and volume per void with no alterations of spot number were observed in five-
week-old male and female ob/ob mice, as evaluated by void spot assays [16]. Four- and
six-month-old ob/ob mice exhibited some degree of bladder dysfunction such as increases
in total urine volume and number of primary void spots, although that depended on
animal sex and animal age [115]. In male db/db mice, increases in bladder weight, voiding
frequency, and capacity together with elevated in vitro contractions were described [110].
Increases in detrusor smooth muscle area, urothelium area, and collagen content were also
reported in male and female db/db mice at 12, 24, or 52 weeks of age, which was suggested
to reflect a compensatory response to the increased urine output [120]. Double-knockout
hepatic-specific insulin receptor substrate 1 and 2 (IRS1 and IRS2) female mice that develop
T2DM exhibit bladder overactivity, high frequency of nonvoiding contractions, decreased
voided volume, and dispersed urine spot patterns [121].
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5. Methylglyoxal–Advanced Glycation End Products (AGEs)–RAGE Signaling Pathway

The abnormal accumulation of highly reactive dicarbonyl compounds as a conse-
quence of glycolytic overload has been referred to as dicarbonyl stress [1,3]. 1,2-Dicarbonyl
compounds include glucosone, 3-deoxyglucosone, methylglyoxal (MGO), and glyoxal, but
MGO is one of the most studied, given that it exerts a critical role in diabetes-associated car-
diovascular complications, such as diabetic nephropathy, endothelial dysfunction, postin-
farct remodeling, and impairment of insulin signaling [122–126]. Methylglyoxal, chemi-
cally referred as acetylformaldehyde, 2-ketopropionaldehyde, pyruvaldehyde, or 2-oxo-
propanal, is a highly reactive dicarbonyl compound formed endogenously from 3-carbon
glycolytic intermediates of glycolysis (dihydroxyacetone phosphate and glyceraldehyde-
3-phosphate), although it can also be generated as a byproduct of protein, lipid, and
ketones [127,128]. In addition to the endogenous production in mammalian cells, MGO
may be present at marked levels in many food products and beverages, as well as in
microorganisms [129]. In healthy conditions, glyoxalases (Glo) are the most important
enzymatic detoxification system that converts MGO into its end-product D-lactate [1].
Glyoxalases comprise two major enzymes, namely, Glo1 (lactoylglutathione methylglyoxal
lyase) and Glo2 (hydroxyacylglutathione hydrolase), with Glo1 described as a rate-limiting
enzyme [130–132]. Interestingly, the increased levels of glucose and MGO are normalized in
Glo-1 transgenic rats after induction of diabetes by intravenous injection of STZ [123,133].

The endogenous process by which endogenous MGO promotes post-translational
modification of peptides or proteins, ultimately leading to generation of AGEs, is referred
to as glycation [2]. The main MGO-derived AGEs in mammalian metabolism are arginine-
derived hydroimidazolone (MG-H1) and carboxyethyl-lysine (CEL) [134], but other AGEs
may be generated depending on the dicarbonyl species formed [135]. The mechanism
of MG-H1 generation involves the replacement of the hydrophilic positively charged
arginine residue by an uncharged, hydrophobic MG-H1 residue, producing misfolding
and activation of the unfolded protein response [1,136]. Incubation of human plasma from
heathy donors with different concentrations of MGO (10 and 100 µM) for 24 h induced a
time- and dose-dependent increase in MG-H1 levels, as detected within the first 6 h [137].

Once generated, AGEs bind their cell membrane-anchored ligand receptor (termed
RAGE), which is a member of the immunoglobulin superfamily of cell surface receptors
able to recognize endogenous ligands [4]. Structurally, RAGE consists of three immunoglob-
ulin domains, that is, (i) an extracellular part consisting of one V type and two C types (C1
and C2), (ii) a transmembrane spanning helix, and (iii) a short, highly charged intracellular
cytoplasmic “C” terminal tail that is primarily associated with the downstream signaling
pathways [138]. The extracellular domain devoid of cytoplasmic and transmembrane
domains is called soluble RAGE (sRAGE), which comprise two forms, namely, cleaved
RAGE (cRAGE) and endogenous secretory RAGE (esRAGE or RAGEv1) [139]. cRAGE is
generated at the cell surface by the proteolytic cleavage of RAGE at the boundary between
its extracellular and transmembrane portions, whereas esRAGE results from alternative
splicing of RAGE pre-mRNA. In advanced chronic kidney disease (CKD) patients, an
inverse association between risk of mortality and cRAGE/esRAGE ratio was reported [140].
RAGE plays an important role in the innate immune response and as a mediator of proin-
flammatory processes, triggering multiple intracellular signaling pathways, including the
generation of proinflammatory mediators such as IL-1β, VCAM-1, and TNF-α via the
transcription factor NF-κB [138] and phosphorylation of JNK and p38MAPK [141]. Fur-
thermore, many of the RAGE actions have been attributed to the activation of NADPH
oxidase [142], which leads to excess formation of ROS, thus contributing to generate a
pro-oxidant environment [143–145]. Figure 1 illustrates the MGO–AGEs–RAGE signaling
and glyoxalase system (Glo1 and Glo2 enzymes).
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Figure 1. Methylglyoxal (MGO) is a highly reactive α-dicarbonyl compound generated endoge-
nously during the glycolytic pathway. Hyperglycemia in type 1 (T1DM) and type 2 diabetic (T2DM)
individuals markedly elevates plasma and urinary levels of MGO as a consequence of glycolytic
overload. The abnormal accumulation of MGO (dicarbonyl stress) has been implicated in many
diseases. Methylglyoxal promotes post-translational modification of peptides or proteins, leading
to the formation of advanced glycation end products (AGEs), including hydroimidazolone derived
from arginine (MG-H1) and carboxyethyl-lysine (CEL). AGEs bind to their receptor ligand (termed
RAGE) anchored in cell membranes, triggering multiple intracellular signaling pathways, leading to
increased reactive oxygen species (ROS) production. Under healthy conditions, glyoxalases (Glo)
are the most important enzymatic detoxification system converting MGO into its final product D-
lactate. Glyoxalases comprise two main enzymes, namely, Glo1 (lactoylglutathione methylglyoxal
lyase) and Glo2 (hydroxyacylglutathione hydrolase), with Glo1 described as a rate-limiting enzyme
in detoxification. This image was produced with the assistance of Servier Medical Art (Servier;
https://smart.servier.com/ accessed on 18 March 2024), licensed under a Creative Commons Attri-
bution 4.0 Unported License.

Plasma levels of MGO are markedly elevated in conditions of hyperglycemia associated
with diabetes mellitus in men and women, as usually detected by liquid chromatography–mass
spectrometry, enzyme-linked immunosorbent, or electrochemical biosensor assays [146–153].
The patients included in these studies comprised men and women aged 54–61 years old,
insulin- and noninsulin users, with accompanying diseases such as chronic renal failure, diabetic
nephropathy, and coronary heart disease. Obese patients also have increased MGO levels in
plasma, which can be even higher if the obese patients have diabetes [125,154]. The urine levels
of MGO in diabetic patients are also higher than those in nondiabetic individuals [155]. In
addition, in healthy volunteers, a rapid increase (49 min) in plasma levels of MGO was observed
after oral glucose tolerance test (OGTT) [152]. Likewise, fasted healthy mice intraperitoneally
injected with a glucose solution displayed a rapid elevation in plasma levels of MGO, as detected
at 30 min after glucose administration [137]. Interestingly, lower levels of Glo1 activity in red
blood cells paralleled the increased plasma MGO levels in T2DM patients displaying acute
coronary syndrome [156].

https://smart.servier.com/
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6. MGO–AGEs–RAGE Axis as a Key Player of Bladder Dysfunction in Animals
and Humans

There is a large amount of data on MGO in different organs at physiological and
pathological conditions [2], but surprisingly few studies have explored the role of the MGO–
AGEs–RAGE signaling pathway in the pathophysiology of the lower urinary tract system.
The existing literature in this field has been restricted to bladder pain via the release of high
mobility group box 1 protein (HMGB1) [157,158] and bladder cancer [159,160], which are
not the focus of the present review.

In T2DM patients diagnosed with moderate/severe LUTS, serum levels of AGEs are
positively correlated with symptoms and overactive bladder, suggesting that levels of
AGEs may be early markers of diabetes-associated LUTS [13]. In addition, an immunohis-
tochemical study in human bladders showed positive sites for carboxymethyl-lysine and
pentosidine in the connective tissue between muscle bundles and muscle fibers, suggesting
that extracellular matrix is the main site of action for AGE accumulation [161]. The MG-H1
free adduct has been described as the most responsive AGE associated with chronic kidney
disease status, with higher levels in diabetic compared with nondiabetic individuals [162].
The MG-H1 residue contents of plasma protein are also elevated in male spontaneously
diabetic Torii (SDT) rats at the age of 16 weeks [163].

The model of chronic overload intake of MGO at doses of 50 to 75 mg/kg for 6 to 12 weeks,
as supplemented in the drinking water of the animals or injected intraperitoneally in rats and
mice, has been shown to mimic some cardiovascular complications of diabetes in the absence of
hyperglycemia such as endothelial dysfunction, microvascular damage, atherogenesis [164–167],
cardiac dysfunction [168,169], and renal damage [170–172] (Table 1). However, the direct contri-
bution of MGO to bladder dysfunction remains poorly investigated. This model of exogenous
animal supplementation with MGO clearly differs from the classical diabetic animals in that
MGO is not generated from the endogenous glucose metabolism, and, consequently, does
not itself affect the glucose levels and insulin sensitivity [164,173–175]. Intake of MGO to
healthy mice for 7 days (500 to 2000 mg/kg) significantly increased the urine levels of this
dicarbonyl molecule [176]. Serum levels achieved by a 12-week intake of 0.5% MGO to healthy
mice [174,175,177] reached comparable levels to those found in plasma of diabetic/obese indi-
viduals [125,154]. Levels of MGO levels were also increased in both plasma and urine after a
6-month MGO administration to mice at the doses of 200 mg/kg [176] and 500 mg/kg [178].
Likewise, in high-fat fed mice, levels of plasma and urine levels of MGO were significantly
higher than animals kept on low-fat diet [179]. Diabetic obese ob/ob mice also displayed
elevated serum MGO compared with normoglycemic animals [16] (Table 1).

Table 1. Main findings produced by methylglyoxal (MGO) treatment in rodents.

Reference
Number Dose Route of

Administration Animal and Strain Sex Treatment with MGO

[164] 50–75 mg/kg Intraperitoneal Wistar rat Male Microvascular damage
Microvessel degeneration

[165] 50–75 mg/Kg Drinking water Spontaneously diabetic
(GK) rats Male Endothelial dysfunction

[166] 50 mmol/L Drinking water C57Bl6 ApoE-/- Male Atherosclerosis

[170] 50–75 mg/kg Drinking water
Goto-Kakizaki (GK),

nonobese type 2 diabetic
rats

ND Renal disease

[171] 17.25 mg/kg Intraperitoneal Sprague Dawley (SD) rats ND Renal disease
[172] 600 mg/kg/day Oral NMRI mice Male Diabetic nephropathy

[176] 500–2000 mg/kg Drinking water RAGE−/Glo1 ++ mice Male
Female Renal dysfunction

[178] 500 mg/kg Drinking water RAGE-KO mice Male
Female

Increased airway
resistance/decreased

maximal inspiratory flow

[173,175] 0.5% Drinking water C57BL/6Junib mice Male
Aggravation of allergic

airway disease and acute
lung injury

ND, nondetermined; T2DM, type 2 diabetes mellitus; KO, knockout.
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Bladders from male mice treated orally with MGO for 4 weeks revealed tissue dis-
organization, partial loss of the urothelium, and mucosal edema along with marked cell
infiltration [14]. Urodynamic evaluation (cystometric assays) in these male animals showed
marked increases in micturition frequency and number of nonvoiding contractions (NVCs)
with no alterations in bladder capacity [14]. Cystometric assays in male mice treated orally
with MGO for an extended period (12 weeks) showed significant increases in the frequency
of NVCs, bladder capacity, inter-micturition pressure, and residual volume [177]. In female
mice treated with MGO for 12 weeks, cystometric assays confirmed urodynamic alterations
such as increases in NVCs frequency, bladder capacity, inter-micturition pressure, and
residual volume [15]. Using the model of spontaneous void spot assay (VSA) on filter
paper, male mice treated with MGO for 12 weeks revealed an increased volume per void
with no changes in the spot number as compared with the untreated group. In the female
group, this treatment increased the spot number (mainly the number of microvolume
spots) but, rather, reduced the volume per void [177,180]. During the MGO treatment, no
alterations in the water consumption are observed in any group [177]. In this VSA assay, the
term thigmotaxis refers to the wall-seeking behavior, that is, the tendency of mice to urinate
next to the walls of the cage, which is interpreted as a rational response related to the fear
of predation [181,182]. In healthy conditions, mice of both sexes will urinate at the corner
of the filter paper, and when the animal loses this outlet control, urinating in the center of
the filter, this may indicate bladder dysfunction. In the 12-week MGO treatment, whist
the male mice had 95% of the voided spots in the corners of the filter paper, the voided
spots in the female group were also detected in the center of the filter, indicating an altered
outlet behavior in favor of an overactive bladder phenotype. The in vitro contractions
to electrical-field stimulation (EFS; neurogenic contractions) as well as those induced by
selective muscarinic and purinergic P2X1 receptor activation (using carbachol and α, β-
methylene ATP as receptor agonists, respectively) were also evaluated in bladders of male
and female mice treated with MGO for 12 weeks (Table 2). In intact bladder preparations of
male mice, higher contractions to EFS, carbachol, and α,β-methylene ATP were observed
after MGO treatment [177]. In the female group, higher contractile responses to EFS and
α,β-methylene ATP (but not to carbachol) were also observed in intact bladder preparations
from animals treated with MGO for 12 weeks [15]. An increased carbachol-induce response
by MGO treatment in the female mice is solely observed when the urothelium is removed
from the preparations. Moreover, the higher EFS-induced contractions in the MGO group
were normalized by prior tissue incubation with the selective TRPA1 blocker HC-030031,
suggesting that MGO exposure via TRPA1 activation leads to enhancement of purinergic
over cholinergic neurotransmission in the bladder [180] (Figure 2). Table 2 summarizes
the main in vivo and in vitro bladder alterations observed in male and female mice treated
with MGO for 12 weeks.

Table 2. In vivo and in vitro bladder alterations in male and female mice treated with methylglyoxal
(MGO) 12 weeks [15,177,180].

Parameter Male Female

Urodynamic evaluation

Number of nonvoiding contractions (NVCs)

Frequency of voiding

Bladder capacity

Bladder smooth Muscle contractility
in vitro

(presence of urothelium)

Neurogenic contractions (electrical-Field Stimulation, EFS)

Muscarinic-mediated contractions (carbachol)

Purinergic-mediated contractions (α,β-methylene ATP)



Biomedicines 2024, 12, 939 9 of 22

Table 2. Cont.

Parameter Male Female

Void spot analysis

Total void volume

Volume per void

Urine spot number

Urine spot in center

Urine spot in corner

Histology Collagen content

Arrows indicate increased; decreased or unaltered parameters.

Figure 2. Bladder alterations at the level of urothelium, lamina propria, and detrusor smooth muscle
in mice treated with methylglyoxal (MGO) for 4 and 12 weeks. Activation of the MGO–AGEs–RAGE
axis leads to urothelial damage, tissue disorganization, edema, and inflammatory cellular infiltration,
along with sensitivity alterations due to TRPA1 channel activation. The in vitro detrusor contractile
responses to electrical-field stimulation (EFS), α,β-methylene ATP (purinergic P2X1 receptor agonist),
and carbachol (nonselective muscarinic agonist) due to increased Ca2+ sensitization machinery are
higher in MGO-treated mice. Higher collagen deposition is seen in bladders of MGO-treated mice.
Urodynamic changes, including increases in nonvoiding contractions (NVCs), frequency, bladder
capacity, inter-micturition pressure, and residual volume, may also be observed in MGO groups.
Drugs capable of scavenging MGO and protecting bladder cells from oxidative insult, such as the
polyphenols resveratrol and epigallocatechin-3-gallate, and the antihyperglycemic metformin exert
reduce AGEs levels and oxidative stress in bladder tissues. This image was produced with the
assistance of Servier Medical Art (Servier; https://smart.servier.com/ accessed on 18 March 2024),
licensed under a Creative Commons Attribution 4.0 Unported License.

https://smart.servier.com/
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In MGO-treated mice, elevated levels of AGEs and RAGE in bladder tissues were also
observed [15,177]. Likewise, hyperglycemic diabetic leptin-deficient male and female mice
(ob/ob) exhibit bladder dysfunction, as evidenced by the increases in total void volume and
volume per void (void spot assay) in addition to high collagen content in the bladders [16].
These bladder alterations were associated with high levels of total AGEs, MG-H1 and
RAGE found in bladder tissues, which is consistent with the findings that the AGE breaker
alagebrium (ALT-711) at 1 mg/kg during 8 weeks in the drinking water nearly reversed all
the molecular and functional alterations in ob/ob mice [16] (Table 3).

Table 3. Protective effects of alagebrium (ALT-711) on the levels of total AGEs, MG-H1, RAGE and
collagen in bladder tissues of obese diabetic ob/ob mice [16].

Parameter ob/ob ob/ob + ALT-711

Blood glucose

AGEs in bladder

MG-H1 content in bladder

RAGE content in bladder

Collagen content in the bladders

Volume per void

Number of voids

Void size

Arrows indicate increased; decreased or unaltered parameters.

7. Drugs Presenting Potential to Downregulate AGEs Formation and Oxidative Stress in
Bladder Tissues

It is well established that NADPH oxidase and increased levels of superoxide anion (O2
−)

and hydrogen peroxide (H2O2) play a critical role in diabetic complications [55,183–192]. Ox-
idative stress at excessive levels also plays an important role in pathophysiology of bladder
outlet obstruction [193], cyclophosphamide-induced cystitis [194], benign prostatic hyperpla-
sia [195] and STZ-induced bladder dysfunction [196]. Hydrogen peroxide (H2O2) is reported
to activate bladder afferent signaling inducing detrusor overactivity [197]. In human and
dog bladders in vitro, H2O2 itself produced contractions and potentiated the contractions
induced by electrical-field stimulation, an effect attenuated by the natural NADPH oxidase
inhibitor apocynin [198]. Given obesity-associated bladder dysfunction correlates with in-
creased oxidative stress and that MGO treatment leads to excess ROS production, it is plausible
that drugs that inactivate MGO [20,199] or that protect bladder cells from the oxidative in-
sult [200,201] offer an interesting approach to reduce the deleterious effects of AGEs in the
bladder (Figure 3). Therefore, we summarized below some drugs reported to ameliorate
bladder dysfunction in animals including some polyphenols and metformin whose protective
mechanisms may be related to their ability to downregulate AGEs formation and oxidative
stress in bladder tissues.
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Figure 3. The abnormal accumulation of methylglyoxal (MGO) enhances the dicarbonyl stress leading
to protein glycation and excessive RAGE-mediated ROS production in the urinary bladder. This
image was produced with the assistance of Servier Medical Art (Servier; https://smart.servier.com/
accessed on 18 March 2024), licensed under a Creative Commons Attribution 4.0 Unported License.

7.1. Polyphenols: Resveratrol and Epigallocatechin-3-Gallate

Resveratrol is a polyphenol present in numerous plant-based foods that increases
lipolysis and reduces lipogenesis in adipocytes, being suggested as a therapeutic alter-
native to treat obesity-related diseases [202,203]. Two-week therapy with resveratrol
(100 mg/kg/day, given by gavage) in high-fat-diet-fed obese mice reduced the in vivo
urodynamic changes, the in vitro bladder overactivity, and the ROS production in bladder
tissues [104]. Resveratrol treatment also increased the nitric oxide levels and restored the
impaired urethral relaxations in obese mice, an effect mimicked by the antioxidant enzyme
SOD [112]. Likewise, the in vitro urethral hyperactivity was restored by resveratrol in obese
mice [112]. In the bladders of STZ-induced diabetic rats, daily oral treatment with resvera-
trol (10 mg/kg) reduced the histological abnormalities and inhibited the expression and
localization of markers of oxidative stress and DNA oxidative damage [204]. Intragastric
administration of resveratrol (20 mg/kg/day) reduced bladder hypertrophy, tissue dam-
age, inflammatory cell infiltration, and levels of inflammatory cytokines in the bladders of
STZ-induced diabetic rats [205]. In the chronic prostatitis model in rats, oral administration
of resveratrol (10 mg/kg) for 10 days reduced the resulting overactive bladder and fibrosis
by reducing the protein expressions SCF, c-Kit, and p-AKT [206,207]. At the molecular
level, resveratrol exhibited a high inhibition rate on the fluorescent formation of AGEs
mainly due to scavenging free radicals and capturing MGO [20]. Epigallocatechin-3-gallate
is another polyphenol compound present in green tea that has also favorable effects on
bladder overactivity, as evidenced in ovariectomized rats fed standard chow [201] and
high-fat, high-sugar diet [208]. Treatment with epigallocatechin-3-gallate reduced the
expressions of transforming growth factor-β (TGF-β) and type I collagen, as well as the
apoptosis and oxidative stress in the bladders [208,209]. In a bladder outlet obstruction
(BOO) model in rats, intraperitoneal injection of epigallocatechin-3-gallate (4.5 mg/kg/day)
reduced the histologic changes and submucosal endoplasmic reticulum (ER) stress-related
apoptosis, recovering the bladder compliance and inter-contractile intervals [210]. At 6 mM,

https://smart.servier.com/
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epigallocatechin-3-gallate was also shown to exert anti-AGEs activity through its capacity
to strongly trap and inactivate MGO [211]. In diabetic db/db mice, 16-week oral adminis-
tration of (+)-catechin (15, 30, and 60 mg/kg) directly trapped MGO, hence downregulating
the downstream signal transduction and inflammatory response induced by AGE–RAGE
interaction in the kidney [212]. Therefore, although the mechanisms behind the uropro-
tective actions of polyphenols on diabetes-associated bladder dysfunction deserve further
investigation, they could involve the capacity of these molecules to directly trap MGO,
further inhibiting MGO-induced glycation, AGEs formation, and RAGE activation.

7.2. Metformin

Metformin is a first-line pharmacological treatment for T2DM patients as monotherapy
or in combination with sulfonylureas or dipeptidyl peptidase 4 inhibitors [213]. The orally
administered doses of metformin (as immediate-release or extended-release formulations)
usually vary from 0.5 to 2.5 g daily, being safety and effective for long-term glycemic
control. Metformin is associated with low risk of hypoglycemia and documented cardio-
vascular benefits [214]. Metformin increases tissue sensitivity to insulin and decreases
the levels of glycated hemoglobin by mechanisms involving the activation of adenosine
monophosphate-activated protein kinase (AMPK) and non-AMPK pathways [215], but
its exact mechanism of action remains largely incomplete [213]. Recently, metformin was
shown to increase intestinal glucose uptake, influencing hepatic glucose production through
a gut–liver crosstalk [216]. Metformin is among the molecules reported to strongly react
with MGO [17], forming an imidazolinone metabolite [19]. In addition, in the plasma of
T2DM patients, metformin, through its guanidine group, was shown to bind to MGO, reduc-
ing this dicarbonyl concentration [18], hence reducing AGEs formation, which paralleled a
significant increase in Glo1 activity [217]. A two-week treatment of high-fat-diet-fed mice
with metformin (300 mg/kg) reversed the bladder overactivity, as evidenced by in vivo and
in vitro studies [106]. Metformin also normalized the enhanced serum levels of MGO and
fluorescent AGEs in mice treated chronically with MGO [177]. In bladders of MGO-treated
mice, metformin treatment reduced Glo1 expression and activity, urothelium thickness,
and collagen content, as well as the in vitro and in vivo micturition dysfunction [177]. It is,
therefore, plausible to suggest that the beneficial effects of metformin in obesity-associated
bladder dysfunction rely at least in part on its MGO capturing property. Of interest, oral
administration of metformin (150 mg/kg, gavage) reduced both bladder remodeling and
dysfunction in models of partial bladder outlet obstruction in rats [218], erectile dysfunction
in obese mice [219], and diabetic nephropathy in STZ-induced diabetes [220].

8. Concluding Remarks and Future Therapeutics

Diabetic bladder dysfunction is a highly prevalent condition manifesting as storage
(such as OAB and urge incontinence) and voiding problems (poor emptying with resultant
elevated capacity). Increased capacity and decreased sensation together with recurrent uri-
nary tract infections may also be present in DBD. Preclinical models of T1DM and T2DM in
rodents have provided further evidence confirming the relationship between diabetes and
bladder dysfunction. Hyperglycemia in diabetic/obese patients significantly elevates the
levels of α-dicarbonyl compounds, including MGO, in plasma and urine as a consequence
of the glycolytic overload. MGO promotes post-translational modification of peptides and
proteins, ultimately leading to the formation of AGEs such as MG-H1. AGEs bind their
cell membrane-anchored ligand receptor RAGE, triggering multiple intracellular signaling
pathways, among which ROS production at excessive levels plays a critical role. However,
little is known about the importance of MGO generation and AGEs–RAGE activation in
the pathophysiology of diabetic-associated bladder dysfunction. Voiding spot assays and
cystometrical evaluation in mice treated chronically with MGO have revealed significant
increases in total void volume, volume per void, micturition frequency, and nonvoiding
contractions number, along with enhanced in vitro bladder contractility. Moreover, levels
of MGO, AGEs, RAGE, and ROS are all elevated in the bladder tissues obtained from
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MGO-treated animals and diabetic ob/ob mice. The antihyperglycemic drug metformin
and the polyphenols resveratrol and epigallocatechin-3-gallate can directly scavenger MGO,
exerting uroprotective actions. Therefore, we propose here that evaluation of MGO, AGEs,
and RAGE levels may constitute important biomarkers of DBD pathophysiology. The
design and development of new drugs that inhibit the MGO–AGEs–RAGE axis may be-
come an interesting approach for the prevention and treatment of bladder dysfunction in
diabetic conditions.
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