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Abstract: Obesity is recognized as a significant risk factor for ovarian cancer, with accumulating
evidence highlighting its impact on disease progression and chemoresistance. This review synthesizes
current research elucidating the link between obesity-induced lysosomal dysfunction and ovarian
cancer chemoresistance. Epidemiological studies consistently demonstrate a positive correlation
between body mass index (BMI) and ovarian cancer risk, attributed in part to the predilection of
epithelial ovarian cancer cells for adipose tissue, particularly the omentum. Adipokines released from
the omentum contribute to cancer-associated characteristics, including energy supply to cancer cells.
Moreover, obesity-induced alterations in lysosomal function have been implicated in systemic inflam-
mation and lipid metabolism dysregulation, further exacerbating cancer progression. Lysosomes play
a crucial role in drug resistance, as evidenced by studies demonstrating their involvement in mediat-
ing resistance to chemotherapy in ovarian cancer cells. Recent findings suggest that pharmacological
inhibition of lysosomal calcium channels sensitizes drug-resistant ovarian cancer cells to cisplatin
treatment, highlighting the therapeutic potential of targeting lysosomal dysfunction in obesity-related
chemoresistance. This review underscores the importance of understanding the multifaceted roles of
lysosomes in obesity-related drug resistance and their implications for the development of targeted
therapeutic interventions in ovarian cancer management.

Keywords: obesity; ovarian cancer; lysosome; chemoresistance; adipocyte; tumor microenvironment;
lipid metabolism

1. Introduction

Ovarian cancer, ranking as the fifth leading cause of cancer-related deaths in women,
exceeds all other cancers affecting the female reproductive system in terms of mortality.
Accounting for 5% of female cancer-related deaths within gynecological cancers, ovarian
cancer is characterized by high lethality [1]. Challenges in early detection and the develop-
ment of chemoresistance significantly contribute to this outcome. The standard treatment
for ovarian cancer involves a combination of platinum-based drugs and taxanes. While
the initial response to this standard therapy is positive in the majority of ovarian cancer
patients, recurrence occurs in up to 80% of cases, primarily due to the development of
platinum resistance [2]. The presence of chemoresistance to the standard treatment poses a
crucial obstacle in the effective management of ovarian cancer, leading to a decline in the
5-year survival rate [3,4]. Various factors, including tumor heterogeneity, microenviron-
mental effects, and disruptions in drug access to the target compartment, contribute to the
development of resistance to chemotherapeutics [5,6].

Several years ago, the American Institute for Cancer Research and World Cancer
Research Fund reached the consensus that the accumulation of body fats poses a potential
risk factor for ovarian cancer. Numerous systemic studies and meta-analyses have consis-
tently revealed a positive correlation between body mass index (BMI) and ovarian cancer
risk [7–11]. From a physiological perspective, epithelial ovarian cancer cells predominantly
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disseminate within the abdominal cavity, displaying a predilection for adipose tissue, par-
ticularly the omentum. Omental metastasis is detected in approximately 80% of patients
with serous ovarian carcinoma [12]. The inclination of this preference for adipose tissue
is believed to be rooted in the release of adipokines from the omentum, which, in turn,
promotes cancer-associated characteristics by supplying energy from adipocytes to cancer
cells [13]. In the context of chemoresistance, lipids or their regulatory factors derived from
adipose tissues have been reported to affect the survival of ovarian cancer cells, as well as
influencing proliferation or metastasis [14–16].

Numerous studies have suggested the link between obesity and cellular processes
passing through lysosomes in a variety of aspects. Defective functions of lysosomes in
adipocytes cause impairment of autophagic flux through an imbalance in lysosomal cal-
cium, consequently activating a systemic inflammation in obese mice [17]. Additionally,
obesity not only activates lysosomal functions in adipocytes but also triggers lysosomal
biogenesis in macrophages residing in adipose tissue. This upregulation in lysosomal activ-
ity in macrophages is closely associated with lipid catabolism, contributing significantly
to the development of obesity-induced inflammation and lipid trafficking independent of
the inflammatory response [18]. In addition to their role in obesity-related inflammation,
lysosomes play a crucial role in drug resistance, particularly in various cancers, including
ovarian cancer. Our previous study provided insights into the involvement of lysosomes
in mediating drug resistance, specifically in ovarian cancer cells [19]. Notably, our unpub-
lished data demonstrated that pharmacological inhibition of lysosomal calcium channels
sensitizes drug-resistant ovarian cancer cells to cisplatin treatment. The intricate inter-
play between lysosomes and cellular processes underscores their significance in various
physiological and pathological conditions. This review highlights the impact of lysosomal
dysfunction induced by obesity on ovarian cancer chemoresistance. Furthermore, under-
standing of the association between lysosomes and obesity, as well as their involvement in
obesity-related drug resistance, can provide valuable insights into potential therapeutic
interventions for ovarian cancer.

2. Obesity and Ovarian Cancer

Epidemiological findings suggest that obesity has a detrimental effect on the devel-
opment of ovarian cancer [7,20,21]. Obesity is defined as a pathophysiological condition
characterized by the accumulation of excessive body fat and a chronic low-grade inflam-
matory state to the extent that it may have adverse effects on health [22]. Specifically, the
association between obesity and ovarian cancer risk appears to be dependent on certain
histologic types of cancer, including low-grade serous and invasive mucinous tumors [20].
The excessive accumulation of adipose tissue can alter the metabolism of chemotherapeutic
agents, and subsequently reduces chemotherapy efficacy [23,24]. The distribution and
clearance of drugs may be different in obese individuals, potentially leading to suboptimal
drug concentrations at the tumor site [25]. The relationship between obesity and chemore-
sistance in ovarian cancer is an area of ongoing research, and, while the exact mechanisms
are not fully understood, several factors may contribute to the association between obesity
and reduced responsiveness to chemotherapy in ovarian cancer patients.

2.1. Adiposity and Ovarian Cancer Cells

Adiposity arises from an imbalance between an overabundance of calorie consump-
tion and insufficient energy expenditure, leading to a persistent surplus of energy [26].
This imbalance triggers immune cell infiltration and disrupts the controlled secretion of
various adipokines, ultimately causing dysfunctional adipose tissue [27]. Metabolic stress
stimulated by dysfunctional adipose tissue, in accordance with immune cells, has the po-
tential to support tumor growth and metastasis [27,28]. Furthermore, adiposity has recently
emerged as a plausible risk factor associated with diminished chemotherapy effectiveness,
contributing to the development of chemoresistance [24]. In ovarian cancer, the accumula-
tion of adipose tissue induces hormonal alterations and ovulatory dysfunction, leading to
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excessive synthesis of ovarian and extra-ovarian estrogen. This may subsequently become
a significant risk factor in ovarian cancer development [29,30]. While metastatic ovarian
cancer cells from the primary tumor potentially disseminate throughout the peritoneal
cavity, the most common arriving site is the omentum, which consists of a large number of
adipocytes [12]. This is supported by the observation that 80% of serous ovarian cancer
patients exhibit omental metastasis [13,31]. The omentum, an adipocyte-rich tissue, likely
aids ovarian cancer cells in adapting to a new environment distinct from the primary
site. Various adipokines, including IL-6, IL-8, and fatty acids, secreted from the omental
adipocytes enhance the adaptation of ovarian cancer cells by promoting proliferation and
metastasis (Figure 1) [13,32].
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Figure 1. Bidirectional interaction between ovarian cancer tissue and adipose tissue in obese women.
The promoting effects of adipose tissue on ovarian cancer in obese women are notable within the
tumor microenvironment, where cancer-associated adipocytes release adipokines and free fatty
acids, creating a pro-inflammatory milieu that supports tumor progression and chemoresistance.
Tumor tissue stimulates differentiation of adipocytes into cancer-associated adipocytes by secreting
pro-inflammatory and growth factors.

Abdominal or central obesity has been implicated in various health issues including
ovarian cancer. Central obesity can be assessed using a waist-to-hip ratio (WHR) estimating
anatomic distribution of fats. Some studies have explored the relationship between central
obesity and ovarian cancer risk [21,29,33]. Delort et al. indicate that there is an association
between BMI and ovarian cancer risk that varies depending on menopausal status [29].
Specifically, higher BMI appears to have a stronger association with ovarian cancer risk in
premenopausal women compared to postmenopausal women [29]. Along with the results,
they discovered a significant link between WHR and ovarian cancer risk which remained
consistent regardless of menopausal status [29]. Hoyo et al. also reported that WHR,
weight, and BMI have a link with increased ovarian cancer risk across African American
women and White women [33]. While, interestingly, the association between WHR and
ovarian cancer risk was found in African American women, no risk appeared in White
women [33]. Based on these studies, WHR estimating fat distribution, as well as BMI,
should be considered as a factor to determine ovarian cancer risk. However, there is little
direct evidence of the association of ovarian cancer chemoresistance with WHR.

Obesity exerts an influence on cancer development; however, there is an instance
where an augmentation in peritumoral adipocytes impacts cancer progression irrespective
of BMI or WHR. Zhang et al. reported that peri-renal adiposity, independent of body
mass index (BMI) or body fat distribution, negatively affected rates of progression-free
survival in ovarian cancer [34]. Additionally, a recent study has reported that bone marrow
adipocytes provide favorable conditions for invasion in bone metastasis cases and facilitate
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chemoresistance through supporting cancer-associated fibroblasts [35]. Transcriptomic
analysis of bone marrow metastasized cancer cells compared to primary ones in the same
patients revealed upregulation of drug resistance and immune evasion-related gene sets
affected by bone marrow adipocytes [35]. In several ovarian cancer cell lines, when exposed
to adipocyte-conditioned medium, they exhibited increased survival against cisplatin-
induced cell death via activation of the AKT pathway [15]. Lipidomic analysis of adipocyte-
conditioned medium revealed that arachidonic acid secreted from adipocytes contributes
to the heightened chemoresistance observed in ovarian cancer cell lines [15]. Kim et al.
reported that anatomical differences of adipose tissue demonstrated genetical distinctions in
their stromal cells derived from subcutaneous and visceral fats, impacting energy and lipid
metabolism [36]. These unique characteristics of subcutaneous and visceral adipose stromal
cells (ASCs) also exert different effects on neighboring ovarian cancer cells. The conditioned
medium (CM) from visceral ASCs stimulates increased migration of ovarian cancer cells by
activating JAK2-STAT3 through the secretion of IL-6 in a paracrine signaling pathway, in
contrast to the results observed with CM from subcutaneous ASCs [37]. Likewise, human
omental-derived ASCs enhance the survival and resistance response of ovarian cancer cells
to chemotherapy, such as paclitaxel or carboplatin treatment [38].

2.2. Obesity-Induced Remodeling of Tumor Microenvironment

Cancer cells adeptly manipulate their microenvironment to withstand adverse con-
ditions such as hypoxia and nutrient deprivation. Extensive research has scrutinized the
intricate interplay between cancerous tissue and its microenvironment, comprising diverse
cellular components like stromal cells, inflammatory cells, and fibroblasts [39]. Notably,
adipocytes, traditionally perceived as mere energy reservoirs, have emerged as crucial
endocrine entities within the tumor milieu [40]. Despite their emerging significance in
cancer research, adipocytes’ involvement in the tumor microenvironment remains largely
underexplored. Adipocytes intricately modulate cancer progression, metastasis, and drug
responses, playing dynamic roles in tumor biology [41]. Peritumoral or intratumoral
adipocytes, referred to as cancer-associated adipocytes, exhibit distinctive phenotypic traits
and molecular features, including altered marker expression and reduced lipid content,
thus promoting metabolic reprogramming of tumor cells [42,43]. These altered adipocytes
secrete fatty acids, providing essential energy substrates that fuel metabolic shifts in cancer
cells [41,44]. Free fatty acids facilitate restructuring of the tumor microenvironment, thereby
contributing to cancer progression and metastasis [44].

Additionally, obesity exerts profound effects on the composition and functionality
of the tumor microenvironment [45]. Perturbations in this milieu may foster a conduc-
tive niche for cancer cell survival and compromise chemotherapy efficacy by releasing
metabolites and growth factors from intratumoral or peritumoral adipocytes. High-fat-
diet-induced obesity impairs the function of infiltrating CD8+ T cells within the tumor
microenvironment, consequently accelerating tumor progression in murine models. No-
tably, single-cell analyses underscored the global metabolic rewiring observed in tumors
under high–fat-diet conditions [46]. This investigation elucidated distinct metabolic states
across diverse cell populations within the tumor microenvironment, illustrating their mu-
tual reliance. In ovarian cancer, fatty acid binding protein 4 (FABP4) secreted by co-cultured
adipocytes critically modulates lipid responses in ovarian cancer cells. Consequently, phar-
macological inhibition of FABP4 using the small molecule BMS309403 mitigates tumor
metastasis and enhances the sensitivity of cancer cells to carboplatin [14]. Moreover, obesity
induced by a high-fat diet alters the M1/M2 macrophage ratio and promotes tumor fibrosis
through the upregulation of fibroblast growth factor 21 (FGF21), thereby diminishing the
efficacy of standard chemotherapy treatments such as paclitaxel and carboplatin in murine
models [47]. The overexpression of FGF21 is observed in cisplatin-resistant ovarian cancer
cell line A2780-cp compared to cisplatin-sensitive cell line A2780-s [48]. Similarly, elevated
EGF21 levels and tumor fibrosis are detected in human ovarian tumor tissues from patients
with a BMI > 30 [47]. It is crucial to highlight that the relationship between obesity and
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chemoresistance is complex, and individual responses may vary. The impact of obesity on
cancer treatment outcomes is likely influenced by a combination of factors, including the
specific characteristics of the tumor, the type of chemotherapy used, and the overall health
status of the patient.

2.3. Lipid Metabolism in Ovarian Cancer

In patients with obesity, it is likely that the combination of enhanced mitogenic and
growth factor signaling in response to the altered hormonal milieu and the increased avail-
ability of carbon-rich nutrients, such as lipids and glucose, supports biomass production
and proliferation, thereby accelerating disease progression and treatment resistance. In
the case of cancer, the cells undergo metabolic reprogramming to support their rapid pro-
liferation, resistance to cell death, and progression [49]. Lipids constitute a diverse class
of biological molecules, encompassing fatty acids, glycerides, non-glyceride lipids, and
complex lipids. In cancer, lipid metabolism assumes a significant role by offering metabolic
fuels for mitochondrial oxidation, substrates for phospholipid synthesis, and other signal-
ing molecules [50]. Altered lipid metabolism, a common feature in many human cancers,
contributes to the increased synthesis of lipids and upregulation of associated enzymes and
signaling pathways. This process provides essential building blocks for maintaining cellu-
lar membranes, such as glycerophospholipids, and facilitates the production of signaling
molecules that play a role in promoting oncogenic signals, such as diacylglycerol [51,52].

Epidemiological evidence suggests that people with the highest BMI have a higher risk
of dying from cancer than those with normal BMI [22]. Excessive adiposity resulting from
obesity added to the enhanced mitogenic and growth factor signaling in cancers is likely to
accelerate cancer progression and chemoresistance, causing a low survival rate in cancer
patients [52,53]. In the case of ovarian cancer, stage-specific effects of obesity on survival
rate were observed in several studies [11,21,22,53]. The biological features of adipose tissues
dominantly composed of adipocytes are dramatically modified by obesity. These alterations
additionally affect lipid metabolism of adipocytes, resulting in effects such as excessive
release of fatty acids and secretion of adipokines. Free fatty acids utilized as a key energy
source are excessively released in response to metabolic abnormalities such as obesity,
thereby accelerating disease progression and chemoresistance [54]. In the context of ovarian
cancer chemoresistance and obesity, inhibition of a lipid chaperon protein sensitizes ovarian
cancer cells to carboplatin treatment both in vitro and in vivo [14]. A comprehensive
lipidomic analysis indicated that lipids secreted from both subcutaneous and visceral
adipocytes enhance cell survival of cisplatin-induced apoptosis through directly activating
AKT in ovarian cancer cells [15]. Management of obesity and its associated metabolic effects
may be important in improving treatment outcomes in ovarian cancer patients. However,
more research is needed to better understand the underlying mechanisms and to develop
targeted strategies to address chemoresistance in obese individuals with ovarian cancer.

Understanding the molecular mechanisms underlying the interplay between obesity
and chemoresistance could pave the way for the development of novel therapeutic strate-
gies tailored to obese cancer patients. Additionally, implementing lifestyle interventions
targeting weight management and metabolic health may complement traditional cancer
treatments and improve clinical outcomes in obese individuals undergoing chemother-
apy [55]. Furthermore, ongoing research efforts focusing on precision medicine approaches
aim to elucidate patient-specific factors that influence the response to chemotherapy in the
context of obesity, thereby advancing personalized cancer care strategies. Ultimately, a
multifaceted approach considering the complex interplay between obesity, tumor biology,
and treatment modalities is essential for optimizing therapeutic outcomes and improving
the prognosis of obese cancer patients.
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3. Lysosomal Dysfunction in Obesity and Cancer
3.1. Lysosomal Dysfunction in Diseases

The lysosome, a single-membrane organelle characterized by its acidic environment,
was initially identified in 1955 by Christian de Duve during investigations into insulin’s
mechanism of action [56,57]. Housing more than 60 hydrolytic enzymes, including nucle-
ases, glycosidases, phosphatases, sulfatases, lipases, and proteases, the lysosome operates
within a luminal acidic milieu (pH 4.5–5.0) maintained by the vacuolar ATPase (V-ATPase)
proton pump [58,59]. Traditionally acknowledged as the hub for waste disposal, lysosomes
undertake the digestion of unwanted macromolecules, damaged and senescent organelles,
microbes, and particles acquired through endocytosis, autophagy, and phagocytosis [60–62].
After degradation, specific products, such as free fatty acids, amino acids, monosaccharides,
and nucleotides, are transported back to the cytosol via dedicated lysosomal membrane
exporters for reuse in anabolic processes [63,64]. Additionally, lysosomes house more
than 60 membrane proteins crucial for maintaining luminal homeostasis, particularly in
ionic balance, membrane potential, molecular export, and lysosomal membrane trafficking
(fusion and fission) [65]. The essential functions of lysosomes in material degradation,
catabolite export, and trafficking are pivotal for cellular homeostasis, and disruptions often
lead to lysosomal storage diseases (LSDs) [66].

Recent investigations challenge the traditional view of the lysosome as merely a
degradative compartment, revealing its role as a multifunctional signaling hub that inte-
grates cellular responses to nutrient status, growth factors, and hormones [67–69]. Notably,
the lysosome employs a nutrient-sensing mechanism involving mammalian/mechanistic
target of rapamycin complex 1 (mTORC1) and transcription factor EB (TFEB) to adapt
to changes in the cellular environment [70–72]. mTORC1, sensitive to various nutrient
and energy cues, phosphorylates numerous substrates related to cell growth, including
TFEB, thereby regulating the balance between catabolic and anabolic metabolic path-
ways [73]. TFEB, capable of binding to the palindromic 10 bp nucleotide motif known
as the coordinated lysosomal expression and regulation (CLEAR) element, activates the
transcription of genes encoding lysosomal proteins and autophagy-related proteins [74].
Under nutrient-rich conditions, mTORC1 phosphorylates TFEB, sequestering it away from
the nucleus. Conversely, during starvation, TFEB undergoes dephosphorylation due to
reduced mTORC1 activity and the activation of calcineurin (CaN), a Ca2+ and calmodulin
(CaM)-dependent protein phosphatase. This dephosphorylation allows TFEB to translo-
cate to the nucleus, promoting the transcription of the CLEAR element and subsequently
enhancing the autophagy–lysosome pathway, exocytosis, and phagocytosis [75–77].

3.2. Lysosomal Dysfunction in Diseases

Considering the integral roles of lysosomes in cellular metabolism, proliferation,
differentiation, immunity, and programmed cell death, any alteration or dysfunction
in lysosomal activity has the potential to disrupt the inherent homeostasis of cells and
organisms, contributing to the onset or exacerbation of human diseases. Dating back to the
1960s, H. G. Hers elucidated the association between lysosomal α-glucosidase deficiency
and Pompe disease, pioneering the concept of inborn lysosomal diseases, exemplified as
lysosomal storage disorders (LSDs) [78]. LSDs constitute a rare group of metabolic disorders
stemming from inherited mutations in genes encoding proteins crucial for lysosomal
homeostasis, including lysosomal hydrolases or membrane proteins [79]. Beyond LSDs,
numerous diseases such as cancer, obesity, diabetes, neurodegenerative diseases, and
cardiovascular diseases have been shown to exhibit close correlations with lysosomal
alterations and dysfunction [80–86]. This review delves into obesity and cancer, exploring
their lysosomal changes and dysfunction to establish a foundation for the subsequent
selection of targeted therapeutic strategies.
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3.2.1. Obesity

Lysosome dysfunction in obesity is linked to various cellular processes, contributing
to adverse health effects. Luo et al. investigated the intricate relationship between CD36,
lysosome function, and the development of obesity-related metabolic complications [17].
The research demonstrates a dual phenomenon in visceral adipose tissue pre-adipocytes
obtained from obese individuals or mice on an obesogenic diet: an upregulation of CD36
expression and a reduction in acidified lysosome abundance. Intriguingly, CD36 global
null mice on a high-fat diet exhibit restrained pre-adipocyte expansion, increased acidified
lysosomes, reduced inflammatory markers, and improved glucose tolerance and insulin
sensitivity. In cell culture studies, the researchers revealed that fatty acids induce CD36
upregulation in pre-adipocytes [17,87,88]. Furthermore, forced expression of CD36 triggers
lysosomal pH abnormalities, inflammatory cytokine production, and impaired lipophagy.
Experiments with exogenously expressed wild-type CD36 highlight its increased interac-
tion with tyrosine kinase Fyn, elevated IP3R1 phosphorylation, co-localization of Ca2+ with
lysosomes, and heightened cytokine production compared to its palmitoylation-deficient
mutant [17]. Pharmacological inhibition of IP3R1 and Fyn attenuates this phenotype,
implicating the involvement of CD36/Fyn/IP3R1 signaling in lysosomal Ca2+ content in-
crease and pH impairment [17,89]. These findings provide compelling evidence supporting
the notion that obesity induces acquired lysosome dysfunction, leading to inflammation
and suggesting potential therapeutic targets in cardio-metabolic diseases. CD36 acts as
a scavenger receptor facilitating the uptake of lipids, such as long-chain fatty acids and
lipoproteins [90]. Transcriptionally upregulated in pre-adipocytes via PPARγ signaling,
CD36 drives adipose tissue expansion [91]. The upregulation of CD36 in hepatocytes and
other cell types in response to a high-fat diet is linked to pleiotropic signaling, negatively
regulating autophagy through Fyn-induced phosphorylation of LKB1. CD36 deficiency
induces lipophagy, protecting mice from high-fat-diet-induced obesity [91], mirroring
findings presented by Luo et al. [17]. CD36 deficiency also correlates with increased
nuclear translocation of TFEB [92], suggesting a role in stimulating lysosome function
and the observed benefits. The study proposes that homeostatic lysosome function in
adipocytes may link lipolysis to exosome release, influencing adipose tissue macrophages
and upregulating the lysosome biogenesis program to maintain homeostasis and modulate
inflammation [93]. Inborn errors of metabolism resulting in lysosome storage diseases
demonstrate loss of adipose tissue and inflammation, paralleling the mechanistic link
observed in mice with diet-induced obesity [17]. Conversely, stimulation of lysosome
biogenesis and function in adipocytes, activating TFEB, attenuates diet-induced obesity
and improves insulin sensitivity.

3.2.2. Cancer

Cancer cells demonstrate a remarkable ability to manipulate lysosomal dynamics to
fuel their growth and proliferation [94]. This intricate regulation involves changes in lyso-
somal quantity, location, and activity, driven by the overexpression of specific lysosomal
proteins and lysosome-related proteins such as lysosome catalase, lysosomal glycosidase,
and kinesins [95–97]. Classical oncogenes like KRAS and MYC further contribute to this
transformation [95]. Notably, certain cancers, including pancreatic adenocarcinoma [81,98],
renal cell carcinoma [98], melanoma [99], head and neck [80], and breast cancer [82], exhibit
an increased expression of MIT/TFE genes, crucial transcription factors for lysosomal
protein expression. These alterations in lysosomes significantly impact the proliferation
and invasion of cancer cells, as well as their resilience against radiotherapy and chemother-
apy [100]. The heightened activation of nutrient-scavenging pathways like autophagy and
endocytosis enables cancer cells such as tumors with inadequate vascularization or those
subjected to radiotherapy or chemotherapy to strive for essential nutrients and endure
adverse conditions [67]. Cancer cells utilize these pathways to scavenge nutrients, activate
mTOR signaling, and synthesize essential biomolecules required for unchecked prolifer-
ation [101]. Dysregulation of both catabolic and anabolic pathways creates a metabolic
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environment conducive to cancer progression. A feedback loop involving mTORC1 signal-
ing and TFEB modulation orchestrates the delicate balance between lysosomal catabolism
and anabolism, adapting cancer cells to varying metabolic conditions [102]. Additionally,
lysosomal changes play a pivotal role in cancer cells’ evasion of immune surveillance.
Lysosomal degradation not only processes antigens but also regulates the presentation of
MHC-I at the cell membrane [103,104]. The lysosomal degradation of MHC-I via autophagy-
dependent pathways has been implicated in the decreased surface expression of MHC-I in
pancreatic ductal adenocarcinoma (PDAC). Inhibiting autophagy restores MHC-I levels,
promoting T cell responses [103,104].

3.3. Lysosomal Calcium Regulation in Adipocytes and Ovarian Cancer Cells

The interplay between lysosomal calcium regulation and chemoresistance is an emerg-
ing area of investigation focusing on elucidating how alterations in calcium levels within
lysosomes, the cellular organelles primarily responsible for waste degradation, influence
the responsiveness of cancer cells to chemotherapy. Lysosomes are integral to maintaining
cellular calcium homeostasis, and fluctuations in lysosomal calcium concentrations have
been shown to exert regulatory effects on a multitude of cellular processes [105]. Calcium
serves as a versatile signaling molecule, intricately involved in governing cell fate decisions,
survival mechanisms, and responses to various forms of cellular stress [106]. Regarding
autophagy-mediated cell death, lysosomes are critical for autophagy, a process that in-
volves the degradation and recycling of cellular components [107]. Lysosomal calcium
dysregulation can impact the activation of lysosomal enzymes, including those involved
in drug metabolism and detoxification [108]. Moreover, alterations in lysosomal calcium
levels can impact the potential to disrupt the fusion events between lysosomes and other
cellular compartments, thereby influencing the intracellular trafficking of chemotherapeutic
agents [109].

Our recent investigation has provided compelling evidence supporting the notion
that targeting the lysosomal calcium channel TRPML1, through pharmacological or genetic
means, sensitizes chemoresistant ovarian cancer cells—encompassing both established
cell lines and patient-derived cells—to the effects of cisplatin treatment [19]. Specifically,
lysosomal exocytosis facilitates the efflux of cisplatin from ovarian cancer cells, enabling
them to evade the cytotoxic effects of the drug. Metabolomic profiling further suggests
that the enhanced sensitivity to cisplatin, following inhibition of lysosomal TRPML1, is
associated with a reduction in intracellular arginine levels [19]. The precise molecular
mechanisms underpinning these observations warrant further investigation. Furthermore,
in the context of obesity, it has been reported that TRPML1 and PPARγ are upregulated
during the adipogenesis of bone-marrow-derived stromal cells [110]. These findings sug-
gest that the process of adipogenesis may potentiate TPRML1 expression, thereby implying
a potential link between obesity and the augmented function of TRPML1 in conferring
chemoresistance to cancer cells. Collectively, these findings underscore the intricate inter-
play between lysosomal calcium dynamics and chemoresistance, offering valuable insights
into potential therapeutic strategies aimed at overcoming resistance mechanisms in ovar-
ian cancer and potentially other malignancies. Further exploration of these mechanisms
holds promise for the development of novel therapeutic interventions to enhance the
efficacy of chemotherapy.

3.4. Drug Sequestration by Dysfunctional Lysosomes in Cancer

Lysosomes are integral players in the development of chemoresistance, a complex
phenomenon intricately linked to the activity of P-glycoprotein (P-gp), a member of the
ATP-binding cassette (ABC) transporter B subfamily responsible for the efflux of diverse
substances, including drugs, from cells (Figure 2) [111]. Recent investigations have illumi-
nated the phenomenon of P-gp overexpression within lysosomes of drug-resistant cancer
cells, where it integrates into lysosomal membranes during recycling processes instead of
undergoing redistribution following synthesis [112]. Cancer cells equipped with multidrug
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resistance (MDR) transporters efficiently remove lysosomotropic ionizing drugs, thereby
sequestering them within lysosomes for subsequent release via exocytosis [113]. The accu-
mulation of these drugs within lysosomes predominantly arises through mechanisms such
as ion trapping or active transport [109]. Importantly, the comparatively weaker lysosomal
membranes observed in cancer cells, in contrast to their normal counterparts, offer a po-
tential avenue to selectively sensitize cancer cells to various forms of cell death, including
apoptosis and autophagy, both of which hold considerable therapeutic significance [111].
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lysosomal exocytosis in drug-resistant ovarian cancer cells, sensitizing them to treatment (P-gp,
P-glycoprotein; ABCA3, ATP-binding cassette subfamily A member 3; TRPML1, transient receptor
potential cation channel, mucolipin subfamily, member 1; ASO, antisense oligomer; ML-SI1, TRPML1
inhibitor). This figure was modified from a paper authored by Kim et al. in 2024 [19].

3.4.1. Sequestration of Anticancer Agents by Lysosomal Weak Bases

Anticancer drugs derived from hydrophobic weak bases, such as sunitinib, doxoru-
bicin, daunorubicin, mitoxantrone, and imidazoacridinone, possess the capability to readily
traverse hydrophobic cell and lysosomal membranes. However, upon entry into lysosomes,
these agents undergo a conversion to a charged state attributed to the presence of acidic pro-
ton ions, impeding their translocation to the cytoplasm and resulting in their accumulation
within lysosomes. This sequestration compromises their anticancer efficacy [114]. More-
over, the abundance of larger lysosomes commonly observed in most cancer cells enables
the capture of a greater quantity of anticancer drugs, even at equivalent concentrations,
thus contributing to the development of drug resistance [115]. Furthermore, lysosomal mal-
function, particularly through lysosomal membrane permeabilization (LMP), can induce
the efflux of sequestered anticancer agents. This phenomenon enhances sensitivity to these
agents, ultimately leading to their demise.
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3.4.2. Anticancer Drug Sequestration via ATP-Binding Cassette Transporters

ABC transporters, abundantly distributed across the plasma membrane, play a pivotal
role in the recognition and efflux of anticancer agents attempting to penetrate neoplastic
cells, thereby contributing to the development of resistance against a spectrum of anticancer
therapies [116]. These transporters are not solely confined to the plasma membrane but
are also prominently present in lysosomal membranes, facilitating the translocation of
anticancer agents from the cytoplasm into lysosomes, resulting in their sequestration and
accumulation within these organelles [117]. Of particular significance is the multidrug
resistance protein P-glycoprotein (P-gp), renowned for its ability to discern a wide array
of chemotherapeutic agents and induce multidrug resistance in cancer cells. P-gp is not
restricted to the plasma membrane but is also distributed across various intracellular or-
ganelle membranes, including lysosomes. This localization enables P-gp to contribute to
the intracellular sequestration of anticancer drugs within lysosomes and other organelles,
thereby conferring specific protection against these agents [113]. Additionally, ABCA3, a
member of the ABC transporter family predominantly localized within lysosomes, plays
a critical role in mediating anticancer drug resistance. ABCA3 facilitates the entrapment
of drugs such as daunorubicin and imatinib within the lysosomal environment, thereby
contributing to drug resistance mechanisms [118–120]. Interestingly, the absence of ABCA3
expression has been associated with heightened sensitivity to anticancer drugs, under-
scoring the importance of this transporter in modulating cellular responses to chemother-
apy [118,121]. Moreover, recent studies have highlighted the dynamic interplay between
ABC transporters and other cellular mechanisms implicated in drug resistance, including
alterations in lysosomal function and intracellular trafficking pathways [121,122]. Further
elucidation of these intricate interactions holds promise for the development of novel
therapeutic strategies aimed at circumventing drug resistance mechanisms and improving
the efficacy of anticancer therapies.

4. Conclusions

Our comprehensive review sheds light on the profound impact of obesity on the
development of chemoresistance in ovarian cancer, focusing particularly on the lens of
lysosomal dysfunction. The dysregulation of lysosomal function observed in ovarian cancer
cells from obese individuals not only fosters chemoresistance but also fuels tumor growth
and metastasis through various mechanisms, including impaired drug sequestration, dis-
rupted nutrient sensing, and altered cellular stress responses. Recognizing the intricate
interplay between obesity, lysosomal dysfunction, and the progression of ovarian cancer
represents a crucial step towards the development of targeted therapeutic approaches
aimed at overcoming treatment resistance and enhancing patient outcomes within this
challenging clinical landscape. Delving deeper into the molecular intricacies underlying
obesity-induced lysosomal dysfunction in cancer cells is imperative as it offers valuable
insights into the mechanisms driving drug resistance. These insights pave the way for
the design of innovative therapeutic interventions tailored to mitigate chemoresistance
and improve treatment efficacy. Further exploration in this realm holds great promise for
uncovering novel therapeutic targets and advancing the development of transformative
strategies to combat drug resistance in ovarian cancer and beyond. However, this review is
limited in its ability to detail precise mechanisms and introduce various research due to
the nascent stage of studies exploring the association between obesity-induced lysosomal
dysfunction and ovarian cancer chemoresistance.
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