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Abstract: Background: Type 1 diabetes (T1D) is a devastating autoimmune disease, and its rising
prevalence in the United States and around the world presents a critical problem in public health.
While some treatment options exist for patients already diagnosed, individuals considered at risk for
developing T1D and who are still in the early stages of their disease pathogenesis without symptoms
have no options for any preventive intervention. This is because of the uncertainty in determining
their risk level and in predicting with high confidence who will progress, or not, to clinical diagnosis.
Biomarkers that assess one’s risk with high certainty could address this problem and will inform
decisions on early intervention, especially in children where the burden of justifying treatment is
high. Single omics approaches (e.g., genomics, proteomics, metabolomics, etc.) have been applied to
identify T1D biomarkers based on specific disturbances in association with the disease. However,
reliable early biomarkers of T1D have remained elusive to date. To overcome this, we previously
showed that parallel multi-omics provides a more comprehensive picture of the disease-associated
disturbances and facilitates the identification of candidate T1D biomarkers. Methods: This paper
evaluated the use of machine learning (ML) using data augmentation and supervised ML methods for
the purpose of improving the identification of salient patterns in the data and the ultimate extraction
of novel biomarker candidates in integrated parallel multi-omics datasets from a limited number of
samples. We also examined different stages of data integration (early, intermediate, and late) to assess
at which stage supervised parametric models can learn under conditions of high dimensionality and
variation in feature counts across different omics. In the late integration scheme, we employed a
multi-view ensemble comprising individual parametric models trained over single omics to address
the computational challenges posed by the high dimensionality and variation in feature counts
across the different yet integrated multi-omics datasets. Results: the multi-view ensemble improves
the prediction of case vs. control and finds the most success in flagging a larger consistent set of
associated features when compared with chance models, which may eventually be used downstream
in identifying a novel composite biomarker signature of T1D risk. Conclusions: the current work
demonstrates the utility of supervised ML in exploring integrated parallel multi-omics data in
the ongoing quest for early T1D biomarkers, reinforcing the hope for identifying novel composite
biomarker signatures of T1D risk via ML and ultimately informing early treatment decisions in the
face of the escalating global incidence of this debilitating disease.
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1. Introduction

Type 1 diabetes (T1D) is an autoimmune condition characterized by the destruction
of insulin-producing beta cells within the islets of Langerhans in the endocrine pancreas.
While the autoimmune nature of T1D is well established, the precise factors triggering
this autoimmunity are not fully understood [1–3]. Genetic predisposition linked to certain
human leukocyte antigen (HLA) genes and other risk factors, such as viral infections and
dietary influences, are believed to contribute to the disease onset. Understanding the
etiology of T1D is critical for developing preventative therapies and improving the early
detection and management of the disease, particularly in children and young adults who
represent a significant proportion of the patient population.

Currently accepted biomarkers for T1D include genetic susceptibility markers (e.g.,
HLA-DRB1 and HLA-DQB1), the presence of autoantibodies against pancreatic islet anti-
gens, and various metabolic indicators (e.g., body mass index, BMI, and glucose tolerance
under challenge) [4–6]. While they are important clinical indicators of T1D, these biomark-
ers often have low predictive value, and some manifest late in the disease progression,
thereby limiting their promise in preempting the irreversible beta cell damage that heralds
the onset of symptoms and clinical diagnosis of T1D [7,8]. Consequently, there is an urgent
need for early-detection biomarkers that can accurately discriminate between individuals
who will progress to clinical T1D and those who will not. This is particularly crucial given
the associated severe long-term complications, which significantly impact life expectancy
and quality of life. Despite significant improvements in the management of T1D, patients
still lose one to two decades of life-years and have three times higher all-cause mortality
compared to the general population [9].

Recent advancements in multi-omics—encompassing proteomics, metabolomics,
lipidomics, and transcriptomics, among others—offer promising avenues for identifying
new composite biomarker signatures that reflect the complex pathogenic processes of
T1D. Previous research has suggested that individual omics approaches provide frag-
mented insights, which underscores the potential benefits of an integrated multi-omics
strategy [10,11]. Such an approach promises a more comprehensive view of the molec-
ular disturbances in individuals at high risk for developing T1D, potentially revealing
composite biomarker signatures indicative of disease progression.

Our previous work adopted this integrated multi-omics approach using parallel sam-
ples from the same individuals to uncover composite biomarker signatures by analyzing
metabolomic, proteomic, lipidomic, and transcriptomic data simultaneously in a cohort of
subjects at risk for T1D and healthy controls [12]. These studies highlighted the potential
of multi-omics to identify candidates for early biomarkers and elucidate T1D pathogen-
esis. They also brought to light significant logistical and computational challenges with
respect to analyzing the data under such an integrated approach: (1) due to the steep
costs associated with longitudinal clinical monitoring as well as data collection across
multiple omics, the integrated parallel dataset is inherently small scale in terms of subject
count; (2) deciphering potential interactions among measurements within the feature-rich
quadra-omics context is combinatorically prohibitive and therefore beyond manual search
or filtering. For instance, a dataset containing 100 measurements per 4 different parallel
datasets would require examining all possible subsets of features of size N, where N is
the size of the target feature set to be evaluated collectively. This would translate to (400

N )
different feature combinations, which becomes exceedingly large as N increases; and (3) the
high-dimension nature and low sample size of this dataset imply that a direct application
of a machine learning (ML) methodology for feature extraction would be prone to poor per-
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formance [13]. Any combination of features identified by a poor-performing model would
bear minimal statistical significance and, likely, biologically when examined downstream
in the disease context.

Recent works have examined the use of ML methodologies in the context of bioinfor-
matics to combine complementary knowledge brought by different omics while overcoming
issues of dimensionality and sample size. A study by Yang and colleagues demonstrated
the predictive capacity of multi-omics in colorectal cancer (CRC) survival via ML, which
helped to identify key biomarkers for the prediction of CRC patient survival [14]. Such
approaches have also been applied in cancer and radiation resistance research and are
gaining traction in the literature [15–18]. These research directions are promising; however,
Picard and colleagues noted the challenges of developing meaningful ML models from
integrated multi-omics datasets and that a simple concatenation of different omics over a
limited biological sample is subject to the “curse of dimensionality” [19]. Such integrated
learners have been found to result in worse performance than individual learners in omics
data, in addition to increasing the complexity of the problem. Data integration strategies
were key to leveraging the potential of multi-omics in this setting, and different stages of
integration were proposed. The level of integration is dependent on when ML models
are conditioned on features across different omic layers or if results from individual omic
learners are integrated post hoc in an ensemble-based scheme. Several proposals, especially
in the domain of single-cell analysis, have made predominant use of unsupervised learning
methods while evaluating different levels of integration [20,21]. These proposals show a
significant leaning toward intermediate integration, where multiple omic layers are ana-
lyzed jointly, in addition to incorporating joint dimension reduction and feature selection
techniques and robust pre-processing at the individual omic layer. Within the T1D arena,
Tan and colleagues proposed the use of supervised ML techniques (e.g., logistic regression,
support vector machines, gaussian naïve Bayes, and random forest) to screen signatures
from metabolomics, lipidomics, and microbiome data [22]. Their approach was applied to
a T1D cohort in Asian populations and targeted healthy and new-onset T1D subjects.

Supervised and interpretable ML approaches have been shown to be especially advan-
tageous in bioinformatic applications where the number of predictors greatly exceeds the
number of observations, and understanding how the model arrived at its predictions is
also crucial [23–25]. To this end, parametric modeling approaches like logistic regression
have facilitated the identification of potentially important biomarkers, seen use in diabetes
research, and are now established methods in the bioinformatics literature [26–29].

The current paper proposes an ML framework that can analyze an integrated parallel
multi-omics dataset from subjects at a high risk for developing T1D characterized by
the high-dimension and low sample-size (HDLSS) regime (see Figure 1) [21]. Adopting
a similar integration methodology as that of Picard and colleagues [19], our proposed
approach devises statistical models at different stages of integration to evaluate at which
stage models can learn under conditions of high dimensionality and variation in feature
counts across different omic combinations. These models are applied with the purpose of
detecting patterns among high-risk subjects and controls that suggest stratification within
this cohort and ultimately extracting salient combinations of biological features across
datasets from the different omics that are associated with T1D risk, which can then be
subsequently evaluated in future studies for further biological validation. This places our
interest squarely in applying statistical models under the supervised learning setting. The
framework is analogous to a Knowledge Discovery in Data (KDD) process in the data
mining field [30].
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all omics are combined before supervised analysis; intermediate integration, which also involves 
jointly analyzing multiple omics datasets but with the addition of variable selection approaches (i.e., 
shrinkage methods and regularization); and late integration, where independent omic analyses are 
performed, and their results are combined at a later stage. Following integration, data modeling is 
employed for the prediction of T1D risk, as well as to discern patterns and interactions within the 
integrated dataset, leading to the extraction of pertinent features. The subsequent feature extraction 
phase isolates significant variables as candidate biomarkers for later biological validation in future 
studies. These features are then rigorously verified to ensure their consistency and predictive valid-
ity across multiple analytical iterations. The final phase involves the selection of validated bi-
omarkers as part of a composite signature. 

More specifically, our approach is designed to answer the following research ques-
tions: (1) is it possible to improve classification accuracy with respect to a small cohort, 
and, if so, at which stage of integration can a supervised learner deliver optimal perfor-
mance in the parallel quadra-omics dataset; (2) can supervised ML approaches be em-
ployed that not only predict with high accuracy but can also reveal salient signatures in 
the data in association with T1D risk; and (3) do such signatures exhibit enough statistical 
signal to warrant further scrutiny in the disease context? Via this meticulous ML-based 
analysis, our long-term goal is to uncover a suite of reliable biomarkers that, after exten-
sive validation, may revolutionize early diagnosis and intervention strategies in T1D, 
helping to shift the paradigm from damage control to preemptive care. 

2. Materials and Methods 
2.1. Sample Collection 

Blood samples were obtained at the University of Miami’s Diabetes Research Insti-
tute from individuals at increased risk for Type 1 Diabetes (T1D high-risk) as part of Trial-
Net’s Natural History Study (Pathway to Prevention Study) TN-01 under ancillary study 
(study ID 195) approved by TrialNet’s IRB, as detailed in our prior work [12]. Roughly 20 
mL of blood (in EDTA) was drawn from four high-risk subjects; notably, one subject was 
identified as a new-onset T1D patient during a second blood sample collection two weeks 
after the initial sample. For the sake of the machine learning study conducted here, the 
samples from this individual were excluded. Control samples were also collected from 
four healthy individuals under a separate IRB-approved study (number 11995-115). All 
plasma samples were immediately processed and stored at −80 °C. Further demographic 
and clinical details are also available in [12]. The obtained parallel quadra-omics datasets 
(proteomics, metabolomics, lipidomics, and transcriptomics) are derived from the same 
individuals. Any measurements expressed in logarithmic scale were converted to decimal 
scale before being inputted into our ML framework. Ethical adherence to the Declaration 
of Helsinki and Good Clinical Practice guidelines was ensured. 
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Figure 1. Schematic overview of multi-omics data processing and analysis pipeline. This diagram
illustrates the sequential stages of the present multi-omics analysis framework, beginning with
the parallel collection of high-dimensional datasets from the four distinct omic layers, namely
proteomics, metabolomics, lipidomics, and transcriptomics. These datasets are then directed via a
preprocessing module that supports three integration strategies: early integration, where raw data
from all omics are combined before supervised analysis; intermediate integration, which also involves
jointly analyzing multiple omics datasets but with the addition of variable selection approaches (i.e.,
shrinkage methods and regularization); and late integration, where independent omic analyses are
performed, and their results are combined at a later stage. Following integration, data modeling is
employed for the prediction of T1D risk, as well as to discern patterns and interactions within the
integrated dataset, leading to the extraction of pertinent features. The subsequent feature extraction
phase isolates significant variables as candidate biomarkers for later biological validation in future
studies. These features are then rigorously verified to ensure their consistency and predictive validity
across multiple analytical iterations. The final phase involves the selection of validated biomarkers as
part of a composite signature.

More specifically, our approach is designed to answer the following research questions:
(1) is it possible to improve classification accuracy with respect to a small cohort, and, if
so, at which stage of integration can a supervised learner deliver optimal performance in
the parallel quadra-omics dataset; (2) can supervised ML approaches be employed that
not only predict with high accuracy but can also reveal salient signatures in the data in
association with T1D risk; and (3) do such signatures exhibit enough statistical signal to
warrant further scrutiny in the disease context? Via this meticulous ML-based analysis, our
long-term goal is to uncover a suite of reliable biomarkers that, after extensive validation,
may revolutionize early diagnosis and intervention strategies in T1D, helping to shift the
paradigm from damage control to preemptive care.

2. Materials and Methods
2.1. Sample Collection

Blood samples were obtained at the University of Miami’s Diabetes Research Institute
from individuals at increased risk for Type 1 Diabetes (T1D high-risk) as part of TrialNet’s
Natural History Study (Pathway to Prevention Study) TN-01 under ancillary study (study
ID 195) approved by TrialNet’s IRB, as detailed in our prior work [12]. Roughly 20 mL
of blood (in EDTA) was drawn from four high-risk subjects; notably, one subject was
identified as a new-onset T1D patient during a second blood sample collection two weeks
after the initial sample. For the sake of the machine learning study conducted here, the
samples from this individual were excluded. Control samples were also collected from
four healthy individuals under a separate IRB-approved study (number 11995-115). All
plasma samples were immediately processed and stored at −80 ◦C. Further demographic
and clinical details are also available in [12]. The obtained parallel quadra-omics datasets
(proteomics, metabolomics, lipidomics, and transcriptomics) are derived from the same
individuals. Any measurements expressed in logarithmic scale were converted to decimal
scale before being inputted into our ML framework. Ethical adherence to the Declaration
of Helsinki and Good Clinical Practice guidelines was ensured.



Biomedicines 2024, 12, 492 5 of 18

2.2. Preprocessing Module

In the preprocessing module of the proposed ML framework, the parallel quadra-
omics dataset derived from the 9-sample cohort was further refined. To align with the focus
on predicting T1D risk before disease onset, we excluded samples identified as new-onset
T1D, thereby narrowing the dataset to 7 samples for a targeted analysis contrasting “control”
and “high-risk” groups (4 “controls” and 3 “high-risk” subjects).

To construct a complete dataset for the subsequent supervised learning experiments,
any features with missing data incidence across the four multi-omics datasets were removed.
Given the highly limited sample size with yet a wide abundance of features across the
different omics, we posited this approach to be reasonable for the experiments considered
here. The curation process resulted in the datasets being reduced as follows: proteomics
from 2330 features to 1714 features, metabolomics from 238 to 122, and lipidomics from 66
to 65. The transcriptomics feature count remained unchanged at 329 miRNAs. We found
that feature representation from the four omics was comparable among the original and
curated datasets. The metabolomics dataset exhibited the highest incidence of missing
values, leading to approximately 51% of its features being discarded. The proteomics
dataset maintained 74% of its initial features, while lipidomics and transcriptomics datasets
were largely unaffected, retaining 98% and 100% of their features, respectively. The final
curated integrated quadra-omics dataset encompassed 2230 features representative of the
7 subjects under study.

To gauge the predictive power of supervised learners on the multi-omics T1D high-risk
cohort, additional datasets were prepared representing all possible combinations of the
individual omic datasets at the 1-omic, 2-omics, 3-omics, and the full 4-omics level. Given
the four distinct omic datasets, 15 unique datasets were generated for evaluation in the
supervised learning experiments. This approach was designed to investigate the contribu-
tion of each omic layer to the classification task and whether a multi-omics approach could
reveal significant features that might be overlooked in single-omic analyses and improve
prediction accuracy.

For the integration of these datasets into the predictive modeling stage, we adopted
three strategies (Figure 1). The method of integration represents a crucial step in managing
the high dimensionality of the data and, in turn, improving classification performance.
First, an early integration strategy involved a simple concatenation of the multiple omic
datasets into a single dataset for supervised modeling, which did not include any fur-
ther preprocessing of features derived from the different omics. Second, in intermediate
integration, the multiple omic datasets were also jointly analyzed with the addition of
feature selection techniques, i.e., shrinkage-based and regularization methods, that refined
the feature set used for learning while maintaining model interpretability. Third, a late
integration strategy was implemented that performed independent analyses at each omic
layer and then combined these results post hoc to reach a final consensus. Each integration
strategy was evaluated for its ability to enhance classification accuracy and to leverage the
comprehensive and interconnected nature of the parallel multi-omics datasets.

2.3. Data Modeling

We evaluated the integrated multi-omics datasets generated by the preprocessing
module, as presented in Section 2.2, using multiple supervised learning approaches. The
current ML framework incorporated parametric modeling approaches capable of retrieving
features associated with T1D risk that can later be used to identify candidate biomarkers
in a composite signature in future studies [26,27]. This was implemented using logistic
regression models, and both its standard and shrinkage-based forms were applied. The
former (LR) was used to evaluate classification accuracy obtainable at the early integra-
tion stage. The latter was applied likewise but at the intermediate integration stage. For
shrinkage-based models, we applied logistic regression with L1 (LASSO) and L2 regular-
ization (RIDGE) to penalize large coefficients such that these were reduced to 0, thereby
eliminating redundant and less contributive features. We systematically varied the penalty
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parameter λ over a coarse grid search. This process incrementally reduced the number of
non-zero weight estimates, aiming to retain approximately 20% of the feature space after
model training, which concentrated on the most informative predictors for T1D risk.

At the late integration stage, a multi-view model was implemented, following the
ensemble scheme shown in the work by Adossa and colleagues [20]. This model integrated
individual parametric model learners tailored to each omic layer. The final predictions
from the omic-specific models were then aggregated to yield a consensus classification
output depending on whether the mean prediction exceeded a set threshold amount θ.
In this framework, this constant was set to 0.5, or 50%. A diagrammatic overview of
its architecture is shown in Figure 2. A rationale of this ensemble approach is that the
integration of multiple supervised learners, each trained independently on individual
omic datasets, can better leverage diverse biological signals from limited samples, which,
consequently, improves prediction accuracy when compared to what any single omic model
might achieve on its own. Three different multi-view models were implemented as part
of this ML framework. The difference between these models was the choice of classifier
used to realize the individual base learners. The first version applied the standard form
of logistic regression (MULTI-VIEW LR), which learns a classification model for T1D risk
conditioned on the full feature space of an individual omic dataset. The second and third
versions used regularized models that applied additional pre-processing with respect to
each layer. These versions use logistic regression with L1 penalty (MULTI-VIEW LASSO)
and L2 penalty (MULTI-VIEW RIDGE), respectively, and each applies the same grid search
strategy as described above to fine-tune the penalty hyperparameter.
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Figure 2. A diagrammatic representation of the implemented multi-view ensemble architecture for
learning from the parallel multi-omics T1D high-risk cohort in the late integration stage. Independent
machine learning models termed “learners” are trained on the individual omic datasets: proteomics,
lipidomics, metabolomics, and transcriptomics. Each learner analyzes their dataset independently
to predict an outcome for some sample with index k, and their predictions ŷk are aggregated—via
simple arithmetic mean—into a consensus prediction for each sample yk. This ensemble prediction is
then subject to a set threshold, θ, and predictions surpassing this are classified as “T1D high-risk”
or otherwise as “control”. This yields an outcome prediction, yk. The approach takes advantage of
biological insights that can be extracted from each omic layer when analyzed independently and
aims to enhance these by aggregating the predictions collectively to scale individual learners to the
quadra-omics setting and improve the robustness of the overall model.
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Next, we devised a validation methodology using Leave-One-Out Cross-Validation
(LOOCV) to evaluate each of the predictive models. Given the 7 T1D high-risk and
control subjects from the target dataset, LOOCV was applied to generate 7 independent
testing sets, such that each sample was used for testing exactly once while the remaining
samples formed the training set. With respect to the training set, each omic feature was
standardized to have a mean of zero and a standard deviation of one. The standardization
step prevented the possibility of features with larger scales from dominating those with
smaller scales. Next, to address the limited training set size (6 subjects) and enhance
the robustness of the devised models, we employed smoothed bootstrapping [31]. This
method oversamples subjects uniformly at random, where values for each feature across the
samples are adjusted by a covariance matrix. The covariance matrix controls the dispersion
of newly generated samples in the augmented dataset such that new samples generated do
not overlap with existing ones, thereby maintaining the diversity and representativeness
of the dataset. The amount of adjustment made using this matrix can be toggled with a
shrinkage hyperparameter. The resampling approach taken here is built upon our previous
work on developing novel computational approaches for data imputation and amplification
from limited parallel multi-omic datasets [32]. In the present study, this technique was
used to generate augmented training sets that included 500 control and 500 T1D high-risk
virtual subjects/observations derived from the original subjects in the training data.

Logistic regression models and LOOCV were implemented using the sci-kit-learn
software package (version 1.3.0) in Python [33]. The smoothed bootstrapping technique
was executed using the imblearn package (version 0.0) in Python [34]. All experiments
were performed on a 24-core Intel Xeon CPU (2.40 GHz) with 126G RAM.

The multi-view ensemble scheme and experiment codes were also implemented in
Python and made publicly available via our project GitHub repository (https://github.
com/jerrybonnell/multiomics-t1d-ml (accessed on 31 January 2024)).

3. Results

In the present study, we sought to examine the predictive capacity of supervised
machine learning models on parallel multi-omics data from a limited T1D high-risk cohort
and determine the most effective stage of data integration for learners to identify T1D
risk. We also aimed to pinpoint features that are not only salient to the classification
but may also serve as candidate biomarkers of T1D risk, subject to subsequent biological
validation in future work. Therefore, our evaluation approach is twofold: first, an empirical
analysis is performed with respect to the various models’ ability to discriminate between
case (high-risk) and control (healthy) subjects, with special attention given to samples that
proved challenging to predict; and second, said models are then examined for feature
yields, importance, and consistency. In the interest of transparency of the results presented,
all reported findings were generated using toolkit suggested hyper-parameters unless
noted otherwise.

3.1. Empirical Evaluation of Prediction Performance of T1D Risk

Our first approach interrogated the supervised learning classifiers across all combi-
nations of the parallel multi-omic datasets using the LOOCV experiment, as described in
Methods Section 2.3. For a specific omics combination, the evaluation made repeated calls
of LOOCV to account for the variability introduced by the data augmentation strategy
within the training set. In the experiments presented here, LOOCV was repeated 20 times.
The presented multi-view models were not subject to combinations where only one omic
dataset was present.

We quantified model performance by reporting the mean prediction accuracy and
standard deviation of the accuracy scores over the different repetitions. Simultaneously, we
also examined observations that were especially challenging for prediction across different
combinations of the four parallel omic datasets. In total, among 6 different learning
paradigms (LR, LASSO, RIDGE, MULTI-VIEW LR, MULTI-VIEW LASSO, and MULTI-

https://github.com/jerrybonnell/multiomics-t1d-ml
https://github.com/jerrybonnell/multiomics-t1d-ml
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VIEW RIDGE) and 15 omics combinations (4 single omics, 6 dual-omics, 4 triple-omics,
and 1 quadra-omics), we trained and evaluated 1560 models. Note that, due to its triviality,
multi-view learning paradigms were not subject to datasets consisting of only one omic
dataset. Therefore, 240 different models were devised from 3 (non-ensemble) learners at the
one-omic level and 1320 models from a total of 6 learners for combinations where at least
two or more omic datasets were present. Table 1 presents the results of this experiment.

Table 1. Comparison of the predictive performance of six machine learning models (LASSO, RIDGE,
LR, MULTI-VIEW LASSO, MULTI-VIEW RIDGE, and MULTI-VIEW LR) with respect to mean
prediction accuracy and standard deviations over repeated trials of LOOCV. Different combinations
of the four parallel omics datasets are tested: proteomics (P), metabolomics (M), lipidomics (L), and
transcriptomics (T). Each row represents a unique omic dataset or a combination of two or more
datasets, and the corresponding values indicate the mean performance and standard deviation of
each model for that specific combination. Blank cells denote settings where a model was not tested.
Values for best-performing models for a given combination are bolded.

Repeated LOOCV Prediction Performance *

Omic LASSO RIDGE LR MULTI-VIEW
LASSO

MULTI-VIEW
RIDGE

MULTI-VIEW
LR

P 0.43 ± 0 0.61 ± 0.063 0.61 ± 0.063
M 0.37 ± 0.072 0.59 ± 0.044 0.39 ± 0.094
L 0.71 ± 0.056 0.86 ± 0.032 0.72 ± 0.032
T 0.57 ± 0 0.57 ± 0 0.56 ± 0.064

P+M 0.59 ± 0.064 0.71 ± 0 0.71 ± 0 0.67 ± 0.067 0.71 ± 0 0.54 ± 0.079
P+L 0.71 ± 0 0.71 ± 0 0.71 ± 0 0.75 ± 0.063 0.71 ± 0 0.81 ± 0.07
P+T 0.43 ± 0 0.66 ± 0.07 0.66 ± 0.072 0.56 ± 0.044 0.57 ± 0.093 0.56 ± 0.044
M+L 0.62 ± 0.07 0.7 ± 0.064 0.58 ± 0.086 0.6 ± 0.059 0.73 ± 0.044 0.71 ± 0.066
M+T 0.57 ± 0 0.56 ± 0.044 0.52 ± 0.096 0.57 ± 0 0.46 ± 0.063 0.54 ± 0.112
L+T 0.57 ± 0 0.59 ± 0.052 0.64 ± 0.073 0.69 ± 0.059 0.76 ± 0.07 0.86 ± 0

P+M+L 0.69 ± 0.059 0.71 ± 0 0.71 ± 0 0.58 ± 0.056 0.71 ± 0 0.61 ± 0.067
P+M+T 0.43 ± 0 0.71 ± 0 0.71 ± 0 0.56 ± 0.032 0.69 ± 0.052 0.56 ± 0.064
P+L+T 0.44 ± 0.056 0.71 ± 0 0.71 ± 0 0.86 ± 0 0.86 ± 0 0.84 ± 0.044
M+L+T 0.57 ± 0 0.7 ± 0.044 0.59 ± 0.064 0.63 ± 0.072 0.71 ± 0 0.6 ± 0.075

P+M+L+T 0.44 ± 0.032 0.71 ± 0 0.71 ± 0 0.86 ± 0 0.8 ± 0.072 0.75 ± 0.063

* Mean LOOCV prediction accuracy percentages and standard deviations over the 20 trials shown. Values rounded
to 3 digits of precision. Blank means no prediction for a given model. Bold indicates best performance.

At the individual omic level, we observed varied performance among the early and
intermediate integration learners. Superior performance was exhibited by RIDGE on
the lipidomics (L) dataset (86%), which was also the highest obtainable accuracy on this
cohort observed across all combinations and omics levels. This same model achieved
top performance on all individual omic datasets. At the dual-omics level, other than the
proteomics (P) + transcriptomics (T) dataset, late integration models improved the mean
prediction accuracy over the early and intermediate models tested. MULTI-VIEW RIDGE
improved the mean prediction over RIDGE by 3% on the metabolomics (M) + L dataset
and tied with both the RIDGE and LR for best performance on the P+M dataset. MULTI-
VIEW LASSO is also tied with its intermediate integration counterpart, LASSO, on the
M+T dataset. MULTI-VIEW LR improved the performance over all early and intermediate
integration learners by 6% on P+L and by 22% on L+T, when compared to LR, the top
performing non-multi view model on this dataset. Strong results by MULTI-VIEW LR
suggested that the coefficient penalization by shrinkage-based methods was not helpful
on the dual-omics P+L and L+T combinations. Furthermore, when the L+T combination
was joined by the proteomics dataset at the tri-omics level (P+L+T), strong performance
was also achieved (84%), but it was marginally outperformed by multi-view models with
shrinkage-based penalization, i.e., MULTI-VIEW LASSO (+2%) and MULTI-VIEW RIDGE
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(+2%). Performance by this model deteriorated when encountering the L+T combination
joined by the metabolomics dataset (M+L+T, 60%) as well as other tri-omic combinations
that included metabolomic features (P+M+L, P+M+T, and M+L+T).

Moreover, other late integration models achieved strong results at the tri-omics level.
MULTI-VIEW RIDGE tied with LR and its intermediate model counterpart, RIDGE, for top
performance on P+M+L and improved the mean performance by 1% on M+L+T and by
15% on P+L+T when compared to the best-performing early and intermediate integration
models tested on these combinations (RIDGE). The exception to this was the combination
P+M+T, where late integration models were outperformed by both RIDGE and LR by +2%.
Notably, P+M+T contained the P+T combination, which was a dual-omic dataset found to
also be difficult for late integration models.

At the quadra-omics level, we found that late integration models were best able to
leverage the full combination of the four omic datasets for T1D risk prediction when
compared to other approaches. MULTI-VIEW LASSO achieved a top performance of 86%,
the highest obtainable mean accuracy observed on this dataset, which is a 15% improvement
over the best-performing model (RIDGE) from early and intermediate integration learners.
The MULTI-VIEW LR model, which demonstrated strong results at the dual-omics level,
was unable to completely overcome its deterioration in performance after encountering the
metabolomic dataset at the tri-omics level. Its performance comparatively improved at the
quadra-omics level but was outperformed by other late integration models that included
robust feature selection at the individual omic layer, as achieved by MULTI-VIEW LASSO
and MULTI-VIEW RIDGE. Overall, we found that, for all omic combination levels beyond
individual omics, early integration models (LR) tested could deliver optimal performance
achievable on a given combination. However, no combination existed where these models
could improve the state-of-the-art when compared to late integration approaches. This also
held for intermediate integration models (LASSO and RIDGE). We found that, at the dual-
and higher omics levels, late integration models were successful in staying competitive or
improving the mean prediction accuracy achieved by early and intermediate integration
approaches.

3.2. Improvements in Instance-Based Prediction Accuracy

The finding that any model was unable to exceed the best performance achieved
among the collection of models tested over different combinations of the four omic datasets
suggested that there are certain observations within this cohort that may be especially
challenging for classifiers to predict well. As shown in the results presented in Section 3.1,
there was no such classifier that could deliver mean prediction accuracy beyond 86%,
which corresponds to roughly one out of the seven observations that were consistently
misclassified under the repeated LOOCV experiment. In this evaluation, we attempted to
quantify the difficulty in prediction by examining mean prediction accuracies with respect
to each of the seven observations in the cohort. These accuracy measures are obtained
using the same LOOCV methodology applied in Section 3.1, where the score for a given
instance was derived by computing the mean prediction accuracy for that instance over the
20 trials of LOOCV. These results were stratified by the 6 learning paradigms tested and
the 15 different combinations of the 4 parallel multi-omic datasets. This gave an indication
as to whether misclassified subjects were consistent across the different models tested and
whether specific cases were difficult for a subset of the learners. Figure 3 illustrates the
result using a heatmap matrix for each of the learning paradigms.
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LR, and their multi-view ensemble equivalents—when applied to different combinations of the
parallel individual omic datasets, namely proteomics (P), metabolomics (M), lipidomics (L), and
transcriptomics (T). Intensity of coloration corresponds to mean prediction accuracy for a given
subject over repeated trials of LOOCV, with gradations of tan and purple colors representing higher
and lower prediction accuracy, respectively. Subjects 1–4 were controls and 5–7 high-risk for T1D.
Cells in white indicate no prediction for the given model.

We found that, across the different omics combinations tested, the collection of clas-
sifiers enjoyed the most success in predicting subject #1 (control) and subject #7 (case).
Other than the early and intermediate integration models, when subjected to the pro-
teomics (P) dataset, all classifiers obtained almost perfect accuracy when predicting the
status of these subjects. Similar success was found for subject #6 (case), and we found, in
general, the prediction accuracy to be relatively higher for cases (subjects #s 5–7) when
compared to controls (subjects #s 1–4). The exception to this was subject #5 (case). We
found that, across several omics combinations and the full quadra-omics dataset, early and
intermediate integration models (LR, LASSO, and RIDGE) were unable to correctly classify
this subject as T1D high-risk. There were configurations where said subject was correctly
predicted by all three, e.g., L, T, L+T, and M+L+T datasets, but this did not hold for most
tri-omic and quadra-omic combinations. Ensemble-based schemes, as shown by the three
multi-view models tested, were successful in overcoming this difficulty, especially at the
quadra-omics level.

Among controls, we found that subject #3 was especially challenging to predict for the
model collection. Among the 6 different learning paradigms and the 15 omics combinations,
there were only 4 such configurations where said subject was predicted successfully with
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perfect accuracy; these were RIDGE when trained on L, M, and M+L datasets and its
multi-view counterpart when also trained on M+L. For such configurations, this came at
a trade-off as these models encountered difficulty in predicting subjects #4 and #6. There
were signs of prediction success in this instance by LR when subjected to M+L, but this also
came at the cost of misclassifying the same subjects #4 and #6. For LASSO specifically, we
found that this model was further challenged in predicting subjects #2 and #4, especially
when encountering datasets at the tri-omic and quadra-omic levels. This was consistent
with our results in Section 3.1, which showed this model to exhibit relatively degraded
performance over these combinations.

Multi-view models were successful in improving instance-based classification for
subjects found to be difficult by early and intermediate integration approaches. MULTI-
VIEW LASSO improved prediction over LASSO on these subjects (#s 2, 4, and 5) at the
tri-omics and quadra-omics levels. Subject #5, which was found to be difficult for prediction
by early and intermediate integration learners at the tri-omics and quadra-omics levels, saw
improvements in prediction accuracy by multi-view model counterparts. At the quadra-
omics level, these same multi-view models improved instance-based prediction over early
and intermediate integration models, with only one subject of the 7 (subject #3) consistently
mislabeled by the three different models. With respect to these multi-view learners, there
was only one other configuration (P+L+T) where one subject was misclassified out of the
total 7.

3.3. Feature Importance and Verification Analysis

In the second phase of our evaluation, we focused on isolating features salient to
predicting T1D risk at the quadra-omics level. This was accomplished by identifying and
scrutinizing “consistent features”, that is, a subset of features repeatedly selected across the
seven folds of the LOOCV experiment. We sought to determine if these features appeared
with greater frequency than would be expected by chance alone, which would underscore
their potential use downstream as candidate biomarkers for T1D risk. “Consistent features”
are defined as those that endure the application of coefficient penalization by modeling
approaches with shrinkage-based methods, as per our intermediate and late integration
models. These methods compress coefficient estimates toward zero, and consistent fea-
tures are characterized by those with non-zero coefficients post-shrinkage across all seven
LOOCV folds. This consistency indicates a robust association with outcome T1D high-risk
status beyond the noise inherent in the modeling process over a restricted data sample.

To test the significance of these consistent features, a permutation test was conducted.
This procedure compares the features from the actual LOOCV experiment against those
derived from a null distribution. The generation of this distribution was accomplished
by randomly permuting the class labels of the subjects and observing which features
repeatedly surfaced as important via the same LOOCV modeling process applied to the
real data. This randomized trial was repeated 1000 times to provide a distribution of
null consistent feature sets against which the consistent features in the real data could
be compared. This permutation test was repeated for each of the intermediate and late
integration modeling approaches: LASSO, RIDGE, MULTI-VIEW LASSO, and MULTI-
VIEW RIDGE. Finally, the identified consistent features from each of the four models were
subjected to further validation. We assessed whether these features withstood a series of
fold-change thresholds, ranging from minimal (1) to more stringent (1.1, 1.2, 1.3, 2.0, and
3.0) [32]. Such a multi-tiered validation approach ensured that the features we identified
were not just statistically significant but also held potential biological significance with
respect to T1D risk. Figure 4 and Table 2 present these results.
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Figure 4. Line plots illustrating the proportion of selected features from the consistent feature sets
that surpass given fold-change thresholds for each omic type (1, 1.1, 1.2, 1.3, 2.0, and 3.0). Lines
demonstrate how the proportion of features that meet or exceed these threshold values changes as
the stringency of the threshold increases. One line is shown for each of the intermediate and late
integration models tested—LASSO, RIDGE, MULTI-VIEW LASSO, and MULTI-VIEW RIDGE.

Table 2. Summary of different criteria for consistent features identified by the intermediate and late
integration models. Criteria listed: number of features repeatedly selected over 7 folds of the LOOCV
experiment, p-value indicating the statistical significance of the consistent feature set with respect to
the permutation test, and percentage contribution of each omic layer to the set—proteomics (%P),
lipidomics (%L), metabolomics (%M), and transcriptomics (%T). p-values < 0.1 indicate statistical
significance.

Model # Features p-Value %P %L %M %T

LASSO 25 0.462 4.0 12.0 12.0 72.0
RIDGE 71 0.32 19.7 19.7 9.86 50.7

MULTI-VIEW LASSO 56 0.295 17.9 32.1 44.6 5.36
MULTI-VIEW RIDGE 143 0.094 9.09 24.5 21.7 44.8

Among the intermediate and late integration modeling approaches, we observe that
multi-view models (MULT-VIEW LASSO and MULTI-VIEW RIDGE) were successful at
flagging a larger consistent feature set when compared to their respective intermediate
model counterparts (LASSO and RIDGE). MULTI-VIEW LASSO flagged 31 more consistent
features than LASSO, and MULTI-VIEW RIDGE flagged 72 more than RIDGE. This was
likely an artifact of the shrinkage-based models used within the late integration scheme;
these models were conditioned over smaller feature sets (by analyzing individual omics)
when compared to intermediate integration models and thus were better able to consistently
flag a larger number of repeated features. Of these features, we found that LASSO raised
the largest proportion of transcriptomic features (72%) relative to its consistent feature set.
Its late integration counterpart, MULTI-VIEW LASSO, traded off the number of consistent
transcriptomic features raised for lipidomic (32.1%) and metabolomic (44.6%) features and
was also the model that flagged the largest proportion of features from these omic layers.
Likewise, this model yielded the greatest share of proteomic features (17.9%).

With respect to the permutation test conducted, we found that the number of consistent
features raised by MULTI-VIEW RIDGE was in the tail of the null distribution generated
for this learning paradigm. More specifically, we observed that the overlap found by this
model was statistically significant at an approximate 90% significance level (p = 0.094 by
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permutation test). This significance was not observed for the other late integration model
tested (MULTI-VIEW LASSO) as well as the two intermediate integration models (LASSO
and RIDGE).

To further scrutinize these consistent feature sets, we examined whether their con-
stituent features passed a given fold-change threshold(s). We adopted the same threshold
amounts, θ, as used previously [32]. For lipidomic features, we found a discrepancy be-
tween these sets at θ = 1.3 and θ = 2.0 before all such features were eliminated completely
at θ = 3.0. At the former, all RIDGE features were retained, while the set flagged by
MULTI-VIEW RIDGE experienced the largest reduction while still preserving 94.3% of
its features. At the latter, RIDGE also retained the largest proportion, 42.9%, while all
features raised by LASSO were filtered out. Other models retained approximately 20%.
For metabolomic features, we found that all such features identified by LASSO were also
eliminated completely at θ = 2.0, although the feature set size flagged by this model is
relatively small (3 metabolites). Other approaches retained some proportion even at the
highest threshold tested (highest 19.4% by MULTI-VIEW RIDGE). A late integration model
(MULTI-VIEW RIDGE) yielded the largest proportion of these features at θ = 1.2 and θ = 1.3,
which was then outperformed by RIDGE at θ = 2.0 with 43% features retained. With respect
to proteomic features, no discrepancy was found between these models until encountering
θ = 2.0. Proteomic features raised by LASSO survived the remaining thresholds tested;
however, as with its metabolomic feature set, the number of consistent proteomic features
available is comparatively small (1 proteomic feature). For other models, MULTI-VIEW
LASSO retained the largest proportion at this threshold (60%), while MULTI-VIEW RIDGE
had the largest reduction and retained 46.2% of the features in its respective set. A large
proportion of the features identified by RIDGE did not survive the most stringent threshold
tested, with only 28.6% of its features remaining. Other than LASSO, the late integration
model MULTI-VIEW LASSO retained the largest proportion of proteomic features at this
threshold (30%), while MULTI-VIEW RIDGE was the lowest (23.1%).

Transcriptomic features performed the best with respect to this validation step. The
four modeling approaches tested retained their respective features from this omic layer at θ
= 1.1, 1.2, and 1.3. At θ = 2.0, the worst performing feature set (from MULTI-VIEW RIDGE,
a late integration model) retained 78% of its features and 59% at θ = 3.0. In contrast, the
entire consistent feature set identified by MULTI-VIEW LASSO was recovered after being
subjected to each threshold amount. Most of the features raised by LASSO also survived
the most stringent threshold tested (95% of features retained at θ = 3.0).

4. Discussion

The above results indicate that a prerequisite to identifying biomarkers associated
with T1D risk via the application of ML is to first evaluate combinations of data integra-
tion strategies and learning paradigms that can be used to devise a classifier capable of
discriminating between case (T1D high-risk) and control subjects. Such a classifier can then
be used to retrieve features from different omic layers that are salient to the classification,
which when taken collectively, can form a more comprehensive picture to potentially assess
T1D risk. To this end, we developed an ML framework that trains different parametric
modeling approaches (LR, LASSO, and RIDGE) on a dataset iteratively subjected to one of
three stages of data integration (early, intermediate, and late). This framework is depicted
in Figure 1. A fundamental challenge to the approach taken here is the limited sample
size of the source parallel multi-omics datasets, which is reflective of the steep cost and
logistical challenges of collecting longitudinal biological sample cohorts and performing
the associated multi-omics analyses. These costs are also significant from a computational
perspective, in which we highlight two key limitations. First, the restricted sample size
implies that the currently devised ML models may have limited generalization capabilities,
especially when used for validation in independent T1D cohorts. Second, the ML frame-
work must be trained on the high-risk labels that result from data collection. Given that
these are derived using current classification criteria for T1D risk, which cannot predict with
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certainty who will or will not eventually progress to disease onset, the devised models may
suffer from propagating current diagnostic flaws. Notwithstanding this second limitation,
the proposed ML models are designed to overcome traditional (single-omic) approaches
under existing risk-classification criteria to ultimately identify potential novel biomarkers
by incorporating multi-omic profiles, which might be overlooked otherwise.

Our results on the comparative performance of modeling approaches under this frame-
work across different combinations of omics data, ranging from single-omic to quadra-
omics, showcased the potential utility of a computational approach in this limited setting.
Our findings indicate that the highest mean prediction accuracy achieved at the quadra-
omics level (86%) is also the highest prediction rate achieved across all omic levels and
combinations (Table 1 and Figure 3). This result was also matched by combinations at
lower omic levels, e.g., the lipidomics dataset (L) and the combination of the lipidomics
and transcriptomics datasets (L+T). While achieving top performance with fewer omic
combinations may seem advantageous computationally, the equal performance at the
quadra-omics level represents a significant step forward in this research and aligns with
the biological objective of creating a holistic view of disease pathogenesis and the identifi-
cation of associated composite biomarker signatures. The alignment of these two goals is
particularly notable given the computational challenges posed by the limited sample size
and relatively vast number of features from different omic profiles.

Stratifying prediction scores by observation reveals added conclusions regarding the
strengths of individual classifiers tested in the model collection. Analysis of the heatmap
matrices, as per Section 3.2, shows that specific omic combinations from certain models are
associated with improved predictive accuracy for some subjects. For instance, subject #3
(control) was found to be particularly challenging but was classified perfectly by RIDGE
on the metabolomic (M) and lipidomic (L) datasets, as well as their combination (M+L).
This finding highlights the potential in future work to leverage certain omic combinations
within an ensemble to bolster predictions and improve model training at the quadra-omics
level. Such an approach could more effectively capitalize on the use of an ensemble-based
learning scheme, as proposed in this study. Depending on whether such fine-tuned models
exhibit notable differences in feature importance when compared to the overall ensemble,
this can also inform clinically whether there are substantial differences in these instances
when compared to other subjects in the cohort.

In our quest to spotlight significant features for downstream biological scrutiny in
future work, we observed that varying combinations of features, learning, and integration
paradigms contribute to diverse representations from different omic layers in the consistent
feature set. To this end, we recognize contributions made by intermediate modeling
approaches. Specifically, RIDGE models were successful in flagging a large proportion
of lipidomic features from its consistent feature set that passed the given fold change
thresholds tested. This also holds for the proteomic feature set derived by LASSO; however,
only a small number of such features were available for analysis. RIDGE models were also
successful in highlighting strong metabolomic as well as proteomic features at the most
stringent threshold values.

The fact that late integration models were the strongest performing, with respect to
mean prediction accuracy and consistent feature set size, points to promising avenues for
expansion in future work and methods for overcoming limitations of very low sample sizes
in multi-omic cohorts. Given that the proposed late integration models are composed of
independent learners trained at the individual omic layer, the independent and distributed
nature of the learning procedure under this approach implies that the model can scale as
more data become available in a specific omic, potentially leading to more accurate and
generalizable predictions. This would facilitate a more rapid expansion of the current
dataset in future work by relaxing the current requirement on any new samples introduced
into the ML framework to improve learning: variables across all four parallel multi-omic
datasets must be collected simultaneously. The addition of a larger dataset from a particular
omic profile would also lay the groundwork for implementing transfer learning strategies.
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Under this approach, knowledge gained from one omic domain (e.g., a larger proteomics
dataset) can be evaluated for its transfer to another (i.e., the current quadra-omics dataset).
This becomes especially critical in overcoming the challenges associated with the high
dimensionality and very low sample size in the current cohort, as well as improving
generalization capabilities and model robustness when validating the approach in other
independent cohorts. By pre-training the model on the larger dataset and fine-tuning it on
the smaller, more specific quadra-omics dataset, the model can leverage broader patterns
learned from the larger dataset while adapting to the specificities of the integrated parallel
quadra-omics data. This would also open opportunities for continuous learning, where
such a model can be periodically updated as new data become available, thus keeping the
model relevant and improving its performance over time.

5. Conclusions

In summary, the integration of diverse omic layers—in this case, proteomics, metabolomics,
lipidomics, and transcriptomics—using ML has shown considerable promise in enhancing the
accuracy of classifying subjects at high risk for T1D and paving the path toward identifying
biomarkers salient to T1D risk in future studies. Our empirical evaluation suggests that
ML classifiers can deliver high prediction accuracy in limited cohorts and that performance
is dependent on the stage of data integration and whether learners are conditioned on
features derived from single or multiple omic profiles simultaneously. This underscores
the potential of multi-omics approaches in uncovering complex biological relationships
and patterns that might be invisible when analyzing each omic layer in isolation. To this
end, we find that late integration approaches, specifically using the multi-view architecture
proposed here, are most successful in achieving high prediction accuracy at higher omic
levels. A late integration model consisting of individual logistic regression learners with
L2 penalty was also found to exhibit a significantly larger consistent feature set when
compared to chance models. The fact that these sets of features identified are also able to
withstand verification at set fold-change thresholds will be a significant step downstream
in recognizing robust biomarkers for T1D risk in future work.

The present study not only demonstrates the feasibility and efficacy of using ML for
analyzing integrated parallel multi-omics data in T1D research but also lays the foundation
for expanding the ML framework in future work. Future directions include incorporating
larger datasets from a specific omic profile as part of a transfer learning scheme, continuous
learning, and validating the devised multi-view models in independent T1D cohorts.
We are also interested in evaluating the impact of potential biomarkers identified by the
proposed ML framework in other populations [35]. Furthermore, quadra-omics is not the
upper bound in multi-omics analysis, and the incorporation of additional omic profiles,
such as peptidomics and genomics, may prove fruitful in future research. The results of
these interdisciplinary endeavors highlight the potential of ML methods in identifying
composite biomarker signatures for early detection of T1D and guiding timely intervention
for effective prevention, marking a significant stride toward enhanced healthcare outcomes.
This has the potential to revolutionize the understanding of T1D pathogenesis and aid the
development of more targeted and effective treatment strategies.
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