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Abstract: Background and Objectives: Traumatic Brain Injury (TBI) is a condition in which an
external force, usually a violent blow to the head, causes functional impairment in the brain.
Neuromodulation techniques are thought to restore altered function in the brain, resulting in
improved function and reduced symptoms. Brain stimulation can alter the firing of neurons,
boost synaptic strength, alter neurotransmitters and excitotoxicity, and modify the connections
in their neural networks. All these are potential effects on brain activity. Accordingly, this is a
promising therapy for TBI. These techniques are flexible because they can target different brain
areas and vary in frequency and amplitude. This review aims to investigate the recent literature
about neuromodulation techniques used in the rehabilitation of TBI patients. Materials and
Methods: The identification of studies was made possible by conducting online searches on
PubMed, Web of Science, Cochrane, Embase, and Scopus databases. Studies published between
2013 and 2023 were selected. This review has been registered on OSF (JEP3S). Results: We have
found that neuromodulation techniques can improve the rehabilitation process for TBI patients in
several ways. Transcranial Magnetic Stimulation (TMS) can improve cognitive functions such as
recall ability, neural substrates, and overall improved performance on neuropsychological tests.
Repetitive TMS has the potential to increase neural connections in many TBI patients but not
in all patients, such as those with chronic diffuse axonal damage.Conclusions: This review has
demonstrated that neuromodulation techniques are promising instruments in the rehabilitation
field, including those affected by TBI. The efficacy of neuromodulation can have a significant
impact on their lives and improve functional outcomes for TBI patients.

Keywords: neuromodulation; traumatic brain injuries; rehabilitation

1. Introduction

Traumatic brain injury (TBI) is a condition in which an external force, usually a
violent blow to the head, causes functional impairment and structural damage to the
brain. It can be caused by a sudden acceleration–deceleration, a blow, a bump, or a
collision to the head. This condition can also arise if something breaks or enters the
skull. This allows a distinction between open and closed injuries, with the former
generally being associated with worse outcomes [1,2]. Sensorimotor deficits, cognitive
deficit deterioration, behavioral disorders, depression, and headaches are among the
severe long-term effects of trauma on young people worldwide, making it one of the
leading causes of death and disability [3,4]. TBI is most commonly experienced in
individuals aged 0 to 4, with adolescents aged 15 to 24 being the most susceptible, and
it occurs most frequently due to falls and car accidents [5]. The progression of TBI is a
multifaceted process that includes primary and secondary injuries, leading to temporary
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or permanent neurological damage. The secondary injury occurs within minutes to
days after the primary impact and consists of an inflammatory cascade that causes
further brain damage. In the evaluation of patients with TBI, a detailed neurologic
examination should be performed by trauma or emergency department personnel, also
using the Glasgow Coma Scale. This is of great importance in this context, as this scale
often dictates management according to current guidelines [6]. Rehabilitation, cognitive
correction, exercise, and cognitive-enhancing drugs, as well as various brain stimulation
techniques, are currently used for treating TBI [7,8].

A growing number of TBI nonpharmacological treatment options include different
neuromodulation interventions. A broad spectrum of intervention techniques are included
in neuromodulation, which aims to alter nervous system pathological activities to achieve
therapeutic effects.

Neuromodulation is a technique used to stimulate the scalp and skull to promote
neuronal plasticity and the recovery of neurological processes. In recent years, neuro-
modulation has evolved, and it is now universally considered an accepted treatment
for a variety of neurological and psychiatric disorders [9,10], In particular, two nonin-
vasive methods of neuromodulation provide electrical stimulation to different areas
of the brain: transcranial magnetic stimulation (TMS) and transcranial direct current
stimulation (tDCS). In TMS, a magnetic field generated by a coil produces a short-lasting
electrical current pulse into the brain, especially in the cerebral cortex where neurons are
stimulated [11,12]. TMS is classified into three main types: a single pulse, which involves
applying pulses at varying intervals every few seconds, a paired pulsed, and repetitive
TMS (i.e., rTMS, where magnetic pulses are delivered in rapid succession). TMS has a
duration that can either be excitatory (>5 Hz) or inhibitory (>1 Hz), depending on the
frequency used [13–15].

tDCS alters the resting membrane potential of neurons and affects their spontaneous
firing rate [11]. By connecting two or more electrodes to the scalp, a weak direct current is
delivered to the skull to reach the cerebral cortex.

Depolarization or hyperpolarizing occurs in neurons’ membranes of the target area as a
result of the current entering the brain at the anode and exiting at its cathodes [16,17]. Other
techniques are deep brain stimulation (DBS), spinal cord stimulation (SCS), transcutaneous
electrical nerve stimulation (TENS), and low-level laser therapy (LLLT) [18,19].

Neuromodulation techniques are thought to restore altered function in the brain,
resulting in improved function and reduced symptoms. Brain stimulation can alter the
firing of neurons, boost synaptic strength, alter neurotransmitters and excitotoxicity, and
modify the connections in their neural networks. All these are potential effects on brain
activity. Accordingly, this is a promising therapy for TBI [20]. These techniques are flexible
because they can target different areas of the cortex, vary in frequency and amplitude, and
are critically noninvasive. Neurological responses to different receptors, neurotransmitter
systems, or ion channels are thought by noninvasive brain stimulation to activate multiple
neural mechanisms dependent on the task. Obviously, the target area of these techniques
changes depending on the function or symptom to be treated [21,22]. Moreover, neuro-
modulation can modulate neural activity in a way that produces changes in theta, delta,
and gamma oscillations [23]. In the neurorehabilitation field, one of the key points for
effective neuromodulation techniques, such as TMS, is the correct positioning of the coil
in the target cortical area. Neuronavigation helps with the correct application by using
brain coordinates obtained from the patient’s magnetic resonance imaging (MRI) slices. A
three-dimensional reference system is used to transfer the coil and head coordinates, which
are determined by the optical camera of the patient tracker, infrared position sensor, and
coil trackers. Through this method, the brain’s specific stimulation area can be monitored
while using a computer screen [24].

Regarding TBI, there are clear opportunities and challenges to the practical application
of neurostimulation techniques, including TMS, tDCS, or DBS.
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For example, there is a landmark case study in which central thalamic DBS induced the
recovery of a patient in a persistent minimally conscious state [25]. However, a subsequent
study of 14 patients found that patients with improved outcomes had more intact postinjury
neuroanatomical structures, whereas improvement was not observed in those with larger
lesions [26].

TBI patients often exhibit recurrent depressive episodes and invaliding depressive
and anxiety symptoms as measured by different clinical instruments (depression ques-
tionnaire/scales), and DBS has shown promising results in these behavioral alterations
focused on depression signs in both human and animal models and may therefore be
a useful treatment option [27]. In addition, other potential cognitive and behavioral
sequelae of TBI, such as memory and arousal disorders, may also be indications for
DBS [28].

TMS and tDCS have specific effects on the rehabilitation of TBI patients. TMS has
been used to treat major depression [27], schizophrenia, Parkinson’s disease, aphasia,
unilateral neglect, cognitive impairment, and other related conditions. The FDA has
also approved its use for these conditions [29]. Patients who undergo TBI have reported
significant improvements in their cognitive function and depression, as evidenced by
the successful delivery of repetitive high-frequency (10 Hz) TMS to the left dorsolateral
prefrontal cortex [30].

Moreover, TMS and tDCS can decrease symptoms related to TBI (tinnitus, neglect,
memory impairment, and attention deficit disorder) and lead to significant improvements
in the upper extremities on the Fugl–Meyer scale [31,32].

Another technique is vagus nerve stimulation (VNS). Afferent and efferent fibers
are transported between the medulla oblongata and organs in the chest and abdomen
through the vagus nerve, which is the 10th cranial nerve. This process involves moving
these fibers from one body to another. The vagus nerve, which is the parasympathetic
branch of the autonomic nervous system, is responsible for transmitting sensory in-
formation between organs [33–35]. We have descripted these main neuromodulation
techniques in the Table 1.

This scoping review aims to investigate the recent literature of the last years about
neuromodulation techniques used in the rehabilitation of TBI patients.
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Table 1. The description of the main neuromodulation techniques in neurorehabilitation.

Neuromodulation
Techniques Description and Characteristics Picture

Transcranial Magnetic
Stimulation (TMS)

A technique known as transcutaneous magnetic stimulation (TMS) is a noninvasive way to
stimulate the brain, producing alternating magnetic fields that change rapidly over time.
The extensive capabilities of TMS make it a perfect neurophysiological tool for studying

the function of brain regions and their associated networks, as well as studying
brain–behavior relationships to identify possible neurobiological substrates of

diseases [10]. For single-pulse experiments, monophasic magnetic pulses are commonly
used, whereas rTMS experiments usually require biphasic stimulation waveforms due to

their lower energy requirements [36]. Low-frequency rTMS studies typically employ a
1 Hz stimulation frequency, with differences in both the intensity and number of pulses

during each study, which can suppress the effect. Conversely, high-frequency rTMS
(5–250 Hz) is believed to enhance cortical excitability [37].
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Table 1. Cont.

Neuromodulation
Techniques Description and Characteristics Picture

Transcranial Direct
Current Stimulation

(tDCS)

A brain stimulation technique called tDCS delivers low electrical current (2–1 mA) to the
cerebral cortex as a means of stimulating cognition and regulating symptoms of

neurological disorders and psychiatric. Although common, the side effects include mild
itching, burning, and headache, but no lasting effects. A range of approaches can be

utilized to pinpoint the location of electrodes. Typically, the 10:20 EEG system is utilized.
The measurements can then be used in conjunction with a 10:20 EEG system to localize the
region of interest. Alternatively, neuronavigation software, which is more accurate than
10:20 EEG systems, can be used [38]. The scalp can be equipped with electrodes through

rubber bands, elastic mesh tubing, or neoprene caps. Keeping the electrodes in place
during stimulation is crucial. One study found that as little as 5% movement can change
the accuracy and intensity of electrical current to a desired cortical area [39]. The target

area (prefrontal cortex, motor cortex, etc.) is stimulated using target electrodes, the
location of which depends on the hypothesis and task. Alternatively, hemispheric

montages (also known as “dual” stimulation) can be used. In this case, the positioning of
both target electrodes is fundamental for downregulation in one region (cathode current)

and upregulation in a parallel region (anodic current), opposite hemisphere [40].
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Vague Nerve Stimulation
(VNS)

The VNS is a device that can be implanted, which includes an electrode surrounding the
left vagus nerve and an attached unit with batteries and corresponding pulse generators
placed under the collarbone. The treatment of drug-resistant depression and epilepsy is
often achieved through it, resulting in significant antidepressant and antiepileptic effects.

It typically denotes the parametric elements that impact on the administration and
delivery of electrical stimulation. It includes: (i) Pulse width is the length of time of a

square current pulse. This time parameter is specified in microseconds (µs); (ii) current
strength is a measure of the amplitude or strength of an electrical impulse. The unit is

milliampere (mA); (iii) frequency is a measure of the total periodic cycles (from the
beginning of one pulse to the beginning of the next) in one second. In contrast to the pulse
width, the time during which no current is applied is taken into account. This is in Hertz
(Hz); (iv) on–off time is the amount of time that pacing and nonstimulation periods are

delivered during a specified period. The “on” period is the time during which stimulation
with an intensity greater than 0 mA is delivered; (v) during VNS treatment, the duration of

time is considered the cumulative timing [41].
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Table 1. Cont.

Neuromodulation
Techniques Description and Characteristics Picture

Deep Brain Stimulation
(DBS)

DBS is used through electrodes implanted stereotactically at specific targets in the brain.
The electrodes are connected to an implantable pulse generator, which is a pacemaker-like
device that is implanted under the skin in the chest wall and typically located beneath the
collarbone. A computer, which communicates with the implanted pulse generator via a
transcutaneous connection, is used by the clinician to establish stimulation parameters

after DBS implantation. Stimulation parameters include electrode contacts that give
stimulus amplitude, frequency, and pulse width. In the last years, DBS of various targets

has been used to promote recovery in patients with disorders of consciousness with
varying results, though evidence supporting the use of DBS in MCS patients following TBI

is lacking [42,43].
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of the spinal cord to stimulate the posterior column and modulate nerve function. It is

common for the outpatient procedure to last around 1–2 h before a transplant. The surgeon
inflates the generator by making an incision, usually on the lower abdomen or buttocks,
and then inserts permanent electrodes through a second inlet along one side of the spine
after giving local anesthesia. The majority of times, the wound is closed for 2 to 4 weeks
after the operation. Advanced leads, advanced remote pulse generators, and traditional
SCS are used to treat chronic pain using a variety of stimulation parameters/programs,

including high-frequency stimulation, high-frequency burst stimulation, and dorsal root
ganglion stimulation [44,45].
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Table 1. Cont.

Neuromodulation
Techniques Description and Characteristics Picture

Transcutaneous
electrical

nerve stimulation (TENS)

The noninvasive TENS method involves the placement of adhesive electrodes on the skin,
which deliver pulsed electrical stimulation with a variable frequency, intensity, and

duration. The use of it for pain management is widespread in both acute and chronic pain
conditions. General battery-powered TENS machines can adjust pulse width, frequency,

and intensity. In general, TENS uses high frequencies (>50 Hz) and intensities below motor
contractions (sensory intensity) or low frequencies [46,47].
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2. Materials and Methods
2.1. Search Strategy

A literature search was conducted via PubMed, Web of Science, Cochrane Library,
Embase, and Scopus, and it was carried out for articles using the following search string:
(Neuromodulation) AND (traumatic brain injuries); with 2013–2023 search time range.
We adopted the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-
Analyses) flow diagram to describe the sequence of steps (identification, screening, eligi-
bility, and inclusion) for the collection and determination of qualified studies, as shown
in Figure 1. Titles and abstracts were independently scanned and retrieved from database
searches. The suitability of the article was then assessed according to the defined inclusion
criteria. Ultimately, we received all titles and abstracts that met the criteria for inclusion
in the full text. To avoid bias, several expert teams worked together, selected the arti-
cles, analyzed the data independently, and discussed any discrepancies with each other.
Disagreements between reviewers were resolved by consensus. This review has been
registered on OSF (JEP3S).
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2.2. PICO Evaluation

We defined our combination of search terms using a PICO (population, intervention,
comparison, outcome) model. The population was limited to patients with moderate to
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severe TBI; the intervention included all studies, rehabilitation approaches, electrical and
magnetic brain/nerve/spinal cord stimulation in the field of rehabilitation, and those
used to measure and assess TBI patients; the comparison was evaluated considering the
different instruments and neuromodulation techniques that produced some data or effects
in patients with TBI both before and during rehabilitation process; and the result included
any data or improvements of these patients during the rehabilitation process.

2.3. Inclusion Criteria

A study was included if it described or investigated neuromodulation techniques
used in the rehabilitation of TBI patients. This review included only articles written in
English. Clinical studies and trials describing or investigating the functional assessment
of these patients were also included. Case reports were not taken into account. We only
included studies conducted in human populations and published in English that met the
following criteria: (i) original or protocol studies and (ii) articles that tested the effects of
neuromodulation used in TBI patients as a rehabilitation strategy.

2.4. Exclusion Criteria

A study was excluded if there was a lack of data or information about the description
of a neuromodulation intervention used in the rehabilitation of TBI patients. Systematic,
integrated, or narrative reviews were also excluded, but reference lists were reviewed and
included as necessary. All articles written in languages other than English were excluded.

3. Results

In total, 1868 articles were found: A total of 289 articles were removed due to duplica-
tion after screening; 12 articles were excluded because they were not published in English;
and 1410 articles were excluded based on title and abstract screening. Finally, 149 articles
were removed based on screening for inadequate study designs and untraceable articles
(Figure 1). The review includes eight research articles considered eligible. A summary of
these studies is shown in Table 2.

Table 2. Summary of studies included in the research.

Author Aim Treatment
Period Sample Size Outcomes

Measures Main Findings

Kahana et al.
2023 [52]

To assess whether
closed-loop tDCS of the
temporal lobe cortex can
reliably improve memory

in a TBI cohort.

1 year. 8 patients
with TBI. ENS, EEG.

The stimulus-induced recall of
lists was 19% more effective than

the non stimulated ones. This
discovery provides evidence for

closed-loop brain stimulation as a
potential therapy for memory

impairment caused by TBI.

Longo et al.
2020 [53]

To evaluate the feasibility
and safety of LLLT in the

acute phase after
moderate TBI and neural
response to LLLT using

MRI and
cognitive measures

27 November
2015–11 July

2019.

68 men and
women with

TBI.
LLLT, RPQ.

LLLT was successfully
administered to all patients in this
randomized clinical trial without

any adverse effects observed.
During the late subacute phase,
light therapy caused significant

changes in several diffusion
tensor parameters.

De Freitas
et al.

2020 [54]

To see if episodic memory
is improved more than
just simulated tDCS but
enhanced by active tDCS

and computer-based
cognitive training.

A 20 min.
tDCS for 10

days.

36
participants

with TBI.

BDI-II, WAIS,
RAVLT, AEQ.

The results proved that delta
activity decreased and alpha

frequencies increased near active
electrodes and found a better

performance correlation in
neuropsychological tests.



Biomedicines 2024, 12, 438 10 of 19

Table 2. Cont.

Author Aim Treatment
Period Sample Size Outcomes

Measures Main Findings

Sultana et al.
2023 [55]

To explore the relationship
between changes in

connectivity and
emotional health

following rTMS in
TBI patients.

20 sessions in
2 weeks.

32 patients
with TBI. VR-36, fMRI.

The results showed an overall
decrease in the strength of

excitatory connectivity and an
increase in the strength of

inhibitory connectivity among
extrinsic connections after

neuromodulation. The central
area of analysis was the dorsal

anterior cingulate cortex (dACC),
which is thought to be most
affected during emotional

health disorders.

Neville et al.
2019 [56]

To investigate the
potential of

high-frequency repetitive
rTMS to enhance cognitive

abilities in individuals
who have suffered from

severe TBI.

90 days.
Individuals
between 18

and 60 years.

TMT-B,
rTMS.

Cognitive function in chronic DAI
patients does not improve with

high-frequency rTMS for the
left DLPFC.

Opie et al.
2018 [57]

In this study, TMS and
EEG were used further to
investigate the impact of
mTBI on these processes.

Not
Specificated.

32
participants.

GCS, LICI,
TMS.

TEP measurements showed that
GABA-a and GABA-b activation
was not affected by injury; TEP
measurements also showed that

the response to cTBS was
increased in patients, suggesting
that cortical plasticity is enhanced

due to injury.

Hou et al.
2022 [58]

It investigated the efficacy
of TLNS and associated
brain connectivity using

the RSFC approach in
mmTBI patients.

2 weeks. 9 participants
with mmTBI. SOT, DGI.

TLNS in combination with
physiotherapy can induce brain

plasticity in TBI patients with
balance and movement disorders.

Tyler et al.
2019 [59]

The effectiveness of
noninvasive TLNS and PT

in treating chronic
balance/foot gait

disorders caused by
mmTBI is evaluated
through comparison.

26 weeks. 44
Participants

TLNS, PT,
SOT.

Balance scores were significantly
improved in both the HFP + PT
and LFP + PT groups, and the

results were maintained for
12 weeks after TLNS

treatment discontinuation.

Legend: traumatic brain injury (TBI), external neural stimulator (ENS), electroencephalography (EEG), intermittent
theta burst stimulation (iTBS), low-level light therapy (LLLT), magnetic resonance imaging (MRI), Rivermead Post-
Concussion Questionnaire (RPQ), transcranial direct current stimulation (tDCS), left dorsolateral prefrontal cortex
(lDLPFC), bilateral temporal cortex (BTC), quantitative electroencephalogram (qEEG), Beck Depression Inventory-
II (BDI-II), Wechsler Adult Intelligence Scale (WAIS), Rey Auditory Verbal Learning Test (RAVLT), Adverse Events
Questionnaire (AEQ), transcranial magnetic stimulation (rTMS), dorsal anterior cingulate cortex (dACC), Veterans
RAND 36 Item Health Survey (VR-36), functional magnetic resonance imaging (fMRI), statistical parametric
mapping software (SPM 12), Parametric Empirical Bayes (PEB), Trail Making Test-B (TMT-B), left dorsolateral
prefrontal cortex (DLPFC), diffuse axonal injury (DAI), mild traumatic brain injury (mTBI), Glasgow Coma Scale
(GCS), long-interval intracortical inhibition (LICI), Y-Aminobutyric Acid (GABA), MS-Evoked EEG Potential
(TEP), continuous theta burst stimulation (cTBS), electromyography (EMG), translingual neural stimulation
(TLNS), mild-to-moderate TBI (mmTBI), resting-state functional connectivity (RSFC), Sensory Organization Test
(SOT), Dynamic Gait Index (DGI), physical therapy (PT), high-frequency pulse (HFP), low-frequency pulse (LFP).

The articles described in this review investigated neuromodulation techniques used in
the rehabilitation of TBI patients. The neuromodulation techniques used in the rehabilita-
tion of TBI patients were analyzed in eight articles [53–60].
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Neuromodulation Techniques and Rehabilitation in TBI Patients

The contemporary field of neuromodulation could have significant implications in
the field of rehabilitation of TBI patients. In one study, personalized machine learning
classifiers were trained to predict moment-to-moment changes in memory function in
each TBI patient by analyzing neural data across electrodes as the patient learned and
recalled a list of words. High-frequency stimulation of the temporal cortex was delivered
by these classifiers during the predicted memory loss. The strategy demonstrated a 19%
improvement in retention of stimulated lists compared to unstimulated ones (p = 0.012).
Kahana et al. stated that closed-loop brain stimulation could be a potential solution for
treating memory impairment caused by TBI. The effectiveness of computer-based cognitive
training in augmenting episodic memory with active tDCS was evaluated to compare it to
sham tDCS. Alpha frequency was shown to increase near active electrodes, demonstrating
better performance correlation in neuropsychological tests [52]. In addition, Sacco et al. [60]
displayed that cognitive effort is reduced in patients with TBI through combined tDCS and
computer-based training, which appears to promote neuronal reorganization. In another
randomized clinical trial in TBI patients, 20-minute tDCS sessions were administered
concurrently with computer-assisted cognitive training (20 min) for 10 days (2 weeks,
excluding Saturdays and Sundays). Patients were assessed at baseline (T0), at the end of
the last stimulation session (T1), and three months after the last tDCS session (T2). The
results showed decreased delta activity and increased alpha frequencies around the active
electrode with better performance correlates in neuropsychological tests [55]. There is some
caution, but evidence suggests that tDCS is safe and cognitively effective at all levels of
TBI acuteness and severity [61,62]. Both TMS and tDCS have been shown to slightly affect
working memory through transdiagnostic processes, according to recent evidence. tDCS
also improved attention and vigilance across all diagnoses. In contrast, Lesniak et al. did
not provide sufficient evidence for the efficacy of repetitive A-tDCS to improve memory
and attention rehabilitation in patients after severe TBI [8]. Furthermore, functional MRI
and spectrally dynamic model were used to examine changes in brain active connectivity
before and after administration of high-frequency (10 Hz) neuroimaging (rTMS) targeting
the left dorsolateral prefrontal cortex. Following neuromodulation, excitatory connections
showed a decrease in strength, and inhibitory links showed an increase. Changes in
connectivity between the dorsal anterior cingulate cortex, the left anterior insula, and the
medial prefrontal cortex after rTMS administration may be a potential neural mechanism
underlying improvements in emotional health [56]. In a randomized clinical trial, high-
frequency repetitive TMS was used in cognition rehabilitation in patients with severe TBI
and chronic diffuse axonal injury. Between-group comparison of Trail Making Test Part B
performance at baseline and after the 10th repetitive TMS session showed no difference
between groups (p = 0.680 and p = 0.341, respectively). No significant differences were found
in other neuropsychological tests, nor were adverse events observed between treatment
groups, suggesting that high-frequency repetitive TMS does not improve cognitive function
in people with chronic diffuse axonal injury [57]. In another study, TMS was combined
with electroencephalography in patients with TBI. The inhibitory effect of continuous
theta burst stimulation was significantly increased, and N45 modulation was significantly
correlated with time since injury in patients, indicating plasticity in the inhibitory network
containing γ-aminobutyric acid [58]. A research study in patients with mild to moderate TBI
demonstrated that translingual nerve stimulation produced behavioral changes in sensory
organization tests and dynamic gait indices. Analyses revealed increased resting functional
connectivity between the left inferior parietal lobule of the left postcentral gyrus and the left
Brodmann area 40 and increased resting functional connectivity between the right culmen
and right declive, demonstrating changes due to translingual nerve stimulation treatment.
However, no correlation was found between sensory/somatomotor (visual or cerebellar)
networks and sensory organization test/dynamic gait index behavioral performance [59].
Another study compared the efficacy of high-frequency and low-frequency noninvasive
translingual neurostimulation with targeted physiotherapy for the treatment of chronic
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balance and gait disorders due to mild to moderate TBI. It was found that both groups
(high-frequency pulse + physiotherapy group and low-frequency pulse + physiotherapy
group) maintained improvements in balance scores and outcomes for 12 weeks after
discontinuation of translingual neurostimulation treatment [60]. In a last randomized
clinical trial, transcranial LLLT was performed within 72 h of trauma using a custom-made
helmet. MRI was performed during the acute (within 72 h), early subacute (2–3 weeks),
and late subacute (approximately 3 months) recovery phases. Of the 68 randomized
patients (33 in the LLLT group and 35 in the sham treatment group), 28 completed at
least one LLLT session. Radial diffusivity, mean diffusivity, and fractional anisotropy
showed a significant time–treatment interaction at 3 months, indicating that light therapy
involves neural substrates involved in the pathophysiological factors of moderate TBI and
suggesting diffusion imaging as a biomarker of treatment response [54].

4. Discussion

Our review aimed to analyze the recent literature of the last ten years about the
neuromodulation techniques used in the rehabilitation of TBI patients.

The studies included in this review have demonstrated that neuromodulation tech-
niques can improve the rehabilitation process for TBI patients in several ways.

tDCS is considered a tool of minimal risk by the Food and Drug Administration to be
used use in people with neurological impairments and especially in those with psychiatric
symptoms, such as depression [63]. Indeed, noninvasive brain neurostimulation has proven
promising to enhance attention deficits in patients with TBI [62], as well as other cognitive
domains. Begemann M.J. et al. 2020 discovered a minor yet noteworthy impact on working
memory in brain injury patients with TMS and tDCS. Attention/vigilance enhancement
was found to be more effective with tDCS than with other forms of treatment [62]. In line
with these considerations about the role of neuromodulation techniques on TBI’s cognitive
functions, TMS can improve cognitive functions such as recall ability, neural substrates,
and overall improved performance on neuropsychological tests [54–56]. Repetitive TMS
has the potential to increase neural connections in many TBI patients but not in all patients,
such as those with chronic diffuse axonal damage. However, this method can be used
in combination with other methods, such as electroencephalography, to stimulate plastic
processes in specific networks, such as inhibitory networks [56–58]. Furthermore, the
translingual nerve stimulation method can also be used to stimulate the left posterior
parietal gyrus, left inferior parietal lobule, and left Brodmann’s area, along with balance
capacity and may increase their functional connectivity and capacity (even several weeks
after intervention) [59,60].

Perspective and Neuromodulation

The scientific literature supports that in healthy controls, neurologically and psychi-
atrically impaired individuals with repeated high- and low-frequency TMS can induce
changes in cortical excitability beyond the duration of stimulation. Repetitive TMS is a
crucial indication of its potential to promote neuroplasticity and/or neural adaptation
as incorporated therapeutic interventions [64]. Since high-frequency repetitive TMS has
shown favorable effects in other populations with reduced cortical motor excitability, this
similarity suggests that applying repetitive TMS to cortical motor areas may be beneficial
for TBI patients. Rehabilitation in this population may prioritize restoring consciousness
rather than voluntary motor function. Thus, it could be more appropriate to concentrate
on other areas of the brain, like the prefrontal cortex, to stimulate consciousness. Non-
specific activation impulses and specific sensory input are both important components of
cortical activity. These activation impulses are generated from the reticular formation of
the brainstem, medulla, cortex, and midbrain. Although the reticular activating systems
for ascending and descending are well-integrated, the latter is typically located in the
central part of the cortex and midbrain, while the former is more commonly found in its
central region within the entire cortex [65]. For example, another area that can be stimu-
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lated to help TBI patients recover better is the trigeminal nerve. It is the biggest cranial
nerve and has considerable connections in the central nervous system. The trigeminal
nerve projects directly or indirectly through the ascending reticular activating system to
subcortical structures, the spinal locus, and the cortex [66]. Trigeminal nerve stimulation
is a novel noninvasive neuromodulatory treatment for a variety of functional brain dis-
orders, including drug-resistant epilepsy [67,68], major depressive disorder [69,70], and
attention deficit hyperactivity disorder [71]. Previous studies have shown that trigeminal
nerve stimulation successfully awakens unconscious patients [72] and that activation of the
trigeminal spinal nucleus and lateral hypothalamic neurons can facilitate recovery from
TBI-induced comas [73].

Evidence suggests that neuromodulation has the potential to modify theta activity in
humans. As an illustration, cognitive training is complemented by various neuromodula-
tory techniques that can be beneficial for healthy and clinical populations [74–77]. The high
prevalence of people suffering from persistent TBI-related cognitive impairment, the lack
of research examining tDCS on cognition after TBI, and the lack of research investigating
tDCS to inform TBI science and applications provide the need for data elements that reflect
current evidence regarding the use of tDCS for cognition after TBI. Furthermore, combining
tDCS with existing treatments improves functional outcomes [78]. The combined approach
can elicit task transfer [79,80], a sought outcome in rehabilitation. A combination of neu-
roimaging and neuromodulation is useful to identify the mechanisms underlying recovery.
Studies combining electroencephalography and tDCS have found that improvements in
working memory are due to improvements in theta attributes such as phase synchroniza-
tion, phase–amplitude coupling, and theta–gamma cross-frequency coupling [81,82]. Theta
synchronization can be improved through transcranial alternating current [83], but the
individual’s frequency needs to be adjusted [84]. Determining how neuromodulation can
realign theta attributes and other neural patterns holds promise in TBI because previous
research displays that, after tDCS, TBI patients showed superior cognitive outcomes [85].
Photobiomodulation using LLLT has been tested as a new technique to optimize recovery
of patients with traumatic brain injury (TBI) and was shown by Poiani et al. (2018) in their
randomized double-blinded trial as improving the memory, attention, and mood in healthy
and neurologic patients [51].

Furthermore, it is well known that direct stimulation of the cortex produces neu-
roplasticity similar to those induced by rehabilitation training. Both suprathreshold
and subthreshold electrical stimulation can strengthen synaptic connections and trigger
neuronal reorganization, leading to functional and cognitive improvements. Despite
the promising results and benefits, the disadvantages of these innovative technologies
need to be carefully analyzed to plan and organize the rehabilitation process functionally
and effectively.

5. Neuromodulations’ Disadvantages and Limitations

Despite recent advances in TMS and the plethora of studies conducted, several physi-
ology, engineering, and clinical challenges remain regarding the use of neuromodulation as
a treatment for clinical conditions [86]. These limitations affect both external and internal
stimulation techniques. Though these principles may be simple, the actual shape of the
induced current TMS is often not very clear because there are variations in the intracranial
anatomy. The preferential flow of current may occur toward areas of cerebrospinal fluid
with high conductivity, and the exact location of the current may vary greatly [87,88].
Many patients with TBI have undergone craniotomy, craniectomy, or other neurosurgical
treatments, and cranial defects or cranial plaques are common in patients who benefit
from neurostimulation therapy [89]. Cranial defects are also common in patients with
TBI. Various plate sizes and defects in tDCS can alter the direction of current flow, and
finite element modeling has revealed variations in the current distribution across brain
regions [90]. However, noninvasive techniques have a significant disadvantage in terms
of limited access to the exact structures within the brain. Problems such as the passage of
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currents through the scalp and cerebrospinal fluid make it difficult to predict or control the
targeting of deep structures. Similarly, the electric field generated by TMS is significantly
reduced for deeper targets [91]. Studies conducted on coil design have demonstrated that
larger coils are necessary to reach deeper structures. The response is less targeted as the
coil size increases, resulting in a larger tissue area. In addition, tDCS and TMS are both
short-term stimulation methods, and the effects of noninvasive stimulation fade away after
months or years. Due to these limitations, stimulation methods that can directly access
both superficial and deep structures and stimulate nerves continuously over an extended
period should be preferred [92].

6. Study Strengths and Limitations

This scoping review has several strengths. It is based on evidence from studies that use
neuromodulation techniques specifically for TBI patients. It includes a description of some
neuromodulation instruments used in rehabilitation. We have also identified data gaps in
many areas, hopefully providing information for future research. The main limitation of
the present study is the few papers that meet the inclusion criteria, as we included only
eight articles that explored the neuromodulation techniques used in the rehabilitation of
TBI. This, in addition to the heterogenous methodology and samples, prevents us from
drawing robust evidence on this important topic. The articles were restricted by date, so
it is possible that important evidence was omitted. Furthermore, the sample size varies:
some are large, some are small, and the parameters measured are different. Although the
neuromodulation techniques studied have not yet been shown to be effective in reducing
symptoms after TBI, the initial results are promising.

7. Future Directions

In our opinion, the implementation of tDCS protocols in inpatient neurorehabilita-
tion units has its limitations, and recommendations of expert researchers are needed to
facilitate translational use in clinical practice. We believe that the actual guidelines that
identify methods to support the applications of tDCS studies in patients with TBI are
genuinely needed. Additional data to map and monitor the current evidence for using
neuromodulation techniques for cognitive and motor recovery after TBI is also required.
Guideline recommendations for tDCS-based studies on cognitive outcomes after TBI will
provide evidence and findings to enhance complex rehabilitation outcomes, including
psychometric, neurophysiological, and functional scores. It not only facilitates translation
but also facilitates the use of various combined treatment approaches such as robotics,
assisted virtual approach, and training using a computer [93–95].

8. Conclusions

In conclusion, this review displays that neuromodulation techniques are promising
instruments in the rehabilitation field, including those affected by TBI. The efficacy of
neuromodulation can have a significant impact on their lives as it is better understood
by researchers and clinicians and improves functional outcomes for TBI patients. The
importance of recognizing abnormalities in brain networks associated with functional
and structural abnormalities in TBI patients is increasingly recognized, given the growing
potential of spatially accurate neuromodulation techniques to modulate functional brain
networks. Future TBI research should investigate biomarkers of dysfunction in a patient-
specific manner using structural and functional neuroimaging studies. Despite the paucity
of available evidence, the current understanding of the pathophysiology after TBI and the
mechanisms of action of different neuromodulatory modalities warrants the exploration
of novel interventions that may eliminate the functional consequences of TBI. Prospective
safety studies and well-designed studies in TBI are necessary to confirm the efficacy
of noninvasive brain stimulation in promoting recovery and reducing disability while
specifying specific neuromodulatory parameters and procedures.
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