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Chronic kidney disease (CKD) is a risk factor for end-stage kidney disease, requiring
renal replacement therapy. Additionally, CKD is linked to various complications, including
cardiovascular disease, bone abnormalities, muscle atrophy, and cognitive dysfunction, all
of which detrimentally impact the prognosis and the quality of life of CKD patients [1,2].
This Special Issue spotlights recent findings regarding the pathogenesis of CKD and its
associated complications. In this editorial, the editor briefly outlines the contributing
studies, which will enhance our understanding of CKD pathophysiology and its treatment.

This Special Issue contains several reviews of the pathogenesis and complications of
CKD. Frak et al. outlined the latest information on the pathophysiology of CKD, including
oxidative stress, inflammation, neutrophil gelatinase-related lipocalin, matrix metallopro-
teinases, and uremic toxins. The potential application of new molecularly targeted agents
for interleukin 6 and transforming growth factor-β signaling to CKD was also discussed [3].
Stroke occurs more frequently in patients with CKD. A low eGFR and albuminuria are
known risk factors for stroke [4]. Kourtidou et al. reviewed the various causes of the high
prevalence of stroke in CKD patients [5]. Stroke risk factors, such as atrial fibrillation,
hypertension, and carotid atherosclerosis, are reported to be more frequent in patients with
CKD. Additionally, uremic toxins accumulate in CKD patients, exacerbating this risk. Oe
et al. reviewed the risk of thrombosis due to the activation of coagulation factor III (tissue
factor) and the mechanism of renal damage caused by coagulation proteases [6]. They
focused on the link between gut microbiota, urea toxins, and coagulation abnormalities in
CKD patients. Obesity is considered an established risk factor for CKD [7]. Kreiner et al.
reviewed the current understanding of obesity-related kidney disease pathogenesis and
discussed non-pharmacological and pharmacological options, including SGLT2 inhibitors,
non-steroidal mineralocorticoid receptor antagonists, and GLP1 analogs [8].

Several research articles have also been published in this Special Issue. Patients with
cardiorenal syndrome (CRS), where acute or chronic dysfunction of the heart or kidneys
leads to the dysfunction of the other [9], exhibited altered circulating immune cell subset
profiles [10]. Duni et al. investigated differences in circulating immune cells between
patients with type 2 CRS and those with CKD without cardiovascular disease [11]. They
discovered that CD4+ T lymphocytes independently predicted fatal cardiovascular events
in their cohort. CKD complicated by heart failure may involve distinct immune mechanisms
in its pathogenesis and chronic clinical course compared to CKD without heart failure.

Sarcopenia is one of the CKD complications associated with morbidity and mortal-
ity [12]. In CKD patients, various pathologies, including chronic inflammation, oxidative
stress, and the accumulation of uremic toxins, may contribute to the risk of developing
skeletal muscle abnormalities, such as sarcopenia [13]. Advanced glycation end products
(AGEs) are compounds formed through non-enzymatic reactions of reducing sugars and
related metabolites with proteins and amino acids. Additionally, AGEs have been demon-
strated to bind to the membrane receptor RAGE, causing oxidative stress and inflammation
in CKD patients [14]. In a study conducted by Molinari et al., 117 patients with CKD were
examined, revealing that AGEs, but not soluble RAGEs, were associated with the presence
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of sarcopenia in older CKD patients [15]. Therefore, AGEs may contribute to the intricate
pathophysiology leading to sarcopenia development in patients with CKD.

Changes in plasma protein profiles during various stages of CKD are crucial for
identifying early diagnostic markers and potential therapeutic targets. To address this,
Grgurevic et al. conducted a comprehensive plasma proteome analysis across different CKD
stages, resulting in the generation of distinct protein profiles [16]. In total, 453 proteins were
identified across all study groups. The findings revealed that pivotal events influencing the
pathogenesis and progression of the disease were most pronounced in CKD stage 2. These
events specifically centered around inflammation, lipoprotein metabolism, angiogenesis,
and tissue regeneration. The researchers hypothesized that CKD stage 2 represents a
critical tipping point in the disease’s progression, highlighting its significance for potential
therapeutic interventions.

Makino et al. analyzed the prognostic impact of nutritional and inflammatory status
on non-metastatic renal cell carcinoma. In their analysis of 213 Japanese patients, they
examined how several inflammatory and nutritional indices were associated with overall
survival [17]. They found that the index neutrophil-to-lymphocyte ratio and C-reactive
protein-to-albumin ratio independently contributed to prognostic factors.

Basic research is also included in this Special Issue. Recently, a new class of anti-
hyperglycemic drugs, sodium-glucose co-transporter 2 (SGLT2) inhibitors, has shown
promise in protecting the kidneys and heart of patients with CKD, both with and without
diabetes [18,19]. Alongside the focus on SGLT2, interest in SGLT1 as a therapeutic target is
increasing. In addition to its role in glucose reabsorption in the intestinal tract, SGLT1 is
expressed in the macula densa and plays a role in glomerular hemodynamics and blood
pressure control [20,21]. Matthew et al. researched the regulation of SGLT1 expression
by the sympathetic nervous system (SNS) [22]. By measuring SGLT1 expression in the
kidneys of neurogenic hypertensive mice and treating human proximal tubular cells with
norepinephrine, they demonstrated that SNS activation upregulates SGLT1 expression.
Consequently, inhibiting SGLT1 may be a valuable therapeutic strategy for conditions
characterized by increased SNS activity, such as CKD.
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