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Abstract: Background: Diabetic retinopathy (DR) is a vision-threatening complication that affects
virtually all diabetic patients. Various treatments have been attempted, but they have many side
effects and limitations. Alternatively, stem cell therapy is being actively researched, but it faces
challenges due to a low cell survival rate. In this study, stem cells were pretreated with sirolimus,
which is known to promote cell differentiation and enhance the survival rate. Additionally, the sub-
conjunctival route was employed to reduce complications following intravitreal injections. Methods:
Diabetes mellitus was induced by intraperitoneal injection of 55 mg/kg of streptozotocin (STZ), and
DR was confirmed at 10 weeks after DM induction through electroretinogram (ERG). The rats were
divided into four groups: intact control group (INT), diabetic retinopathy group (DR), DR group with
subconjunctival MSC injection (DR-MSC), and DR group with subconjunctival sirolimus-pretreated
MSC injection (DR-MSC-S). The effects of transplantation were evaluated using ERG and histological
examinations. Results: The ERG results showed that the DR-MSC-S group did not significantly differ
from the INT in b-wave amplitude and exhibited significantly higher values than the DR-MSC and
DR groups (p < 0.01). The flicker amplitude results showed that the DR-MSC and DR-MSC-S groups
had significantly higher values than the DR group (p < 0.01). Histological examination revealed
that the retinal layers were thinner in the DR-induced groups compared to the INT group, with the
DR-MSC-S group showing the thickest retinal layers among them. Conclusions: Subconjunctival
injection of sirolimus-pretreated MSCs can enhance retinal function and mitigate histological changes
in the STZ-induced DR rat model.
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1. Introduction

Diabetes mellitus (DM) is the most common endocrine disease in humans. As reported
by the International Diabetes Federation in 2021, approximately 537 million adults (ages
20–79) have diabetes, constituting about 10.5% of the total global adult population. The
prevalence of DM is continuously rising, with projections exceeding 780 million cases
by 2045 [1]. DM leads to microvascular abnormalities, resulting in extensive damage to
systemic tissues, including the eyes. Diabetic retinopathy (DR), a chronic microvascular
complication of DM, impairs vision and affects nearly all patients with DM. Approximately
2% of all individuals with DM experience blindness due to DR, making it the leading cause
of vision loss in adults over the age of 25 [2,3].

There are various methods to create a DM model, among which the administration
of streptozotocin (STZ) is a commonly used approach. STZ induces the destruction of
pancreatic β cells and is widely used experimentally to create a type 1 diabetes model [4,5].
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STZ-induced DR typically develops after prolonged exposure to hyperglycemia levels
above 150 mg/dL [6].

Exposure to DM conditions leads to various biochemical and metabolic abnormalities,
including changes in the redox state of pyridine nucleotides, the accumulation of sorbitol,
over-activation of protein kinase C, oxidative stress due to excessive free radical production,
and alterations in hemodynamics. These pathogenic mechanisms play a crucial role in
the progression of DR. Additionally, within weeks of the onset of diabetes, leukostasis
occurs in the retinal capillaries, leading to capillary occlusion and local ischemia [7]. Retinal
hypoxia results in the increased expression of vascular endothelial growth factor (VEGF) [8].
Elevated levels of VEGF induce angiogenesis and enhance retinal vessel permeability,
causing disruption of the barrier between the retina and blood [8,9].

Current treatments for DR include retinal photocoagulation using lasers and intravit-
real injections of anti-VEGF agents. However, due to its destructive nature, laser photo-
coagulation can result in permanent damage to retinal cells [10,11]. Anti-VEGF therapy
has shown superior results in reducing vision loss and improving the rate of vision re-
covery compared to laser monotherapy. However, its effects are short-lived, necessitating
continuous follow-up observation and injection therapy [10,12–14]. Additionally, cases
of non-responsiveness to this therapy also occasionally occur. These methods target only
vascular pathology, hence highlighting the need for the development of new treatments
with different mechanisms [15,16].

Mesenchymal stem cells (MSCs) have the ability to differentiate into various cell
lineages, thereby promoting tissue regeneration and enhancing function [17]. Further-
more, through paracrine effects, they can secrete immunomodulatory, anti-angiogenic, and
neurotrophic factors [18]. They also support mitochondrial function, which is crucial in
restoring retinal cell functionality [19]. Additionally, MSCs inhibit the secretion of pro-
inflammatory cytokines and reduce oxidative damage [20]. Numerous studies have shown
MSCs to be effective in treating retinal diseases, demonstrating their ability to prevent
retinal capillary dropout, loss of ganglion cells, oxidative damage, and neovasculariza-
tion [16,21,22].

However, the application of stem cells alone faces a significant challenge due to their
low survival and adhesion rates [19]. This issue is particularly pronounced in hyper-
glycemic conditions, where an excessive accumulation of reactive oxygen species (ROS) can
alter the regenerative abilities of MSCs, leading to decreased survival rates and reduced
efficacy [23].

Therefore, there are attempts to enhance the success rate of stem cell therapies through
pre-conditioning/treatment of the cells [24]. One such approach involves subjecting the
stem cells to be transplanted to conditions similar to the harsh microenvironment of
damaged tissues, such as hypoxia, thereby improving the cells’ resistance to the stress of
the host environment [25,26]. Another method involves pretreatment with drugs; there
are already studies that have enhanced the efficacy of stem cells by pretreating them with
tacrolimus, dexamethasone, and sirolimus [19,27–29].

Sirolimus, also known as rapamycin, was initially isolated from the bacterium Strep-
tomyces hygroscopicus [30]. This drug functions by inhibiting the mammalian target of
rapamycin, a key regulator of cell growth, proliferation, survival, protein synthesis, and au-
tophagy [31,32]. Studies have shown that sirolimus enhances autophagy, regulates energy
metabolism, reduces oxygen consumption, and ROS production and thereby promotes
stem cell differentiation, increasing cell migration and survival rates [27,28].

Thus, the aim of this study is to investigate the therapeutic effects of sirolimus-
pretreated MSC transplantation in the treatment of the STZ-induced DR rat model.

2. Materials and Methods
2.1. Animals

The research conducted was approved by the Institutional Animal Care and Use
Committee (IACUC) at Chungbuk National University (Approval No. CBNUA-2032-
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22-01), in accordance with the Association for Research in Vision and Ophthalmology
statement for the Use of Animals in Ophthalmic and Vision Research.

Twenty-five male Sprague-Dawley rats, aged 8 weeks, were obtained from Nara
Biotech (Pyeongtaek, Republic of Korea). They were housed in a conventional environment
with a standard 12 h light/12 h dark cycle. The rats had free access to normal pellet chow
(Experimental Rat & Mouse Diet, Purina, St. Louis, MO, USA) and water.

2.2. Measurements of Body Weight (BW) and Blood Glucose (BG)

All BW and BG measurements were conducted after a 6-h fasting period. The initial
dataset was collected just before the diabetes induction. The second and third datasets
were measured at 3 weeks and 10 weeks post-diabetes induction, respectively. The final
measurements were taken at week 17 post-diabetes induction.

2.3. Diabetes Induction

DM was induced in the rats after an 8-h fasting period. This was achieved through
an intraperitoneal injection of STZ (Sigma-Aldrich, St. Louis, MO, USA) in citrate buffer
(pH 4.5) (Sigma-Aldrich) at a dose of 55 mg/kg. The intact control group (INT, eight
rats, sixteen eyes) received an equivalent volume of citrate buffer via intraperitoneal
injection [33].

DM was confirmed twenty-three days post-STZ injection when the BG exceeded
250 mg/dL, as measured by a commercial blood glucose meter (FORA G11, ForaCare,
Moorpark, CA, USA). The seventeen diabetic rats were randomly divided into three
groups: the diabetic retinopathy group (DR, seven rats, fourteen eyes); the DR group with
subconjunctival MSC injection (DR-MSC, four rats, eight eyes); and the DR group with
subconjunctival sirolimus-pretreated MSC injection (DR-MSC-S, six rats, twelve eyes).

2.4. Preparations and Injections of MSCs

Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) were
obtained from Kang Stem Biotech (Seoul, Republic of Korea). These cells were cultured
using a KSB-3 Complete Medium® Kit (Kang Stem Biotech) with 10% fetal bovine serum
(Thermo Fisher Scientific Inc., Waltham, MA, USA) in a humidified atmosphere containing
5% CO2 at 37 ◦C. For the DR-MSC-S group, 100 nM of sirolimus dissolved in dimethyl
sulfoxide (DMSO) (Sigma-Aldrich) was pretreated in the culture media for 24 h [19,34].
The same amount of DMSO, without sirolimus, was added to the culture media for the
same duration for the DR-MSC group.

After 10 weeks of DM induction, subconjunctival MSC injections (1 × 105 MSCs
in 10 µL phosphate-buffered saline; PBS) and sirolimus-pretreated MSC injections were
performed using a 31G insulin syringe (Ultra-Fine II short needle, BD Biosciences, Franklin
Lakes, NJ, USA). General anesthesia was induced by isoflurane (Terrell, Piramal Critical
Care, Bethlehem, PA, USA) and topical anesthesia was induced by proparacaine (Alcaine,
Alcon, Geneva, Switzerland). Then, disinfection of the surface of the globe was performed
using 0.5% povidone iodine. In the INT and DR groups, 10 µL of PBS was injected using the
same protocol. These injections were repeated twice, with an eight-day interval between
administrations.

2.5. Electroretinography (ERG)

Ten weeks post-STZ injection, all the rats underwent 6 h of dark adaptation. ERG
evaluations were then conducted after pupil dilation using topical 0.01% tropicamide and
phenylephrine (Mydrin-P, Santen, Osaka, Japan). Flash and flicker stimuli (8.0 cd·s/m2 at
2 Hz and 28.3 Hz, respectively) were utilized with the RETevet ERG system (LKC, Gaithers-
burg, MD, USA). The examination aimed to identify the presence of DR. Subsequent ERG
assessments were performed fourteen weeks post-STZ injection to evaluate retinal function
using the same protocol.
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2.6. Histological Evaluation

Eighteen weeks post-STZ injection, three rats from each group were sacrificed, and
their eyes were immediately removed and immersed in BioFix HD (BioGnost, Zagreb,
Croatia). The eyes were bisected along the optic nerve, creating two equal halves, and
the lenses and vitreous were removed. Following routine tissue processing, the eyes were
then embedded in paraffin. The paraffin-embedded sections were stained using routine
hematoxylin and eosin (H&E) staining. The thickness of the retinal tissue was measured at
a magnification ×200.

2.7. Statistical Analysis

The data were analyzed using Prism 10 software (GraphPad Software, Boston, MA,
USA). The results are presented as the mean ± standard deviation. Statistical significance
between the groups was determined using an ordinary one-way analysis of variance.
p values less than 0.01 were considered statistically significant.

3. Results
3.1. Assessment of BW and BG

The final measurements were taken at week 17 post-diabetes induction. A comparison
of the BW and BG data was conducted across the INT, DR, DR-MSC, and DR-MSC-S
groups. The averages of the BW for the INT, DR, DR-MSC, and DR-MSC-S groups were
589.50 ± 36.75 g, 234.20 ± 36.68 g, 262.50 ± 22.05 g, and 231.00 ± 26.76 g, respectively
(Figure 1A). The averages of the BG were 98.75 ± 11.62 mg/dL, 540.70 ± 134.70 mg/dL,
429.50 ± 48.00 mg/dL, and 534.50 ± 102.70 mg/dL, respectively (Figure 1B). Prior to STZ
administration, there were no significant differences in the BW and BG among the groups.
However, post-diabetes induction by STZ, the INT group showed a significantly higher
BW and a lower BG compared to the diabetic groups. No significant differences in the BW
and BG were observed among the DR, DR-MSC, and DR-MSC-S groups at week 17. This
suggests that subconjunctival administration of MSCs and sirolimus-pretreated MSCs did
not demonstrate systemic therapeutic effects in DM.

3.2. Confirmation of DR with ERG

To confirm the induction of DR prior to the subconjunctival injections of the substance,
ERG assessments were conducted at 10 weeks post-diabetes induction. The average flash
b-wave amplitude in the INT group and the diabetes-induced groups was 153.2 ± 56.59 µV
and 73.84 ± 21.25 µV, respectively (Figure 2A). The average flicker amplitude in the INT
group and the diabetes-induced groups was 118.59 ± 32.29 µV and 66.41 ± 24.28 µV,
respectively (Figure 2B). Both results were significantly lower in the diabetes-induced
groups compared to the INT group (p < 0.01), confirming the induction of DR.

3.3. Retinal Function Evaluation with ERG

ERG measurements were repeated at 14 weeks post-diabetes induction, two weeks
after the final substance administration, to evaluate changes in retinal function. The average
flicker amplitudes in the INT, DR, DR-MSC, and DR-MSC-S groups were 147.00 ± 28.62 µV,
48.28 ± 17.03 µV, 88.27 ± 23.91 µV, and 107.30 ± 23.01 µV, respectively (Figure 3A). The
DR-MSC group showed significantly higher values compared to the DR group (p < 0.01).
The DR-MSC-S group demonstrated significantly higher values than both the DR and
DR-MSC groups (p < 0.01), with no statistical difference from the INT group.

The average flash b-wave amplitudes in the INT, DR, DR-MSC, and DR-MSC-S groups
were 173.30 ± 46.19 µV, 60.21 ± 22.31 µV, 89.53 ± 18.46 µV, and 148.50 ± 17.32 µV, respec-
tively (Figure 3B). The DR-MSC-S group exhibited significantly higher values than both the
DR and DR-MSC groups (p < 0.01).
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Figure 1. Changes in BW and BG over time. (A) A graph for BW changes over time (B) A graph
for BG changes over time; subconjunctival administration was conducted at 11 and 12 weeks post-
diabetes induction. There were no significant differences in BW and BG among the DR, DR-MSC,
and DR-MSC-S groups at week 17. The INT group exhibited significantly higher BW and lower BG
at all time points. * p < 0.01, INT, n = 8 rats; DR, n = 7 rats; DR-MSC, n = 4 rats; DR-MSC-S, n = 6
rats. Abbreviations: BW, body weight; BG, blood glucose; INT, intact control group; DR, diabetic
retinopathy group; DR-MSC, DR group with subconjunctival MSC injection; DR-MSC-S, DR group
with subconjunctival sirolimus-pretreated MSC injection.
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Figure 2. Comparison of electroretinogram results between intact and diabetic groups at week
10 post-diabetes induction. (A) Results of flash b-wave amplitude and (B) Results of flicker amplitude
at 10 weeks post-diabetes induction; the diabetic group showed significantly lower values compared
to the intact group, indicating the induction of diabetic retinopathy. * p < 0.01, Intact, n = 8 rats,
16 eyes; Diabetic, n = 17 rats, 34 eyes.
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Figure 3. Comparative analysis of flicker and flash b-wave amplitudes in ERG across groups.
(A) Flicker stimulus ERG results at 14 weeks post-diabetes induction; the DR-MSC and DR-MSC-S
groups exhibited significantly greater amplitude than the DR group. (B) Flash stimulus ERG results at
14 weeks post-diabetes induction; the DR-MSC-S group showed significantly greater amplitude than
both the DR and DR-MSC groups and did not differ statistically from the INT group. * p < 0.01. INT,
n = 8 rats, 16 eyes; DR, n = 7 rats, 14 eyes; DR-MSC, n = 4 rats, 8 eyes; DR-MSC-S, n = 6 rats, 12 eyes.
Abbreviations: ERG, electroretinogram; INT, intact control group; DR, diabetic retinopathy group;
DR-MSC, DR group with subconjunctival MSC injection; DR-MSC-S, DR group with subconjunctival
sirolimus-pretreated MSC injection.

3.4. Histological Evaluation of the Retina

Histological evaluation was conducted 7 weeks after the initial subconjunctival injec-
tions, which was 18 weeks post-diabetes induction. All the retinas were examined using
H&E staining (Figure 4A). The total retinal thicknesses for the INT, DR, DR-MSC, and
DR-MSC-S groups were 237.20 ± 13.71 µm, 179.60 ± 16.18 µm, 191.80 ± 18.78 µm, and
215.90 ± 12.04 µm, respectively. A decrease in the total retinal thickness was observed
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in the diabetic groups compared to the INT group. The DR-MSC-S group exhibited a
significantly greater retinal thickness compared to the DR and DR-MSC groups (p < 0.01).
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Figure 4. Comparison of histological evaluations of retina using H&E staining. (A) Total retinal layer
of each group 7 weeks after the initial subconjunctival injections, which was 18 weeks post-diabetes
induction (B) Results of total retinal thickness measuring; the DR-MSC-S had a significantly thicker
retina compared to DR and DR-MSC groups. (C) Results of INL (yellow arrow) thickness measuring.
The DR had the thinnest inner nuclear layer that showed significant difference with INT and DR-
MSC-S. There were no statistical differences between INT, DR-MSC, and DR-MSC-S. (D) Results
of PRL (white arrow) thickness measuring. The DR had the thinnest PRL that showed significant
difference with INT and DR-MSC-S. There were no statistical differences between INT, DR-MSC, and
DR-MSC-S. H&E staining, magnification ×200. * p < 0.01. INT, n = 8 rats, 16 eyes; DR, n = 7 rats,
14 eyes; DR-MSC, n = 4 rats, 8 eyes; DR-MSC-S, n = 6 rats, 12 eyes. Abbreviations: H&E, hematoxylin
and eosin; NFL, nerve fiber layer; RGC, retinal ganglion cell layer; IPL, inner plexiform layer; INL,
inner nuclear layer; OPL, outer plexiform layer; ONL, outer nuclear layer; PRL, photoreceptor layer;
INT, intact control group; DR, diabetic retinopathy group; DR-MSC, DR group with subconjunctival
MSC injection; DR-MSC-S, DR group with subconjunctival sirolimus-pretreated MSC injection.

The thickness of the inner nuclear layer (INL) for the INT, DR, DR-MSC, and DR-MSC-
S groups was 38.70 ± 5.93 µm, 31.21 ± 5.30 µm, 37.17 ± 7.64 µm, and 38.45 ± 6.84 µm,
respectively (Figure 4C). The thickness of the photoreceptor layer (PRL) for the INT, DR,
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DR-MSC, and DR-MSC-S groups was 33.13 ± 4.19 µm, 25.43 ± 3.56 µm, 29.5 ± 5.13 µm,
and 32.17 ± 4.93 µm, respectively (Figure 4D). Both layer thicknesses were significantly
greater in the INT and DR-MSC-S groups compared to the DR group (p < 0.01).

4. Discussion

This study has demonstrated that subconjunctival injection of sirolimus-pretreated
MSCs can increase the b-wave amplitude and flicker amplitude in ERG recordings from rats
with DR while histologically mitigating the thinning of the retinal layers. These findings
suggest that subconjunctival injections of sirolimus-pretreated MSCs may be therapeutically
effective for DR.

Previous research indicates that DR develops three months after the intraperitoneal
injection of STZ in rats, accompanied by thinning of the retinal layers and an increase in
neovascularization [35,36]. In this study, a significant reduction in the ERG amplitude
compared to the INT group was observed 10 weeks post-STZ injection, indicating the
occurrence of DR, which was further supported by histological assessments showing
reduced thickness of the total retinal layer.

Patients with DR are known to experience significant decreases in retinal function
compared to their pre-disease state [37]. According to various studies measuring ERG in
diabetic rats, the DR-induced groups exhibited a significantly reduced b-wave compared
to the normal control [38–41]. Furthermore, flicker ERG recorded at a frequency of 30 Hz
is reduced in amplitude in patients with moderate to severe DR [42]. Consistent with
these findings, this study demonstrated a substantial decrease in both b-wave and flicker
ERG amplitude in the DR-induced groups compared to the INT group. Nevertheless, an
improvement in both amplitudes was observed in the DR-MSC-S group compared to the
DR group, suggesting that sirolimus-pretreated MSCs may improve the retinal function of
DR rats.

Histological changes in DR include thinning of the retinal layers, loss of retinal cells,
formation of neovascularization, and increased inflammation [43,44]. Additionally, reduc-
tions in the thickness of the ganglion cell layer, INL, and PRL have been observed [45–48].
These changes suggest neurodegeneration and an increase in inflammatory and neurode-
generative markers has been reported in rats with DM induced by STZ [43]. Consistent
with previous research, this study also observed a decrease in the total retinal thickness in
the diabetic groups. However, the overall retinal thickness was greater in the DR-MSC-S
group than in the DR and DR-MSC groups, and the thicknesses of the INL and PRL were
also greater in the DR-MSC-S group compared to the DR group. These results indicate
that subconjunctival injection of sirolimus-pretreated MSCs can mitigate histopathological
changes in the retina.

A challenge in treating diabetic patients with MSCs is the reduced survival rate of
MSCs in a hyperglycemic environment. Research has shown that MSCs cultured in serum
from type 2 diabetic patients exhibit significantly decreased cell survival [49]. Various
studies indicate that hyperglycemic conditions can lead to an increase in mitochondrial
glucose metabolism, which through mitochondrial hyperpolarization induces the produc-
tion of ROS [50–52]. Additionally, a chronic hyperglycemic environment can lead to the
upregulation and activation of cyclooxygenase, which may increase not only oxidative
stress but also inflammatory responses [53,54]. Excessive accumulation of ROS leads to
mitochondrial damage, cell apoptosis, inflammation, and lipid peroxidation [55]. Conse-
quently, persistently high glucose concentrations alter the potential regenerative capacity of
MSCs and ultimately reduce their survival rate, lowering the success rate of treatment [19].
In this study, the DR-MSC group did not show significant differences from the DR group in
the flash b-wave amplitude or histological evaluations, which could be attributed to the
low survival rate of MSCs in a hyperglycemic environment.

In this study, the pretreating of stem cells with sirolimus, a technique already proven
effective in several studies, was used. In mice, sirolimus has been shown to enhance
autologous regeneration and hematopoiesis in hematopoietic stem cells [32]. Treatment
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with sirolimus-pretreated MSCs in a systemic lupus erythematosus mouse model allevi-
ated clinical symptoms and extended survival, also enhancing the immunomodulatory
function of MSCs [26]. Furthermore, pretreatment with sirolimus significantly increased au-
tophagy activity and lysosome production in cells and reduced cell apoptosis under harsh
conditions compared to untreated cells. The post-transplantation of sirolimus-pretreated
cells markedly improved the repair and functional recovery in infarcted myocardium [56].
Additionally, numerous studies have used sirolimus via direct intraocular injection for
retinal treatment, confirming its intraocular stability [57–60]. However, the concentration
of sirolimus used in this study was significantly lower than that shown to be effective in
previous research, suggesting a lower likelihood of direct effects from sirolimus.

Sirolimus can modulate inflammatory responses related to the generation of ROS and
nitric oxide in cells [61]. Sirolimus-pretreated MSCs have shown increased survival or
growth factor secretion in hypoxic and serum-deprivation conditions, increased production
of survival or growth factors post-transplantation, and suppressed production of inflamma-
tory cytokines [28]. These actions may account for the significantly higher results obtained
by the DR-MSC-S group in the ERG and histological evaluations compared to the DR and
DR-MSC groups.

Moreover, this study adopted the subconjunctival route instead of the commonly
used intravitreal injection for DR treatment. Intravitreal injection has the advantage of
delivering drugs directly to the vitreous and retina, but the technique is invasive with risks
of increased intraocular pressure, infection, inflammation, potential damage to the lens,
retinal toxicity, and detachment [62,63]. However, subconjunctival injection is less invasive
and carries a lower risk of complications associated with intravitreal injections, making
repeated administration feasible. Subconjunctival injections are generally thought to pri-
marily deliver drugs to the anterior segment of the eye, but there are studies showing that
effective drug delivery to the vitreous and retinal/vitreous layers is also possible [64,65].
Administering drugs or placing implants in the subconjunctival space can skip the barriers
of the conjunctiva and cornea, resulting in enhanced permeability in the retina/choroidal
region [63]. Nevertheless, subconjunctival injection results in a lower drug concentration
reaching the posterior segment compared to intravitreal injection. There is a study show-
ing that administering MSCs at weekly intervals is more effective in inhibiting disease
progression than a single administration [66]. This study adopted a method of repeated
administrations at 8-day intervals for a total of two times to enhance the therapeutic efficacy.
Consequently, this study found subconjunctival injection to be effective in treating DR,
with minimal systemic impact on the BW or BG.

In this study, the effectiveness of sirolimus-pretreated MSCs was evaluated, focusing
on the functional improvement of the retina as measured by ERG and the histological
assessment of retinal layer thickness. However, the evaluation was confined to a maximum
duration of 7 weeks, indicating the necessity for further research into the long-term effects.
Another limitation of this study is the absence of a comparative analysis between different
concentrations of pretreated sirolimus as well as a lack of comparison between single and
repeated administrations.

5. Conclusions

In conclusion, this study has demonstrated that DR rats treated with sirolimus-
pretreated MSCs exhibit an increase in ERG amplitude. Additionally, there was a mitigation
in the reduction of the retinal thickness at a histological level. These results suggest that
sirolimus-pretreated MSCs can enhance retinal function and mitigate histological changes
in rats with DR, indicating their potential for application in DR treatment. They also
suggest that the subconjunctival route of administration can be effective for the treatment
of retinopathy.
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