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Abstract: In the realm of managing malignant liver tumors, the convergence of radiomics and
machine learning has redefined the landscape of medical practice. The field of radiomics employs
advanced algorithms to extract thousands of quantitative features (including intensity, texture, and
structure) from medical images. Machine learning, including its subset deep learning, aids in the
comprehensive analysis and integration of these features from diverse image sources. This potent
synergy enables the prediction of responses of malignant liver tumors to various treatments and
outcomes. In this comprehensive review, we examine the evolution of the field of radiomics and its
procedural framework. Furthermore, the applications of radiomics combined with machine learning
in the context of personalized treatment for malignant liver tumors are outlined in aspects of surgical
therapy and non-surgical treatments such as ablation, transarterial chemoembolization, radiotherapy,
and systemic therapies. Finally, we discuss the current challenges in the amalgamation of radiomics
and machine learning in the study of malignant liver tumors and explore future opportunities.
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1. Introduction

In the arena of diagnosing, treating, and prognosticating malignant liver tumors, a
convergence of cutting-edge medical imaging, data science, and machine learning (includ-
ing artificial intelligence) has illuminated a promising path forward. This transformative
innovation finds its embodiment in radiomics, an emerging field that combines the rich bio-
logical information contained in medical images with the powerful computational abilities
of machine learning, shedding light on the intricate landscape of liver oncology [1,2].

Malignant liver tumors, encompassing hepatocellular carcinoma (HCC), intrahepatic
cholangiocarcinoma (ICC), and liver metastases, present profound clinical challenges.
While conventional imaging methods remain indispensable, they often struggle with
the elusive subtleties of tumor heterogeneity, rendering the task of tailoring precise and
personalized treatment strategies formidable. The field of radiomics rises to meet this
challenge by extracting a wealth of quantitative features from medical images [2].

The study of radiomics stands as the forefront of the digital transformation of medicine,
employing data-driven methodologies to unveil layers of information hidden within med-
ical images, beyond human perception [2]. Advanced algorithms dissect images into
thousands of attributes, including intensity, texture, and structural patterns [3]. Intensity
features encapsulate gray-level histogram information, elucidating the global distribution
of gray levels in images. Texture features delineate the relationships between adjacent
voxels, while high-order features are derived through wavelet and Laplacian Gaussian
filtering. Machine learning, a facet of artificial intelligence, facilitates data-driven learn-
ing for decision-making. Deep learning, a subset of machine learning, employs intricate
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artificial neural networks to discern complex patterns from extensive data [4]. These tech-
nologies empower the selection, analysis, and integration of radiomic features from diverse
image types, enabling predictive models for a range of clinical applications. Radiomics
has demonstrated its utility in lesion characterization, preoperative diagnosis, treatment
efficacy evaluation, and prognosis prediction across different tumor models [5–8]. In the
realm of malignant liver tumor treatment, numerous radiomics studies have harnessed
multiparametric and multimodality imaging, achieving promising results [9–52].

In an era defined by the convergence of medicine and technology, radiomics, fortified
by machine learning, holds the promise of redefining personalized treatment. This transfor-
mative synergy brings us closer to the realization of precision medicine, where each patient’s
unique attributes and needs occupy the core of therapeutic strategies. This review details
the development history, technical architecture, application status and future prospects of
radiomics in promoting personalized treatment of patients with liver malignant tumor.

2. Evolution of Radiomics and Its Procedural Framework

Radiomics is a data-driven methodology for extracting a wide range of quantitative
features from medical images, enabling an in-depth characterization of tumor patterns
and traits that often elude human perception [2]. Its applications extend to enhancing the
diagnosis, prognosis, and prediction of therapeutic responses across various medical condi-
tions, with particular relevance in the field of oncology. Here, we searched PubMed (as of
12 September 2023) for radiomics studies pertaining to malignant liver tumors, using terms
“hepatocellular carcinoma”, “HCC”, “cholangiocarcinoma”, “ICC”, “cholangiocellular car-
cinoma”, “liver”, “metasta*”, “liver cancer”, “machine learning”, “radiomics”. Our search
identified 44 clinical target-oriented published works following manual screening [9–52].
The majority of these studies (31 out of 44) were performed in a single center within a
retrospective cohort framework. Among the identified studies, the most commonly used
imaging modality was computed tomography (CT) in 32 studies followed by magnetic
resonance imaging (MRI) in 10 studies and ultrasonography (US) in one study. Notably,
only one study employed a combined approach using both CT and MRI (Supplemen-
tary Materials Table S1). The workflow of machine learning combined with radiomics
facilitating the personal treatment of malignant liver tumors is depicted in Figure 1.
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analysis can provide a wealth of multidimensional information, thereby improving the diagnosis,
treatment planning, and efficacy prediction for patients with malignant liver tumors.
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2.1. Development of Radiomics

Radiomics had its origins in 1999 when Gillies and his collaborators began exploring
tumor heterogeneity, aiming to capture the variability in appearance, structure, and behav-
ior [53]. In 2010, Gillies first introduced the concept of “radiomics” [54], and subsequently,
Lambin and colleagues refined and defined it as the “high-throughput extraction of ex-
tensive image features from radiographic images” [55]. Radiomics for traditional imaging
techniques like CT, MRI, and US unveiled layers of information beyond human perception,
leading to the development of algorithms capable of extracting hundreds or thousands of
image features. These attributes encompassed factors such as intensity, texture, wavelet,
and fractal properties [2,3]. When coupled with machine learning, the analysis of these
features became pivotal in correlating with clinical outcomes and tumor biology.

The most recent phase of radiomics development has witnessed the integration of
radiomics with advanced computational methodologies, notably machine learning and
deep learning. Machine learning empowers computers to glean insights from data and
make predictive inferences, while deep learning deploys multi-layered artificial neural
networks to decipher intricate patterns within extensive datasets. Deep learning networks
encode medical images into shape information and abstract textural information through
shallow and deep layers, as exemplified by Wang et al., who proposed a novel method
for automatically extracting deep learning features from MR imaging, demonstrating their
superior performance in predicting the malignancy of HCC [56].

Radiomics has flourished into a vibrant domain of medical research and practice,
with its evolution continually driven by technological advancements and methodological
refinements. Its transformative potential in enhancing our understanding and management
of diseases through the prism of medical imaging continues to evolve and redefine the
boundaries of medical science.

2.2. Procedures of Radiomics

Radiomics procedures adhere to a meticulously structured framework for the extrac-
tion and analysis of radiomic features from medical images. This framework encompasses
the following key steps: image acquisition, image segmentation, feature extraction, feature
selection, and feature analysis.

Firstly, the process commences with the acquisition of high-quality medical images
through modalities like CT, MRI, or US. Emphasis is placed on optimizing image quality,
ensuring high resolution, contrast, and signal-to-noise ratio to effectively capture relevant
information. The application of resampling and intensity normalization is imperative
to mitigate the impact of inconsistent imaging acquisition protocols and reconstruction
procedures [57–59]. The subsequent step involves delineating the region of interest (ROI)
from the background. This can be achieved through manual, semi-automatic, or automatic
segmentation techniques [60]. Precision and reproducibility in ROI segmentation are
essential, as they directly influence the accuracy of subsequent feature extraction and
analysis. Thirdly, this pivotal stage entails extracting a diverse array of features from the
segmented ROI. These features are derived using various methodologies, including shape
analysis, first-order statistics, texture analysis, wavelet transforms, Laplacian transforms,
and deep learning techniques [3]. The extracted features comprehensively encapsulate the
heterogeneity and microenvironment complexity of the tumor. Fourthly, enhancing model
performance and interpretability, it is necessary to select the most relevant and informative
features from the initial pool of radiomics features. Methods such as correlation analysis,
principal component analysis, and machine learning techniques are employed to reduce
dimensionality and mitigate redundancy. This step focuses on the salient features for
further analysis. Finally, the selected features undergo thorough analysis using statistical
tests, clustering, classification, regression, or survival analysis. The objective is to construct
radiomics models that unveil intricate relationships between these features and clinical
outcomes or molecular characteristics of the tumor. These models play a crucial role in
translating radiomic data into clinically relevant insights.
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This rigorous procedural framework ensures the effectiveness and utility of radiomics
in the realm of medical imaging and oncology. It establishes a foundation for the systematic
extraction, analysis, and interpretation of radiomic information, contributing to enhanced
decision making in clinical practice and research.

3. Radiomics Facilitating the Personal Treatment of Malignant Liver Tumors

In recent years, the fusion of radiomics and machine learning has yielded promising
results in the evaluation of treatments for malignant liver tumors (e.g., surgical resection,
liver transplant, ablation therapy, transarterial chemoembolization (TACE), radiotherapy,
and systemic therapy [9–52]). Supplementary Materials Table S1 provides an overview of
these significant contributions.

3.1. Surgical Therapy for Malignant Liver Tumors

Surgical therapy, encompassing liver resection and liver transplantation, represents the
optimal approach for treating malignant liver tumors. Notably, postoperative recurrence is
a critical prognostic factor, drawing the attention of clinicians.

For HCC, the prediction of recurrence has garnered considerable interest. Ji et al. [34]
harnessed contrast-enhanced CT images from 470 patients with solitary HCC who under-
went surgical resection to construct a recurrence prediction model using a machine-learning
framework, achieving a concordance index (C-index) of 0.633–0.699. By integrating clinical
features into the predictive model, superior prognostic performance was realized with
a C-index of 0.733–0.801. Several similar studies employed various machine learning
modeling methods, including random forest and SVM [20,25,27,50], to establish predictive
models and achieved remarkable results in predicting HCC recurrence, with area under
the receiver operator characteristic curves (AUCs) ranging from 0.834 to 0.948. These
advancements facilitate a more precise evaluation of recurrence in HCC patients following
surgical resection.

Deng et al. [43] demonstrated that radiomics models hold an advantage in predicting
overall survival (OS) following radical resection. By constructing a radiomics prediction
model using pre-surgery CT images, they achieved AUCs of 0.905, 0.884, and 0.911 for
predicting 1-year, 3-year, and 5-year OS, respectively, in the validation cohort. This research
may hold potential implications for informing clinical treatment decisions and prognostic
assessments post surgery. Furthermore, the assessment of functional liver reserve before
surgical resection is of critical importance, as it relates to the risk of post-hepatectomy
liver failure [61]. Zhu et al. [32] utilized preoperative MRI and CT images to develop
radiomics models for evaluating the functional liver reserve of HCC patients. In groups
with indocyanine green retention rates at 15 min set at 10%, 20%, and 30%, the MRI
radiomics model outperformed CT, with AUCs of 0.917 vs. 0.822, 0.979 vs. 0.860, and
0.961 vs. 0.938, respectively. Similarly, Wang and collaborators [51] employed preoperative
gadoxetic acid-enhanced MRI radiomics features and an unsupervised machine learning
approach to assess the risk of liver failure in HCC patients with varying functional liver
reserves, revealing significant distinctions among functional liver reserve subgroups.

For ICC, Jolissaint et al. [28] retrospectively analyzed 138 ICC patients who under-
went surgical resection, incorporating CT texture features and tumor size to predict early
intrahepatic recurrence. The model achieved an AUC of 0.840 for recurrence prediction
in the validation cohort. This result was successfully replicated in a multicenter study
by Bo et al. [29], who enrolled 127 ICC patients undergoing curative surgery from three
institutions. Their machine learning radiomics models, based on CT images, exhibited
a mean AUC of 0.87 ± 0.02 for predicting early recurrence. Additionally, Qin et al. [35]
conducted a retrospective study involving 274 perihilar cholangiocarcinoma patients who
underwent contrast-enhanced CT and curative resection. They developed a multilevel
predictive model that performed impressively in quantifying the risk of early recurrence,
with AUCs reaching 0.883. The accuracy of the multilevel predictive model was 0.826, sig-
nificantly surpassing the accuracy of conventional staging systems (0.641 for the American
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Joint Committee on Cancer 8th TNM, 0.617 for Memorial Sloan-Kettering Cancer Center,
and 0.581 for Gazzaniga systems) [62–64].

Liver metastases are widespread, with colorectal metastases being the most com-
mon [65]. Granata et al. [16] harnessed radiomics features extracted from multiphase MR
images, employing both traditional machine learning and deep learning frameworks to
predict clinical outcomes in colorectal liver metastases (CLM) patients following liver resec-
tion. These features and models demonstrated significant prognostic value in evaluating
recurrence, mutational status, pathological characteristics, and surgical resection margin,
with accuracy ranging from 82% to 95%.

3.2. Nonsurgical Resection Therapy for Malignant Liver Tumors

Nonsurgical resection therapy serves as a vital complementary treatment for ma-
lignant liver tumors, encompassing therapies like ablation therapy, TACE, radiotherapy,
and systemic therapy. The following are some radiomics studies associated with these
treatment modalities.

3.2.1. Ablation Therapy

Ablation therapy represents one of the radical treatment approaches for liver malignant
tumors, particularly suitable for small HCC and liver metastases.

In the context of HCC, Tabari et al. [31] collected pre-ablation MR images to predict
post-ablation pathologic treatment responses in early-stage HCC patients undergoing
liver transplant. By constructing a radiomics model using machine learning, they dis-
covered that pre-ablation MRI radiomics features could predict the pathologic treatment
response of tumors in HCC patients undergoing ablation therapy, achieving an AUC of
0.830. Peng et al. [49] enrolled 149 HCC patients who underwent curative ablation with
the goal of predicting recurrence-free survival. The random survival forest model, which
integrated MRI radiomics and clinicopathological features, demonstrated strong prognostic
value for evaluating early recurrence, with a C-index ranging from 0.733 to 0.801. This
effort may hold potential in stratifying patients for the adoption of the most appropriate
follow-up and intervention strategy.

In the case of liver metastases, Taghavi et al. [18] found that a CT radiomics model
could predict local tumor progression for CLM before thermal ablation, with a C-index of
0.780. Their analysis included 90 CLM patients with 140 lesions. Shahveranova et al. [39]
constructed a combined model based on MRI radiomics and clinical characteristics and
arrived at a similar conclusion, with AUCs ranging from 0.927 to 0.981. Subsequently,
Taghavi et al. [17] sought to validate whether radiomics features derived from pre-ablation
CT images of patients with colorectal cancer could predict the development of new CLM
after successful thermal ablation. However, they were unable to identify an effective pre-
dictive model, with AUCs ranging from 0.520 to 0.570, only achieving inferior performance
in an external validation cohort.

3.2.2. TACE

TACE is a common treatment for HCC and is particularly suitable for intermediate-
stage HCC [61]. However, predicting the responses of HCC to TACE remains a challenge.

Liu et al. [9] used contrast-enhanced US cine images to predict the personalized
response of HCC to the initial TACE treatment. They constructed a radiomics contrast-
enhanced US model using deep learning, achieving an AUC of 0.930 in the validation
cohort. In parallel, Shi et al. [15] and Peng et al. [38] each conducted single-center and
multicenter studies to explore the ability of CT to predict the response of HCC to TACE.
Remarkably, the radiomics models developed by these research teams achieved AUCs
ranging from 0.949 to 0.994 in validation cohorts. Additionally, Bernatz et al. [21] found
that a CT radiomics model could identify HCC patients responding to repetitive TACE,
thereby contributing to the refinement of treatment algorithms. Similar studies [36,45] in
the field of MRI combined with machine learning also reported promising results. These
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endeavors may contribute to selecting appropriate HCC patients who respond to TACE
and enhancing the patient prognosis.

In terms of selecting suitable HCC patients for TACE, Wang et al. [11] retrospectively
enrolled multicenter HCC patients who underwent TACE treatment. They found that a
CT radiomics model could effectively discriminate between suitable and unsuitable HCC
patients for TACE, achieving an AUC of 0.894 in the validation cohort.

For survival prognosis, Liu et al. [40] and Wang et al. [23] utilized CT images to develop
CT radiomics-based survival prognosis models using a deep learning framework to predict
the overall survival of HCC patients after TACE treatment. These models achieved C-
index values ranging from 0.649 to 0.730. Although TACE in combination with tyrosine
kinase inhibitor has been shown to improve outcomes in HCC patients, identifying patients
who might benefit from the combined treatment remains challenging [66]. Ren et al. [44]
recruited HCC patients who received the combined treatment and exacted radiomics and
deep learning features from pretreatment CT images to constructed models for predicting
outcomes, achieving AUCs ranging from 0.870 to 0.940. The results may offer a rapid and
supportive method to identify patients likely to benefit from the combined treatment and
have the potential to improve precision oncology.

In an effort to predict which HCC patients might develop extrahepatic spread or
vascular invasion after initial TACE monotherapy, Jin et al. [33] retrospectively enrolled
256 patients and developed a combined model that integrated clinicoradiological predictors
and a CT radiomics signature. The radiologic characteristics of tumors were evaluated by
two experienced radiologists, blinded to patient information, who jointly reviewed all CT
images to validate nine radiographic phenotypes, including (a) tumor number, (b) tumor
size, (c) enhancement pattern. This combined model exhibited superior discrimination
performance compared to the clinicoradiological model (AUCs 0.911 vs. 0.772 in the
training set; AUCs 0.847 vs. 0.746 in the testing set). Importantly, it demonstrated the
capacity to effectively stratify HCC patients based on their risk levels, potentially refining
follow-up strategies for these patients.

These outstanding efforts underscore the enormous potential of radiomics in improv-
ing patient selection and treatment outcomes in the context of TACE.

3.2.3. Radiotherapy

Radiotherapy is categorized into external radiotherapy, such as stereotactic body
radiation therapy (SBRT), and internal radiotherapy, such as transarterial radioembolization
(TARE). It is a common and suitable treatment for unresectable HCC and liver metastases.

Fontaine et al. [12] conducted a retrospective multicenter study utilizing both unsu-
pervised and supervised clustering methods to construct an MRI radiomics model for
predicting overall survival in HCC patients after SBRT. However, the model’s performance
was suboptimal, with a sensitivity of 0.52 and specificity of 0.71. Some researchers have
also dedicated their efforts to the study of liver metastases. Hu et al. [46] retrospectively
acquired data from 97 CLM patients after SBRT and developed an automated model to
predict progression-free survival using CT radiomics and machine learning, achieving a
C-index of 0.68.

Stüber et al. [14] collected CT images from 491 CLM patients who underwent TARE to
extract radiomics features and create models. Nevertheless, they did not observe significant
additional prognostic value in these radiomics features for predicting overall survival when
compared to information obtained solely from clinical parameters. Kobe et al. [42] aimed to
predict treatment response to TARE in patients with liver metastases using pre-treatment
CT images, employing both traditional machine learning and deep learning algorithms.
The model achieved an AUC of 0.850, a sensitivity of 94.2%, and a specificity of 67.7% in a
testing set.

Based on the findings from these studies, it is evident that the applications of radiomics
combined with machine learning face several challenges in the field of liver malignant
tumors after radiotherapy, particularly regarding the inferior performance of these models.
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Therefore, there is a pressing need for more advanced methods and innovative research in
this area.

3.2.4. Systematic Therapy

Systemic therapy encompasses various anti-tumor treatments, primarily including
molecular targeted drug therapy, immunotherapy, and chemotherapy. Numerous re-
searchers have been exploring the applications of radiomics combined with machine
learning in the systemic treatment of liver malignant tumors, as follows.

In terms of HCC, several notable studies have leveraged radiomics and deep learning
techniques. Tian et al. [10] developed a preoperative MRI model that integrated radiomics
and deep learning features to predict the programmed death-ligand 1 (PD-L1) expression
level in HCC patients. This model exhibited robust predictive performance, achieving
an AUC of 0.897, surpassing the performance of the radiomics-only MRI model with an
AUC of 0.794. Dong et al. [37] aimed to predict the efficacy of anti-programmed death-
1 (PD-1) antibodies in combination with tyrosine kinase inhibitors for advanced HCC.
Their CT radiomics model achieved an AUC of 0.792 in the testing cohort, and radiomic
features were found to be associated with overall survival. Bo et al. [41] also constructed
CT radiomics models to predict the response to lenvatinib monotherapy for unresectable
HCC patients. In this retrospective multicenter study involving 109 patients, the optimal
radiomics model achieved impressive AUCs of 0.970 in the training cohort and 0.930 in the
external validation cohort. Similarly, in the case of ICC, Zhang et al. [30] used combined
models based on MRI radiomics and clinical features to predict PD-1 and PD-L1 expression
of ICC, achieving AUCs of 0.897 and 0.890, respectively.

With respect to CLM, which are typically treated with first-line chemotherapy, a subset
of patients benefits from this standard treatment [67,68]. Giannini et al. [22] developed a CT
delta-radiomics score to predict the response of CLM patients to first-line chemotherapy,
achieving a sensitivity of 85% and a specificity of 92%. Qi et al. [19] employed artificial
neural networks and machine learning algorithms to create a predictive model based on
CT images and clinical features, identifying CLM responses to first-line chemotherapy
with AUCs of 0.754 in the training cohort and 0.752 in the validation cohort. Additional
studies [13,26] used radiomics to predict CLM responses to first-line chemotherapy, yielding
favorable results.

Antiangiogenic drugs are increasingly combined with chemotherapy in CLM pa-
tients [69]. Qu et al. [24] used a dynamic radiomics feature extraction method to construct a
CT radiomics model for predicting the efficacy of antiangiogenic therapy in CLM patients,
achieving a promising AUC of 0.945 and accuracy of 0.855. To identify CLM patients sensi-
tive to therapy targeting the anti-epidermal growth factor pathway, Dercle et al. [48] built a
CT radiomics model using a deep learning and machine learning framework, achieving an
AUC of 0.800 for predicting sensitivity.

In the context of HER2-amplified CLM patients, Giannini et al. [47] developed and
validated a CT score to predict the response of individuals undergoing dual HER2-targeted
therapy. The model effectively differentiated between responders and non-responders, with
a sensitivity of 90% and a specificity of 42% in a validation dataset. This finding may have
the potential to pave the way for a more aggressive diagnostic and dual HER2-targeted
therapeutic approach in selected patients.

For patients with liver metastases from breast cancer, He et al. [52] investigated
whether CT radiomics could predict the efficacy of anti-HER2 therapy, achieving an AUC
of 0.865 for predicting the poor prognosis group. These studies collectively demonstrate
that radiomics combined with machine learning serves as a powerful tool for personalizing
the treatment of patients with liver malignant tumors in the context of systemic therapy.

4. The Future Opportunities and Challenges of Radiomics

While radiomics has demonstrated its significance in assessing the treatment of liver
malignant tumors, it faces several challenges in its clinical application.
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Firstly, many current radiomics studies have primarily emphasized model perfor-
mance while overlooking the importance of study design quality and result analysis.
Reliability in model validation is often compromised due to the use of random split valida-
tion methods and the absence of sample size calculations. These systemic errors may lead
to falsely elevated model performance. This limitation hinders the translation of radiomics
findings into practical clinical applications.

Secondly, there is a lack of biologically explainable analysis of radiomics features.
Although some studies have employed algorithms like Shapley values to analyze the
mathematical interpretability of input and output radiomics features [11], the biological
interpretability of radiomics features still lags behind traditional radiological, histopatho-
logical, and molecular gene expression signatures [70]. Researchers often struggle to obtain
clear logical explanations for results within the enigmatic “radiomics” black box.

Thirdly, the generalizability of radiomics models is challenging to ensure due to
the absence of multicenter or prospective external validation. Radiomics, as a high-
throughput feature extraction method, can generate thousands of features, resulting in a
high-dimensional dataset that may produce spurious correlations with outcome events. A
simulation study has demonstrated that significant features with prognostic value could
even be found among randomly generated features [71]. As a result, rigorous multicenter
spatial and prospective temporal external validations are urgently needed before radiomics
can be applied in real-world clinical settings. Unfortunately, many studies currently lack
this essential level of reliability and robustness in their validation processes.

In light of these challenges, future research must prioritize rigorous quality control
in study design and result analysis, foster data sharing across multiple centers, and focus
on intensive external validation involving diverse geographical regions and populations.
Developing artificial intelligence algorithms with enhanced accuracy and interpretability is
crucial to facilitate broader translation and clinical applications. Furthermore, considering
the recent advancements in machine learning algorithms, deep learning has shown similar
or even superior performance in evaluating therapeutic efficacy [9,10,23,36,38,40,44,48] and
a wide range of clinical applications [72–74]. Therefore, exploring how to appropriately
combine radiomics with deep learning for improved clinical individualization is a topic
worthy of consideration.

5. Conclusions

In the assessment of liver malignant tumor treatments, the combination of radiomics
and machine learning demonstrates substantial potential for improving therapeutic evalu-
ation, enhancing predictive accuracy, supporting clinical decision making, and enabling
personalized patient care. Nevertheless, the limitations of current research pose signifi-
cant challenges to the widespread clinical adoption of radiomics. To advance the clinical
application of radiomics, future research efforts should prioritize the quality control of
study design and statistical analysis, biological interpretability of radiomics features and
models, value of mature imaging models in real-world clinical treatment, and multicenter
as well prospective clinical validations. In summary, radiomics combined with machine
learning holds significant promise for reshaping the assessment and personalization of liver
malignant tumor treatments. Addressing these research areas is instrumental in realizing
the potential of radiomics for the benefit of both healthcare providers and patients.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biomedicines12010058/s1, Table S1: Summary of published radiomics
studies on the realm of treating malignant liver tumors.
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