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Abstract: Dysregulated metabolic dynamics are evident in both cancer and diabetes, with metabolic
alterations representing a facet of the myriad changes observed in these conditions. This review
delves into the commonalities in metabolism between cancer and type 2 diabetes (T2D), focusing
specifically on the contrasting roles of oxidative phosphorylation (OXPHOS) and glycolysis as
primary energy-generating pathways within cells. Building on earlier research, we explore how a
shift towards one pathway over the other serves as a foundational aspect in the development of
cancer and T2D. Unlike previous reviews, we posit that this shift may occur in seemingly opposing
yet complementary directions, akin to the Yin and Yang concept. These metabolic fluctuations reveal
an intricate network of underlying defective signaling pathways, orchestrating the pathogenesis and
progression of each disease. The Warburg phenomenon, characterized by the prevalence of aerobic
glycolysis over minimal to no OXPHOS, emerges as the predominant metabolic phenotype in cancer.
Conversely, in T2D, the prevailing metabolic paradigm has traditionally been perceived in terms of
discrete irregularities rather than an OXPHOS-to-glycolysis shift. Throughout T2D pathogenesis,
OXPHOS remains consistently heightened due to chronic hyperglycemia or hyperinsulinemia. In
advanced insulin resistance and T2D, the metabolic landscape becomes more complex, featuring
differential tissue-specific alterations that affect OXPHOS. Recent findings suggest that addressing the
metabolic imbalance in both cancer and diabetes could offer an effective treatment strategy. Numerous
pharmaceutical and nutritional modalities exhibiting therapeutic effects in both conditions ultimately
modulate the OXPHOS–glycolysis axis. Noteworthy nutritional adjuncts, such as alpha-lipoic acid,
flavonoids, and glutamine, demonstrate the ability to reprogram metabolism, exerting anti-tumor
and anti-diabetic effects. Similarly, pharmacological agents like metformin exhibit therapeutic efficacy
in both T2D and cancer. This review discusses the molecular mechanisms underlying these metabolic
shifts and explores promising therapeutic strategies aimed at reversing the metabolic imbalance in
both disease scenarios.

Keywords: oxidative phosphorylation; cancer; mitochondria; metabolic shift; type 2 diabetes; insulin
resistance; therapy; nutritional adjuvants; glutaminolysis

1. Introduction

Cellular metabolism involves a series of enzyme-driven biochemical reactions that
generate or consume energy. The activity and speed of these reactions fluctuate constantly.
Diverse cellular energy requirements, proliferative activities, environmental stressors, and
overall functions govern these fluctuations. Nevertheless, metabolism is now perceived in
much broader ways than mere biochemistry; it permeates all facets of biology [1,2].

Under healthy conditions, cells can balance anabolism, catabolism, and waste removal
by monitoring and coordinating different metabolic pathways. In various disease states,
this intricate balance is lost, resulting in altered metabolism. Usually, genetic reprogram-
ming underlies dysfunctional metabolic switching in cells and tissues. These perturbing
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shifts in metabolism are different in each disease. Here, we highlight the paradox of the
metabolic shift in cancer versus type 2 diabetes (T2D) and its implications in targeted
therapy [1,2]. The underlying metabolic pathways for both cancer and T2D continue to be
examined. Notably, a higher incidence of cancer was observed in diabetic patients than in
non-diabetic patients [3]. Many underlying cell signaling pathways for both conditions do
intersect. In this review, we highlight important ones involved in the shift from oxidative
phosphorylation (OXPHOS) to glycolysis and vice versa.

In 1923, Otto Warburg first postulated the Warburg phenomenon, suggesting metabolic
rewiring to be one of the hallmarks of cancer, after observing that tumors demonstrate
increased glucose uptake. He further hypothesized that cancer cells, due to dysfunctional
mitochondria, primarily utilize aerobic glycolysis instead of OXPHOS for rapid energy re-
lease, which is required by proliferating cells [4,5]. The Warburg effect involves cytoplasmic
anaerobic fermentation of glucose into lactate, despite regular oxygen availability. Aerobic
glycolysis ultimately increases cellular anabolism and decreases catabolism. Our knowl-
edge of this phenomenon and its driving forces has been refined and expanded over the
past decades. Nevertheless, two features of the Warburg effect remain unaltered: increased
glucose uptake and lactate production [6,7]. Aerobic glycolysis is markedly heightened in
over 70% of cancer types, such as lung [8], breast [9], liver [10,11], brain [12], prostate [13],
gynecologic [14], and pancreatic cancer [4,15,16]. Similar to solid tumors, hematologic
malignancies, such as lymphomas [16–18] and leukemias [16,19,20], also demonstrate high
aerobic glycolysis and low OXPHOS rates. In certain tumors, the accelerated Warburg effect
occurs even in the presence of active or partially active mitochondrial OXPHOS [21–24]. It
is argued that, in cancer, minimal activity of mitochondrial OXPHOS is crucial for tumor
cell survival [22,25–27] and metastasis [28]. As discussed in further sections, accumulating
evidence suggests additional reasons why mitochondrial dysfunction plays a role in the
preferential glycolytic shift in tumor cells.

In addition to the Warburg effect, cancer cells simultaneously adopt another metabolic
pathway called glutaminolysis as part of a metabolic reprogramming strategy to meet
their specific energy and biosynthetic demands. With heightened energy demands, can-
cer cells absorb and utilize more glutamine than normal cells, supplementing glucose
as an additional energy source [29]. Glutaminase converts glutamine to glutamate and
ammonia [30]. The resultant glutamate enters the tricarboxylic acid (TCA) cycle within
mitochondria, supporting energy production and biosynthetic precursor synthesis [31].
Notably, increased glutaminolysis in cancer cell mitochondria induces a metabolic shift
from canonical OXPHOS and ATP production to the synthesis of anabolic intermediates
for lipid and amino acid production. Malate, an intermediate in the TCA cycle, is me-
tabolized to pyruvate and lactate, whereas citrate contributes to lipid metabolism. Both
processes generate NADPH molecules, countering specific reactive oxygen species and
averting oxidative stress [32]. Furthermore, glutamine serves as a crucial nitrogen source
for nucleotide biosynthesis in the cytosol. In purine biosynthesis, two glutamine molecules
provide nitrogen atoms for the purine ring formation in inosine monophosphate, a precur-
sor to both adenosine monophosphate and guanosine monophosphate [33]. In pyrimidine
biosynthesis, one glutamine molecule provides the nitrogen atom necessary for the forma-
tion of cytidine triphosphate from uridine triphosphate [34]. Collectively, glutamine acts as
a signaling molecule, activating essential pathways that promote survival, proliferation,
and differentiation.

Notably, a pivotal 2020 study by K.I. Nakayama found a significant shift in the fate
of glutamine-derived nitrogen in cancer, which is crucial for cell proliferation and sur-
vival [35]. The nitrogen’s fate shifts away from the anaplerotic pathway supporting the
TCA cycle, redirecting towards nucleotide biosynthesis. The regulation of this shift lies in
the enzymes glutaminase (GLS1) and phosphoribosyl pyrophosphate amidotransferase
(PPAT) [35]. A higher PPAT/GLS1 ratio orchestrates this transition, with PPAT steering
nitrogen metabolism towards nucleotide synthesis and reduced GLS1 expression. GLS1,
on the other hand, guides nitrogen metabolism to produce glutamate and ammonia, a
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pivotal step influencing the TCA cycle. Heightened GLS1 activity hinders tumor growth,
whereas increased PPAT activity supports cell proliferation. Consequently, the determining
factor for the metabolic shift is not solely glutamine availability but rather the PPAT/GLS1
ratio, as emphasized in the study [35]. In cancer, a prevalent pattern is observed with
elevated PPAT expression and diminished GLS1 expression, particularly during malignant
transformation [35]

In certain cancers, dysregulation of these pathways may contribute to cancer develop-
ment and metastasis.

In contrast, the elaborate metabolic alterations characterizing T2D diverge from those
associated with cancer. Despite these variances, there are shared signaling molecules at the
crossroads of both conditions that influence shifts in OXPHOS and/or glycolysis.

In established T2D, insulin resistance arises in peripheral tissues, primarily in the
skeletal muscle (SKM) [36], and decreases glucose-induced insulin secretion by pancreatic
β cells [37–40]. In healthy SKM, insulin increases the mitochondrial capacity for OXPHOS
via an increased expression of mitochondrial OXPHOS-related genes and the posttrans-
lational modification of mitochondrial proteins in the form of phosphorylation [41–44].
Hyperglycemia induces the release of insulin, activating mitochondrial respiration [45].
However, chronic hyperglycemia in individuals, due to continuous nutritional overload
and decreased physical activity, leads to prolonged hyperactivity of the OXPHOS machin-
ery. This is associated with a consistently excessive release of reactive oxygen species (ROS),
leading to oxidative toxicity and insulin resistance in peripheral tissues, which eventually
results in the development of T2D [46–48]. However, in established T2D, contradictory
findings have been reported on mitochondrial OXPHOS in SKM [43]. Several researchers
reported mitochondrial dysfunction and low OXPHOS in SKM [49,50], whereas others
reported normal OXPHOS [51–53]. A few studies reported that the liver exhibited normal
to even increased mitochondrial OXPHOS [54–56]. Some researchers argue that mitochon-
drial dysfunction contributes to the development of insulin resistance and T2D [49,50,57].
However, the opposite is more often believed to be true, i.e., insulin resistance leads to
mitochondrial dysfunction in peripheral tissues [43,58]. In contrast, in T2D, a Warburg-like
effect and lactate production also occur in pancreatic β cells [59,60]. The released lactate
could cause insulin resistance by suppressing glycolysis and impairing insulin signaling in
SKM [61].

In this review, we delve into the main metabolic patterns associated with cancer and
T2D, shedding light on several encouraging nutritional and therapeutic methods. These
approaches are intended to counteract the metabolic changes, working towards reinstating
a typical balance in both diseases.

2. The Metabolic Shift in Cancer
2.1. Why Do Tumors Adopt Glycolysis over OXPHOS?

Both anaerobic glycolysis and OXPHOS produce cellular energy in the form of adeno-
sine triphosphate (ATP). OXPHOS is much more efficient in generating ATP than glycolysis;
it generates approximately 32 ATPs from a single glucose molecule, whereas glycolysis
produces only a net of two ATPs (see Figure 1). Briefly, during glycolysis, a single molecule
of glucose is converted into two molecules of pyruvate through a series of biochemical
reactions that ultimately result in the production of two ATPs, after consuming two ATPs in
the glycolytic process. The resultant pyruvate can either enter the Krebs cycle (tricarboxylic
acid (TCA) cycle) followed by OXPHOS in the mitochondria in aerobic conditions or it
can be converted to lactate in anaerobic conditions. OXPHOS is an oxygen-dependent
process that combines the oxidation of nicotinamide adenine dinucleotide (NADH) and
flavin adenine dinucleotide (FADH2) with the phosphorylation of ADP to form ATP. In
contrast, in anaerobic glycolysis, the conversion of pyruvate to lactate consumes NAD+ to
generate NADH. The biochemical landscapes of glycolysis, aerobic glycolysis, and the TCA
cycle were well reviewed by Akram in 2013 [62,63]. Another recent review by Shiva et al.
(2020) elegantly describes OXPHOS, which is also known as the electron transport chain
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(ETC) cycle [64]. The selection of a less efficient metabolic pathway by the cell is attributed
to the fast-track generation of ATP by glycolysis when compared to OXPHOS. Therefore,
it was believed that an increase in the rate of aerobic glycolysis would promptly deliver
the energy needs of the cell [23,65–68]. In that sense, an increase in the frequency of aero-
bic glycolysis translates into an increase in glucose uptake [69] and rapid ATP synthesis.
However, this explanation was found to be insufficient to justify the glycolytic surge in
tumors even in the presence of functional mitochondria. Other reasons and theories have
emerged, discussed in the following sections (see Figure 2). Notably, another theory of
altered energy metabolism in tumor cells exists and is termed the reverse Warburg effect
or tumor symbiosis. This theory emphasizes crosstalk between hypoxic tumor cells and
normoxic stromal cells. Stromal cells uptake the lactate generated by hypoxic tumor cells,
using it as fuel to generate ATP via oxidative mechanisms. The ATP generated by normoxic
cells then becomes a source of energy for neighboring hypoxic tumor cells [70]. This lactate
shuttle and the interplay between the heterogeneous metabolic phenotypes in the core and
microenvironment of the tumor contribute to the survival of tumor cells [70–73].

1 
 

 
Figure 1. The glycolytic metabolic shift in tumor cells compared to the oxidative phosphorylation
(OXPHOS) metabolic dominance in normal non-proliferating cells. (1) Pyruvate can enter the mi-
tochondria to be converted to acetyl-CoA, which enters the Krebs cycle (tricarboxylic acid cycle or
citric acid cycle). NADH and FADH2 produced from the Krebs cycle enter the ETC cycle to generate
the energy molecule, adenosine triphosphate (ATP). OXPHOS, also called the ETC cycle, occurs in
the inner membrane of the mitochondria and generates approximately 32 ATP energy molecules
from a single glucose molecule. (2) The pyruvate generated in the cytoplasm from the breakdown of
one glucose molecule is utilized by Warburg aerobic glycolysis or anaerobic glycolysis to produce
lactate and a net of two ATPs. Abbreviations: ADP—adenosine diphosphate; ATP—adenosine
triphosphate; ETC—electron transport chain; GLUT4—glucose transporter 4; NADH—nicotinamide
adenine dinucleotide; O2—oxygen; TCA—tricarboxylic acid. Created with Biorender.com.

In the next subsections, we summarize the reasons behind the adoption of glycolysis
over OXPHOS in tumor cells.

2.1.1. Reason 1: Mitochondrial Dysfunction

Despite controversies around the presence of functional or partially functional mito-
chondria in some cancers, we believe these observations are an exception rather than the
standard. Discovering signs of mitochondrial activity in some cancer phenotypes does not
equate to the presence of normally functional mitochondria. Mitochondrial dysfunction
continues to be the leading cause of predominantly occurring glycolysis over OXPHOS
in tumor cells. Several mechanisms contribute to the development of mitochondrial dys-
function in tumor cells (see Figure 3); this is fortified by the mutations or transcriptomic
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dysregulations found in the genes that encode OXPHOS- and glycolysis-related proteins
(Tables 1 and 2).
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OXPHOS-related genes are either of mitochondrial DNA (mtDNA) or nuclear DNA
(ncDNA) origin. Point mutations are the most common type of mutations in mtDNA
reported to date. Particularly interesting are the mutations occurring in oncogenes and
tumor suppressor genes, which are frequent and characteristic of all cancer types. Many
oncogenes and tumor suppressor genes indirectly regulate glycolysis and OXPHOS by
regulating the expression of OXPHOS-related or glycolytic proteins (Table 3). Moreover,
mitochondrial metabolic dysfunction in cancer can also result from the dysregulation of
mitochondrial biogenesis and mitophagy. In the context of cancer, mutations in ncDNA
genes can affect the expression or activity of TCA cycle-related enzymes, such as succinate
dehydrogenase (SDH) [74], fumarate hydratase (FH) [75], and isocitrate dehydrogenase
(IDH) [76,77], which have a direct effect on OXPHOS [78] (Table 1). For instance, Bourgeron
et al. reported—for the first time—that a mutation in the SDH gene caused mitochondrial
ETC deficiency [79]. In 2018, Böttcher et al. discovered that a gain-of-function mutation
in IDH leads to enhanced D-2HG production, which triggers the destabilization of the
hypoxia-inducible factor-1 alpha (HIF-1α) protein, thus making the cell more dependent
on OXPHOS [80].

Likewise, tumorigenic mutations in cardinal oncogenes and tumor suppressor genes
significantly contribute to mitochondrial dysfunction in cancer. Although oncogenes and
tumor suppressor genes do not directly encode OXPHOS-related or glycolytic proteins, they
indirectly regulate the activity of these proteins through cell signaling pathways (Table 2).
This strongly abates the rationale for asserting the presence of functional mitochondrial
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OXPHOS in cancer. Common oncogenes and tumor suppressor genes involved in the
mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase (PI3K), and mam-
malian target of rapamycin (mTOR) pathways have been heavily reported in most cancer
types and can affect mitochondrial function (Table 2).
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Mitochondrial deregulation is also manifested by an imbalance in the degree of biogen-
esis of mitochondrial organelles and mitophagy of unhealthy mitochondria. Imbalances in
mitochondrial organelle turnover result in an abnormal number of available mitochondrial
organelles in the cytoplasm, which have been implicated in cancer progression [81,82].
Autophagy is inhibited by mTOR pathway activity. An active AMP-activated protein kinase
(AMPK) pathway inhibits the mTOR pathway, thereby activating autophagy. Autophagy
promotes cell survival by recycling cellular organelles to produce energy. Reportedly,
there is an association between high autophagic activity and increased cancer resistance
to chemotherapy [83,84]. Mitophagy, on the other hand, degrades mitochondria through
either the PTEN-induced kinase 1 (PINK1)/Parkin (PRKN) or the BCL2 interacting protein
3 (BNIP3)/NIP-3-like protein X (NIX)/FUN14 domain-containing 1 (FUNDC1) pathways
or by AMPK activation and consequent phosphorylation of Unc-51-like autophagy activat-
ing kinase 1 (ULK1). Interestingly, some studies have shown that the downregulation of
PRKN causes a decrease in mitophagy and the accumulation of dysfunctional mitochon-
dria in the cytoplasm. This has been associated with decreased mitochondrial OXPHOS,
increased ROS, and increased glycolysis. Therefore, PRKN deficiency contributes to the
Warburg effect in cancer. PRKN deficiency has been observed in several cancer pheno-
types in humans, including colorectal cancer [85], glioblastoma [86], melanoma [87], lung
cancer [88], and breast cancer [81,89].

Some studies have suggested that the overexpression of uncoupling protein (UCP)
promotes aerobic glycolysis, tumor proliferation, and resistance to apoptosis-induced
chemotherapy [90–92]. UCPs are a family of mitochondrial proteins localized in the mi-
tochondrial membrane that act as anion transporters. UCP2 in particular is ubiquitously
expressed in the body and plays several biological functions and has been shown to play a

Biorender.com
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role in both tumorigenesis and chemoresistance. UCP2 has an antioxidant effect due to its
role in transporting protons from the inner mitochondrial membrane to the inner mitochon-
drial matrix [93]. In 2016, Brandi et al. demonstrated that UCP2 caused the downregulation
of OXPHOS-related complex I (NADH dehydrogenase), complex IV (cytochrome c oxidase),
and complex V (ATPase) and a decrease in mitochondrial oxygen consumption [92].

Table 1. Common alterations in the genes involved in the TCA cycle and OXPHOS metabolism
in cancer.

Gene Encoding DNA Protein Cycle Reported Dysregulation in Cancer Publications

Aco2 Nuclear Aconitase 2 TCA (Krebs cycle)
• Overexpression
• Increased activity [78,94]

IDH1 Nuclear Isocitrate
Dehydrogenase 1 TCA Point mutations [76,78,95–99]

SDH Nuclear Succinate Dehydrogenase TCA and ETC cycles
• Inherited or somatic

mutations in the SDH
• Downregulation

[74,78,100–108]

FH Nuclear Fumarate Hydratase TCA
• Germline mutations
• Reduced FH gene expression [75,78,109–113]
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Table 2. Common oncogenes and tumor suppressor genes implicated in mitochondrial dysfunction in cancer.

Gene Class Genetic Alteration Pathway Affected Effects on OXPHOS (ETC Cycle) Effect of Cancer
Progression References

MYC
(MYC proto-oncogene
protein)

Oncogene Point mutation,
amplification TGF-β signaling pathway Stimulates mitochondrial biogenesis and function through regulating

the transcription factor A mitochondrial gene
Self-sufficiency in

growth status [78,114–116]

AKT
(alpha serine/threonine
kinase)

Oncogene
Point mutation,
amplification,
overexpression

AKT pathway

• Affects mitochondria membrane potential (DWmt).
• Activated PI3-K–AKT pathway enhances mitochondrial

membrane stability by inhibition of p53 and Bax expression to
limit mitochondria-associated apoptosis.

• Stimulates the glycolysis pathway.
• PTEN inactivation upregulates mitochondrial respiratory

capacity through the 4E-BP1-mediated protein
translation pathway.

Evade apoptosis [115,117,118]

P53 Tumor suppressor gene Point mutation, deletion
P53 pathway,
cell cycle control: G2/M
DNA damage checkpoint

• P53 downregulation blocks its transcriptional activity and its
localization to mitochondria, thus inhibiting
mitochondrial-mediated apoptosis and enhancing
mitochondrial DNA (mtDNA) mutagenesis.

• P53 downregulation reduces SCO2 gene expression and
cytochrome-c to molecular oxygen, thus maintaining the proton
gradient across the inner mitochondrial membrane that is
necessary for aerobic ATP production.

Evade apoptosis,
insensitivity to

anti-growth signals
[115,119,120]

PI3K
(phophatidylinositol-4,5-
bisphosphate 3-kinase)

Tumor suppressor Point mutation AKT pathway

• Downregulation of PI3K activates and upregulates AKT
signaling and mTOR downstream transcription of p70, which
regulates the transcription of key apoptosis regulatory proteins.

• Decrease in mitochondrial membrane potential.
• Decrease in the release of cytochrome-c into the cytoplasm.
• Prevent activation of the proapoptotic caspase family of

proteins does not get activated.

Evade apoptosis [115,121]

PTEN
(phosphatase and tensin
homolog)

Tumor suppressor Point mutation, deletion PI3K pathway

• PTEN downregulation activates PI3-K–AKT pathway.
• Decreased mitochondrial membrane stability via inhibition of

the proapoptotic proteins p53 and Bax expression to limit
mitochondria-associated apoptosis (intrinsic pathway).

Evade apoptosis [115,122]

MDM2
(mouse double minute 2,
human homolog of;
P53-binding protein)

Oncogenes Amplification Cell cycle control: G1/S
checkpoint

• Negatively regulates NADH: ubiquinone oxidoreductase, 75
kDa Fe-S protein 1 (NDUFS1), and NADH dehydrogenase 6
(MT-ND6) involve the d in the ETC cycle.

• MDM2 overexpression decreases the function and efficiency of
mitochondrial complex I (CI).

Evade apoptosis [115,123]

BRAF
(B-Raf proto-oncogene,
serine/threonine kinase)

Oncogenes
Point mutation,
amplification, increased
expression

MAPK pathway (RAS)
BRAF upregulation inhibits oxidative phosphorylation gene
transcription, mitochondrial b, biogenesis, and the expression of
PGC1a by targeting the melanocyte lineage factor (MITF).

Self-sufficiency in
growth status [115,124]
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Table 2. Cont.

Gene Class Genetic Alteration Pathway Affected Effects on OXPHOS (ETC Cycle) Effect of Cancer
Progression References

KRAS
(Kirsten rat sarcoma viral
oncogene homolog,
GTPase)

Oncogene Point mutation MAPK pathway

KRAS activation of MAPK and PI3K pathways stabilizes and activates
hypoxia-inducible factor-1 alpha and factor-2 alpha (HIF-1α and
HIF-2, respectively), which facilitates ischemic adaptation.
KRAS stimulates aerobic glycolysis by overexpressing hexokinase,
lactate dehydrogenase, and glucose transporters.
KRAS induces glutaminolysis by upregualting glutamate oxaloacetate
transaminase 1,2 (GOT), leading to aspartate and NADPH generation
and the activation of the NRF2 antioxidant system.
Upregulation of RAS leads to increased autophagy and
micropinocytosis, contributing to the disruption of cellular energy
balance and nutrient scavenging.

Self-sufficiency in
growth status [115,125–128]

NF-κB
(nuclear factor kappa B) Oncogene

Amplification,
rearrangement,
chromosomal translocation
in several members of the
NF-κB protein family or
constitutional activation of
NF-κB

NF-κB pathway

NF-κB upregulation and activity cause a decline in mitochondrial
respiratory capacity and reduce the expression of key mitochondrial
proteins, including SDHA, ANT-1, UCP3, and MFN2, and cause
increased fission and mitophagy of mitochondrial organelles. It
upregulates PGC1α and correlates with high ROS.

Tumor growth [115,129,130]

EGFR (ErbB1 epidermal
growth factor receptor) Oncogene Amplification,

upregulation PI3K and MAPK pathways EGFR modulates mitochondrial function through modification
of Cox-II.

Self-sufficiency in
growth status [115,131]

IGFR
(insulin-like growth factor
receptor)

Oncogene Amplification AKT, PI3K, and
MAPK pathways

Increased IGFR expression alters ATP synthesis, increases
mitochondrial function, and decreases mitochondrial ROS production
associated with the induction of antioxidant response.

Antiapoptotic,
cell-survival, and

transforming activities
[115,132]

ErbB2
(HER2, receptor tyrosine
protein kinase erbB-2 )

Oncogene Amplification MAPK, PI3K, AKT,
and mTOR

ErbB2 overexpression causes downregulation of pro-apoptotic Bcl-2
family protein (Bcl-xS) and increases levels of anti-apoptotic Bcl-xL.
This leads to mitochondrial dysfunction and a loss of mitochondrial
membrane potential, a 35% decline in ATP levels, and a loss of redox
capacity (mitochondrial reductase activity).

Anti-apoptotic and
pro-proliferative effects [115,133]

HIF-1 α
(hypoxia inducible factor 1
subunit alpha)

Oncogene

It is stabilized and
activated in hypoxic tumor
conditions and by
inactivating mutations of
SDH, FH, and IDH as well
as due to oncogenic
mutation activating other
signaling pathways
(MAPK, AKT, and mTOR)

HIF-1α induces the expression of pyruvate dehydrogenase kinase 1
(PDK1). PDK1 phosphorylates and inactivates mitochondrial
pyruvate dehydrogenase and enhances the dependence of cells on
glycolysis for ATP production instead of OXPHOS.

Metabolism, cell survival,
erythropoiesis,
angiogenesis

[134–136]
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2.1.2. Reason 2: Glycolysis Supports the Proliferative Needs of Cancer Cells

In cancer, tumor cells employ strategies that promote their survival, growth, and
invasion. Therefore, it has been theorized that cancer cells use aerobic glycolysis as a
trade-off because it supports the biosynthetic anabolic needs of constant, uncontrolled
proliferation [69].

The Warburg effect supplies nucleic acids, proteins, and lipids through certain branch-
ing pathways that emanate from glycolysis. For instance, the pentose phosphate pathway
(PPP) generates the reducing agent NADPH, which is crucial for de novo lipid synthe-
sis [137–139]. Moreover, the redirection of glycolysis flux towards de novo serine biosyn-
thesis is facilitated by phosphoglycerate dehydrogenase (PHGDH) [69,140]. Additionally,
lactate is produced during the final step of anaerobic glycolysis, along with NAD+. The
produced NAD+ acts as a positive feedback mechanism, sustaining active glycolysis to
ensure the continuous supply of building blocks [141]. Intracellularly produced lactate is
transported to the extracellular stroma, contributing to its acidic attributes in cancer [142].
An insightful study by Heiden et al. revealed that the increased cellular demand for NAD+,
surpassing the demand for ATP and the rate of ATP turnover, drives the preferential reliance
on aerobic glycolysis, rather than OXPHOS, in proliferating cells such as cancer cells [143].
The NAD+/NADH ratio is critical for several metabolic processes, including nucleotide
synthesis, lipid metabolism, amino acid metabolism, and central carbon metabolism [144].
Both redox reactions and biosynthetic processes necessitate NAD+ generation [144]. How-
ever, NAD+ regeneration by the ETC cycle is constrained due to increased mitochondrial
membrane potential and decreased ATP synthase activity during OXPHOS in proliferating
cancer cells [144]. To meet the heightened NAD+ demand, the cell diverts its metabolic
phenotype towards aerobic glycolysis [144].

Undifferentiated stem cells resemble cancer cells in that they have high proliferative
activity, and therefore, they similarly shift their metabolism towards anaerobic glycoly-
sis instead of OXPHOS [145,146]. During stem cell differentiation, cellular metabolism
switches back to mitochondrial OXPHOS to generate energy, and the rate of anaerobic
glycolysis declines [147]. The dysregulation of the intracellular and extracellular pH of
cancer cells that accompanies aerobic glycolysis is another means by which the Warburg
effect promotes tumor growth [142]. Dysregulated pH dynamics characterized by extracel-
lular acidic stromal cells and intracellular alkaline cytoplasm are hallmarks of cancer cells
and can influence tumor proliferation, metastasis, and metabolic shift [142]. Proliferating
cancer cells require an alkaline intracellular pH compared to normal quiescent cells that
have an acidic intracellular pH [148–150]. The increase in intracellular pH in a cancer cell
promotes the glycolytic metabolic shift and confers a proliferative advantage for tumor
cells [151–153]. For instance, a cytoplasmic alkaline pH is required for growth factors
to initiate nucleic acid synthesis [149]. Moreover, an alkaline intracellular pH promotes
intracellular protein synthesis and drives other phenotypes of cancer cells [142,154,155].

2.1.3. Reason 3: Activation of HIF-1α by ROS

Another reason for the glycolytic shift in cancer is the accumulation of ROS, which
causes the activation of HIF-1α. Usually, in hypoxic conditions, HIF-1α gets activated when
the cell senses a low oxygen supply. ROS mimics the hypoxic effect and activates HIF-1α,
which then promotes glycolysis by upregulating the expression of several glycolytic en-
zymes, including hexokinase 2 [156,157], phosphofructokinase [158], phosphoglucomutase
1 [159], enolase [160], pyruvate kinase, pyruvate dehydrogenase (PDH), pyruvate dehy-
drogenase kinase (PDK) [161], lactate dehydrogenase A (LDHA) [160], monocarboxylate
transporter 4 [162–164], and glucose transporters GLUT1 and GLUT3 [165]. Additionally,
HIF-1α reduces the OXPHOS capacity by inhibiting mitochondrial biogenesis [166,167],
decreasing PDH activity [161], and reducing ETC activity [168].
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2.1.4. Reason 4: Dysregulation of the Glycolytic Machinery

Studies have indicated that dysregulation occurs at the level of glycolytic protein
expression (Table 3). Subsequent research has elucidated the role of the pyruvate dehydro-
genase complex (PDC) in the metabolic switch in tumor cells towards aerobic glycolysis. In
2007, Koukourakis et al. observed a significant decrease in or absence of PDC expression
and/or an overexpression of PDK in 91% of lung cancer patients tested via immunohisto-
chemistry [8]. Typically, active PDC facilitates the oxidative decarboxylation of pyruvate
into acetyl-CoA within the mitochondria. Conversely, PDK phosphorylates and deacti-
vates PDC [16]. When PDC is inactive, pyruvate accumulates in the mitochondria and
translocates back to the cytosol, where it is converted to lactate and NADH [16].

In this milieu, NADH was found to play a role in the glycolytic shift by directly
or indirectly inhibiting PDC and activating PDK. Recent studies propose that a high
concentration of cytosolic NADH, coupled with increased pyruvate, decreased lactate, and
an active LDHA enzyme, positively promotes glycolysis in cancer [71,169–171].

Certain investigations have also demonstrated that overexpression of the antioxidant
UCP2 in cancer cell lines promotes aerobic glycolysis, tumor proliferation, and resistance
to apoptosis-induced chemotherapy [90–92] (see Figure 2). In 2016, Brandi et al. illustrated
that UCP2 upregulates the expression of heterogeneous nuclear ribonucleoprotein A2/B1,
which in turn regulates the transcription of GLUT1, pyruvate kinase M2 (PKM2), and
LDH genes. UCP2 facilitates the metabolic shift in cancer cells towards Warburg’s aerobic
glycolysis [92].

Table 3. Common alterations reported in glycolysis-related genes in cancer.

Gene ID Gene Name Mutation/Deregulation Function in Glycolysis Publication

HK Hexokinase
Upregulated by p53 in cancer
and promotes tumor growth

and survival

Phosphorylates glucose when it
enters the cells [78,172–174]

PFK1 6-Phosphofructokinsae-1

Amplification and/or
upregulation, posttranslational

modification reported in
multiple cancer types

PFK1 catalyzes the
phosphorylation of

fructose-6-phosphate (F6P) to
fructose-1, 6-bisphosphate

(Fru-1,6-P2) using Mg-ATP as a
phosphoryl donor.

[78,175–177]

PK Pyruvate kinase
Posttranslational modification
or enhanced expression that

benefits cancer

PK is involved in the final step of
glycolysis, and it mediates the
transfer of a phosphate group
from phosphoenolpyruvate
(PEP) to ADP, resulting in

pyruvate and ATP.

[78,178–181]

PDK-1 Pyruvate dehydrogenase
kinase-1 Upregulation

PDK is a kinase enzyme that
inactivates pyruvate
dehydrogenase by
phosphorylation

dephosphorylation at different
specific serine residues.

PDK decreases the oxidation of
pyruvate in mitochondria and

increases the conversion of
pyruvate to lactate in the cytosol.

[78,182–184]

2.1.5. Reason 5: AMPK Inhibition in Cancer Leads to a Glycolytic Shift

AMPK is a highly conserved serine/threonine protein complex that acts as a metabolic
sensor and a master regulator of cellular metabolic homeostasis [185]. AMPK can be acti-
vated by either one of the two cell signals; the first is intracellular Ca2+-dependent, whereas
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the second is AMP-dependent (see Figure 4). AMPK is modulated either by phosphory-
lation or by allosteric activation. In response to an increase in the AMP/ATP ratio, liver
kinase B1 (LKB1) is activated, which in turn directly activates AMPK by phosphorylation
at Thr172, located in the catalytic subunit of the AMPK protein [186–189]. The AMP/ATP
ratio can be altered during various intracellular states, such as hypoxia, glucose deprivation,
calcium concentration, cytokines, and adipokines, and by certain hormones [189]. On the
one hand, active AMPK inhibits the biosynthetic pathways in the cell, such as hepatic
fatty acid synthesis and protein synthesis. On the other hand, active AMPK activates
ATP-generating catabolic pathways, such as fatty acid uptake and oxidation, glycolysis,
and mitochondrial biogenesis (see Figure 5). In cancer, AMPK is generally considered a
tumor suppressor [190]. Studies have found that the dysregulation of AMPK plays a role
in the glycolytic metabolic switch in cancer. Low AMPK expression is further implicated
in tumorigenesis by promoting tumor initiation and progression [191]. Inactivation or
reduced expression of AMPK in cancer promotes tumor growth and invasiveness [192,193].
This is an expected scenario, considering the activities exerted by AMPK.
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A closer look at how AMPK alters the metabolic phenotype in cancer reveals that
AMPK modulates mitochondrial respiration by activating autophagy (including mitophagy).
This activation occurs through the phosphorylation and activation of ULK1, thereby regulat-
ing the localization of a crucial component of the phagophore known as autophagy-related
protein 9 (ATG9) [194,195] (see Figure 5). mTOR, on the one hand, can inhibit ULK1/2,
thus blocking autophagy [196]. AMPK can also induce mitochondrial biogenesis, aiming to
increase the capacity of OXPHOS. Moreover, Faubert et al. (2013) found that AMPK nega-
tively regulates the Warburg effect and suppresses tumor growth in vivo [197]. Faubert et al.
documented that knocking down the α catalytic subunit of AMPK accelerates Myc-induced
tumorigenesis. Furthermore, the inactivation of AMPK causes the stabilization of HIF-1α
and a glycolytic shift in tumor cells in vitro. Altogether, the inhibition of AMPK in cancer
inhibits OXPHOS and activates the Warburg effect in tumor cells (see Figure 5).

Biorender.com


Biomedicines 2024, 12, 211 13 of 45

Biomedicines 2024, 12, x FOR PEER REVIEW 15 of 48 
 

 

Figure 5. The effects of AMPK inhibition on the metabolic switch in cancer. The inhibition of AMPK 

promotes the shift towards the Warburg effect away from OXPHOS. Abbreviations: AMPK—AMP-

activated protein kinase; HIF-1 alpha—hypoxia-inducible factor-1 alpha; mTOR—mammalian tar-

get of rapamycin; OXPHOS—oxidative phosphorylation; TSC2—tuberous sclerosis complex 2; 

ULK1—Unc-51 like autophagy activating kinase 1. Created with Biorender.com. 

A closer look at how AMPK alters the metabolic phenotype in cancer reveals that 

AMPK modulates mitochondrial respiration by activating autophagy (including mitoph-

agy). This activation occurs through the phosphorylation and activation of ULK1, thereby 

regulating the localization of a crucial component of the phagophore known as autoph-

agy-related protein 9 (ATG9) [194,195] (see Figure 5). mTOR, on the one hand, can inhibit 

ULK1/2, thus blocking autophagy [196]. AMPK can also induce mitochondrial biogenesis, 

aiming to increase the capacity of OXPHOS. Moreover, Faubert et al. (2013) found that 

AMPK negatively regulates the Warburg effect and suppresses tumor growth in vivo 

[197]. Faubert et al. documented that knocking down the α catalytic subunit of AMPK 

accelerates Myc-induced tumorigenesis. Furthermore, the inactivation of AMPK causes 

the stabilization of HIF-1α and a glycolytic shift in tumor cells in vitro. Altogether, the 

inhibition of AMPK in cancer inhibits OXPHOS and activates the Warburg effect in tumor 

cells (see Figure 5). 

More interestingly, in cancer, AMPK acts through the AMPK/tuberous sclerosis com-

plex (TSC)/mTOR signaling axis to regulate the metabolic switch. Inoki and colleagues 

found that active AMPK phosphorylates and activates TSC2 [198]. Earlier, Inoki had es-

tablished that both TSC1 and TSC2 inhibit the activity of mTOR by suppressing the phos-

phorylation of ribosomal protein S6 kinase B1 (S6K) and eukaryotic translation initiation 

factor 4E-binding protein 1 (4E-BP1), which are downstream targets of mTOR [198,199]. 

Inoki et al. further reported that TSC1/2 inhibits the phosphorylation of S6K and 4E-BP1 

by targeting Ras homolog (Rheb)—the protein that activates the protein kinase activity of 

Figure 5. The effects of AMPK inhibition on the metabolic switch in cancer. The inhibition of
AMPK promotes the shift towards the Warburg effect away from OXPHOS. Abbreviations: AMPK—
AMP-activated protein kinase; HIF-1 alpha—hypoxia-inducible factor-1 alpha; mTOR—mammalian
target of rapamycin; OXPHOS—oxidative phosphorylation; TSC2—tuberous sclerosis complex 2;
ULK1—Unc-51 like autophagy activating kinase 1. Created with Biorender.com.

More interestingly, in cancer, AMPK acts through the AMPK/tuberous sclerosis com-
plex (TSC)/mTOR signaling axis to regulate the metabolic switch. Inoki and colleagues
found that active AMPK phosphorylates and activates TSC2 [198]. Earlier, Inoki had
established that both TSC1 and TSC2 inhibit the activity of mTOR by suppressing the phos-
phorylation of ribosomal protein S6 kinase B1 (S6K) and eukaryotic translation initiation
factor 4E-binding protein 1 (4E-BP1), which are downstream targets of mTOR [198,199].
Inoki et al. further reported that TSC1/2 inhibits the phosphorylation of S6K and 4E-BP1
by targeting Ras homolog (Rheb)—the protein that activates the protein kinase activity
of mTOR [200]. They showed in vitro that TSC2 acts as a GTPase-activating protein that
blocks the activity of Rheb and regulates its level [200]. In cancer, mTOR levels are of-
ten elevated and have been observed to stimulate aerobic glycolysis via the induction of
pyruvate kinase isoenzyme 2 (PKM2) and other glycolytic enzymes [201]. A recent study
by Ling et al. unveiled groundbreaking findings, reporting that mTOR directly inhibits
AMPK by phosphorylating AMPK α1 at S347 and α2 at S345 in mammals. This inhibition
is associated with a decreased phosphorylation of the activation loop T172. Interestingly, a
reduction in mTOR activity resulted in AMPK activation independently of the AMP/ATP
ratio [202].

In summary, active AMPK could activate autophagy either directly through the activa-
tion of ULK2 or indirectly by activating TSC2, thereby further inhibiting mTOR.

3. The Metabolic Shift in T2D

The metabolic switch in the case of insulin resistance and T2D occurs during two
stages. The first stage occurs during the pathogenesis of insulin resistance and T2D, whereas
the second stage occurs when both insulin resistance and T2D have already manifested

Biorender.com
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clinically. The first stage is characterized by hyperactive OXPHOS and is due to high
glucose uptake. In the second stage, distinct metabolic patterns arise in a tissue-specific
manner. Conflicting reports on OXPHOS have been described in human and in vitro studies,
showing either normal functioning mitochondria and active OXPHOS or dysfunctional
mitochondria. However, evidence suggests that if mitochondrial dysfunction does occur, it
happens as a result of, rather than being the cause of, insulin resistance and T2D.

3.1. The Metabolic Shift during the Pathogenesis of Insulin Resistance and T2D

Under normal conditions of insulin sensitivity, glucose-stimulated insulin secretion
regulates glucose uptake and increases the activity of OXPHOS mitochondrial respira-
tion [45,203]. During the pathogenesis of insulin resistance and towards the emergence
of T2D, there is a state of chronic hyperglycemia caused by excessive nutrient supply
and/or physical inactivity. Chronic hyperglycemia stimulates the continuous release of
insulin from pancreatic β cells [204]. Insulin secretion increases glycolysis and pyruvate
production [203] and elevates chronic hyperactivity of mitochondrial OXPHOS in response
to insulin signaling. This heightened state of OXPHOS results in an augmented state of
oxidative stress. In addition to the release of ROS, prolonged hyperglycemia causes glucose
toxicity [37–40,205,206]. Both glucose toxicity and ROS ultimately damage pancreatic β

cells and impair their ability to sufficiently secrete insulin [39]. Although ROS production
partly results from enhanced mitochondrial respiration under glucose stimulation, the
expression of antioxidant genes is unusually low in β cells, leading to ROS accumulation in
the cytoplasm owing to inefficient ROS elimination [207]. Therefore, this is followed by a
decrease in insulin secretion and is accompanied by a decrease in the rate of glycolysis [208].
In addition to the impairment of insulin secretion, ROS are major players in developing
insulin resistance by rendering cells insensitive to insulin, thus hindering the insulin signal-
ing pathway in peripheral tissues such as SKM, adipose tissue, and the liver [43,209]. This
is because excessive ROS generation activates protein kinase (PK) signaling pathways [210].
Insulin signaling is thus suppressed downstream of the insulin receptor (IR) at the level of
IR substrate-1 (IRS-1) and PI3K, which together promote insulin resistance in peripheral
tissues [211,212].

3.2. The Metabolic Shift in Established Insulin Resistance and T2D

As mentioned earlier, accumulating evidence reveals that mitochondrial dysfunction is
a result, rather than the cause, of insulin resistance in T2D [213,214]. The previous hypothe-
sis, proposing insulin resistance as a result of mitochondrial dysfunction, relies mainly on
association studies rather than cause-and-effect investigations. Several association stud-
ies employing animal models documented mitochondrial dysfunction concurrently with
insulin resistance. The reported mitochondrial dysfunction was primarily tissue-specific,
predominantly in the SKM of animal models or patients with T2D or insulin resistance,
contrasting with the observation of active or normal OXPHOS in the liver of patients with
T2D or insulin resistance.

Here, we bring forth examples of such association studies. For instance, OXPHOS
genes were found to be downregulated in the SKM of patients with T2D [44,215,216] and
after high-fat diet consumption [217]. Additionally, both Kelley et al. (2002) [50] and
Mogensen et al. (2007) showed impaired mitochondrial respiration in the SKM of patients
with T2D compared to their obese nondiabetic counterparts [218]. Several research groups
reported contradictory findings in T2D, whereby the presence of normally functioning
mitochondria in SKM was demonstrated [51–53].

In contrast to the SKM results, Takamura et al. (2006) found that genes encoding
OXPHOS proteins are upregulated during fasting hyperglycemia in the livers of patients
with T2D [54]. In mouse models, hepatic mitochondria adapted to a high-fat diet, pre-
venting hepatic steatosis through increased OXPHOS activity and ETC uncoupling [219].
Collectively, these data support the rationale that mitochondrial respiration is regulated by
different tissue-specific mechanisms, partially explaining the non-uniform response to ex-
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cessive nutrients, obesity, physical inactivity, and insulin resistance across different tissues,
organs, and research contexts. Moreover, other data have demonstrated that mitochondrial
inhibition using drugs enhances insulin sensitivity and benefits patients with T2D.

3.3. Mitochondrial Dysfunction Is a Result of Insulin Resistance

Recent studies have explored the cause-and-effect relationship between insulin resis-
tance and mitochondrial dysfunction using pharmacological and transgenic animal model
approaches. The results corroborate that mitochondrial dysfunction is a consequence of
insulin resistance, not the reverse. The resultant mitochondrial dysfunction was identi-
fied as a protective mechanism against insulin resistance. This was shown in a study by
Pospisilik et al. in 2007, who induced OXPHOS deficiency by knocking out the AIF gene in
mouse models. OXPHOS deficiency reduced fat mass, increased insulin sensitivity, and
enhanced glucose tolerance. This study established that inhibiting OXPHOS did not induce
insulin resistance in mice; instead, it was protective against insulin resistance development
in obese mice [220].

Nair et al. showed that mitochondrial dysfunction and altered expression of mitochon-
drial genes are not intrinsic defects in patients with T2D but rather secondary to abnormal
glucose and insulin secretion levels. Diabetic and nondiabetic individuals exhibited similar
mitochondrial content, and after low-dose insulin infusion, both groups showed similar
ATP production. High-dose insulin revealed lower ATP production in diabetic patients,
along with reduced expression of peroxisome proliferator-activated receptor G coactivator-1
(PGC-1), citrate synthase, and cytochrome c oxidase [216].

In another study, Roden et al. found that accumulated intramyocellular fatty acyl-CoA
causes the downregulation of OXPHOS genes by decreasing the expression of PGC-1.
However, they suggested that the vicious cycle of metabolic changes in T2D starts with
the increased availability of free fatty acids (FFAs), lipid accumulation in myocytes, and
impaired lipid oxidation, which may cause mitochondrial dysfunction in the future [221].

An interesting study by Fazakerley et al. found that induced mitochondrial oxida-
tive stress impaired glucose uptake, which was induced by insulin, and decreased the
translocation of the GLUT4 protein to the cell membrane in adipocytes and myotubes
of C57BL/6J mice. However, the induced mitochondrial oxidative stress did not alter
the activity of OXPHOS [222]. Interestingly, a review by Lewis et al. (2019) on various
experimental designs, which attempted to measure or assess mitochondrial OXPHOS in
SKM, refuted the misconception that mitochondrial OXPHOS is dysfunctional and down-
regulated in T2D and proved instead that it is due to the limited oxygen supply to these
tissues. They found that there are limitations in the reviewed in vivo and in vitro studies on
the human mitochondrial SKM function [223]. The authors suggest that the mitochondrial
respiratory capacity is intact in T2D when using high-resolution respirometry on isolated
mitochondria and that other mitochondrial respiratory inadequacies detected in some
in vivo studies are more likely due to changes in mitochondrial fractional volume [223].
These changes could be due to a less active lifestyle or limited oxygen availability in the
cytosolic environment [81].

Interestingly, several other studies found that the mitochondrial OXPHOS was intact
in T2D [52,223,224].

3.4. The Role of ROS in Insulin Resistance and T2D

From a mechanistic standpoint, an elevation in ROS levels can instigate the activation
of stress-sensitive serine/threonine kinase signaling pathways, including c-Jun N-terminal
kinase (JNK) [225], nuclear factor kappa B (NF-κB) [226,227], p38MAPK [228], and others.
These pathways subsequently phosphorylate multiple targets, with IRS proteins being
among them. The heightened serine phosphorylation of IRS diminishes its capacity for
tyrosine phosphorylation, potentially hastening the degradation of IRS-1. This provides a
plausible explanation for the molecular underpinnings of oxidative stress-induced insulin
resistance. Compelling data affirm the crucial role of JNK activation, NF-κB kinase, protein
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kinase C inhibition, and potentially other stress- and inflammation-activated kinases in the
development of oxidative stress-induced insulin resistance. These findings suggest that they
could serve as appealing pharmacological targets to enhance insulin sensitivity [212,229].

Al-Mulla and Bitar et al. made a series of interesting discoveries, wherein they explored
the role of oxidative stress in insulin resistance and T2D, along with their mechanism
of action both in vitro and in vivo. In 2015, they found that oxidative stress and PKA
activation were associated with diabetes in Goto–Kakizaki diabetic rat models. They
showed that oxidative stress and PKA induced insulin resistance by enhancing cAMP-
responsive element modulator/inducible cAMP early repressor (CREM/ICER) expression,
which reduced IRS-2 expression by inhibiting the transcriptional activity of the cAMP
response element (CRE) [230]. In another study, they corroborated that T2D instigates a
cascade of events that produce ROS (mainly O2) from NADPH oxidase, leading to the
oxidation of BH4 and uncoupling of NOS, which ultimately leads to NO inactivation with
subsequent peroxynitrite formation. Altogether, an imbalance in the redox state is caused
by increased ROS bioavailability and reduced antioxidant capability, which translates
into a heightened state of oxidative stress [231,232]. Moreover, the authors demonstrated
that the high oxidative stress in T2D is partly attributable to the diminished intracellular
stabilization of NRF2 in dermal fibroblasts that were isolated and cultured from Goto–
Kakizaki rats. Low NRF2 stabilization caused a decrease in the antioxidant effect of NRF2
in response to glucose-induced oxidative stress in dermal fibroblasts compared to cells in
normoglycemic conditions [232]. Therefore, reduced NRF2 is also associated with higher
cellular sensitivity to oxygen free radicals and results in cellular necrosis [232].

In 2012, Bitar and Al-Mulla found that ROS is responsible for the development of
insulin-like growth factor 1 (IGF-1) resistance and, consequently, delayed wound healing
in a T2D rat model [209]. IGF-1 resistance is another mechanism involved in developing
insulin resistance in peripheral tissues. IGF-1 signaling, via the IGF-1 receptor (IGF-1R),
uses downstream mediators that are commonly involved in the insulin signaling pathway.
Altered IGF-1 function has been implicated in the pathogenesis of insulin resistance and in
several other diseases, such as autoimmune diseases, atherothrombosis, osteoporosis, and
certain common types of cancer [209]. In their study, IGF-1 activation in the PI3K-AKT-GSK-
3ß pathway was attenuated in fibroblasts in vitro that had phenotypic features of diabetes
or hypercortisolemia. In contrast, the ROS-activated JNK pathway led to the inhibitory
phosphorylation of IRS1 at Ser307. Bitar and Al-Mulla showed that ROS, via the activation
of JNK-p-IRS1 (Ser307), mediates IGF-1 resistance in T2D [209]. In 2019, Akhter et al. shed
light on another mechanism by which oxidative stress is involved in inducing metabolic
inflammation in T2D, i.e., through the upregulation of toll-like receptors (2 and 4), interferon
regulatory factors (3 and 5), and other key pro-inflammatory cytokines in peripheral blood
mononuclear cells. This mechanism depends on MAPK/NF-κß signaling [233].

3.5. AMPK Inhibition Is Implicated in Insulin Resistance and T2D

AMPK is regarded as the guardian of mitochondria, a complex master regulator
and a key metabolic sensor. Paradoxically, AMPK is the link that connects the metabolic
disturbances in cancer and diabetes, like the concept of Yin and Yang. Although AMPK
is inhibited in both diseases, it exerts multi-faceted functions through different signaling
pathways. Ultimately, low AMPK activity promotes tumor growth and proliferation and
causes insulin resistance in the peripheral tissues of patients with T2D.

As previously discussed, AMPK controls mitochondrial biogenesis, dynamics, and
disposal by mitophagy. Therefore, in low cellular ATP states, active AMPK restores ATP
homeostasis by increasing mitochondrial ATP production, whereas low AMPK inhibits
autophagy [234]. It was found that T2D is associated with suppressed autophagy and lipid
accumulation [235].

AMPK plays an important role in the metabolic shifts associated with insulin resis-
tance and T2D [185]. In animal studies, low AMPK activity contributed to the development
of insulin resistance [236–238]. Inhibition of AMPK reduced glucose uptake and utilization
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due to a decline in the phosphorylation of target proteins involved in the trafficking of
glucose transporters GLUT1 and GLUT4. These target proteins are thioredoxin interacting
protein, TBC1 domain family member 1 protein, and phospholipase D1. Low AMPK also
inhibits FFA β-oxidation in the mitochondria and exacerbates lipid biosynthesis, leading to
the accumulation of lipids in cells and tissues. Normally, an active AMPK would enhance
the breakdown of lipids by stimulating lipases. The activity of carnitine palmitoyltrans-
ferase I (CPT1), which transports FFA into mitochondria, is indirectly stimulated by AMPK.
AMPK phosphorylates acetyl-CoA carboxylases 1 and 2, which in turn blocks the pro-
duction of malonyl-CoA [238]. Malonyl-CoA is a potent inhibitor of the lipid transporter
CPT1 [185,238]. Additionally, it was found that active AMPK inhibits hepatic gluconeogen-
esis by enhancing the expression of the orphan nuclear receptor small heterodimer partner
(SHP) gene, which inhibits the transcriptional activity of cAMP-responsive element binding
protein 1 (CREB). CREB regulates the transcription of hepatic gluconeogenesis genes [239].

Taken together, the inhibition of AMPK causes a metabolic shift in T2D through
several mechanisms that decrease glucose utilization, inhibit FFA β oxidation, cause lipid
accumulation in tissues, and activate hepatic gluconeogenesis. Generally, these changes are
known to be implicated in developing insulin resistance (see Figure 6).
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Figure 6. Effect of low AMPK activity in T2D. The main metabolic alterations are caused by low
AMPK activity in T2D, which promotes insulin resistance. Abbreviations: AMPK—AMPK-activated
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Created with Biorender.com.

4. Metabolic Therapeutic Approaches in Cancer and T2D

Cancer and T2D are metabolic disorders characterized by opposing metabolic switches
and divergent underlying signaling pathways, yet they intertwine towards the master
regulator AMPK. In cancer, the Warburg glycolytic shift promotes malignant transforma-
tion, tumor progression, invasiveness, and resistance to chemotherapy and/or radiother-
apy [121,240,241]. Nonetheless, during the pathogenesis of T2D, there is hyperactivity and
dominance of mitochondrial OXPHOS. Therapeutic and/or nutritional targeting of either
of the two metabolic shifts is a promising approach to correcting the metabolic imbalance
and restoring homeostasis [21,241–243].

Biorender.com
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Although tumors are predominately glycolytic, they vary in their phenotypic features
associated with proliferation, invasion, metastasis, and resistance to therapy. The charac-
teristics of the metabolic phenotype for each cancer determine its rate of proliferation and
resistance to chemotherapy [153]. Thus, cancer therapy needs to be customized to target
the underlying causative metabolic dysfunction. Therapeutic attempts to target cellular
metabolism in cancer are aimed at the inhibition of Warburg glycolysis and/or the activa-
tion of OXPHOS to confer antiproliferative activity. In addition, metabolic inhibition has
shown the ability to sensitize chemo-resistant tumor cells to treatment. Furthermore, based
on previous research, there have been suggestions to reestablish the metabolic imbalance in
cancer by targeting tumor microenvironment symbiotic crosstalk.

Certain pharmacological agents and nutrients have been shown to have the potential
to correct and reverse metabolic imbalances in cancer. Some of these are gaining validation
through in vitro and in vivo analyses, as well as in clinical trials.

However, in T2D, targeted metabolic inhibition using nutritional and/or pharma-
cological compounds could prevent insulin resistance and improve insulin sensitivity in
prediabetic and diabetic animal models and in diabetic patients. These therapies aim to
inhibit mitochondrial OXPHOS activity [43,220]. The use of certain nutrients and dietary
supplements as metabolic treatments or adjuvants in T2D is gaining attention owing to the
encouraging results obtained in the past decade. In the next subsections, we summarize
the pharmacological-based approaches to targeting mitochondrial metabolism in cancer
and T2D.

In the upcoming sections, our focus is on pharmaceutical and nutritional approaches
targeting metabolic imbalances in both cancer and T2D. Numerous other possibilities exist;
the given examples are merely illustrative, showcasing the potential to counteract the
metabolic shift and restore equilibrium.

4.1. Pharmacological-Based Approaches Targeting Mitochondrial Metabolism in Cancer
4.1.1. BACH1 Depletion Activates OXPHOS and Sensitizes Tumor Cells to Metformin

Among the genes related to ROS homeostasis, BTB domain and CNC homolog
1 (BACH1) is a heme-binding transcription factor that combats the oxidative stress response
by repressing the heme oxygenase 1 gene and is a negative regulator of ROS-induced cel-
lular senescence directed by p53 [244,245]. BACH1 is upregulated in breast and other
types of cancer; it is proposed to be a marker of poor prognosis and a high metastatic rate
in breast cancer. For instance, triple-negative breast cancer (TNBC) cells reprogram their
metabolism by increasing BACH1 expression to direct their metabolism away from the TCA
cycle, which could be a protective mechanism that enhances their proliferative potential.
On the one hand, it prevents the accumulation of ROS by shutting down mitochondrial
metabolism. Thus, BACH1 may provide a mechanism by which tumor cells evade oxidative
stress-induced senescence.

In 2019, Rosner et al. [246] showed that the combined therapeutic use of metformin
with BACH1 inhibitor (hemin) could reverse chemoresistance in TNBC cells. BACH1
targets mitochondrial metabolism by repressing key ETC genes (UQCRC1 and ATP5D,
both negatively correlated with BACH1 in TNBC), which are predominantly involved
in the OXPHOS pathway. Metformin is known to mainly inhibit mitochondrial ETC
complex I, along with other metabolic targets. Metformin was able to inhibit the growth of
tumor cells and decrease tumor cell viability in BACH1-depleted TNBC cells. However,
control cells that expressed BACH1 did not respond to metformin treatment, and the
TNBC cells continued to grow and proliferate. Downregulating BACH1 in tumors using
hemin, both in vitro and in vivo, resulted in an increased expression of mitochondrial inner
membrane genes involved in ETC and promoted mitochondrial respiration. TNBC cells that
were depleted of BACH1 exhibited higher oxygen consumption, lower lactate production,
higher glucose utilization in the TCA cycle, increased ATP generation, higher TCA cycle
intermediate production, and decreased glycolysis-related intermediates [246]. Rosner
attempted to reprogram the metabolic pathway in TNBC tumors resistant to ETC inhibition
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therapy because of high BACH1 expression. Inhibiting BACH1 expression sensitized tumor
cells to metformin both in vitro and in vivo. For further details regarding interventional
clinical trials investigating the impact of metformin on various types of cancer, we compiled
a table retrieved from clinicaltrials.gov on 23 November 2023. This table encompasses both
completed and ongoing studies that have reached phase 2 or phase 3. It is important to
note that trials that were withdrawn, suspended, or terminated were excluded (refer to
Supplementary Table S1).

Cellular senescence is mainly mediated by tumor suppressor p53, which serves as
a barrier to the malignant transformation [247]. The upregulation of BACH1 in TNBC
cells has been suggested to prevent oxidative stress-induced senescence. This rationale is
supported by the findings of Dohi et al., who demonstrated that BACH1 forms a complex
with p53, histone deacetylase 1, and nuclear co-repressor. The formation of this complex
prevents p53 from inducing an effective oxidative stress response by promoting histone
deacetylation [245]. Furthermore, Wiel et al. showed that stabilizing BACH1 using antioxi-
dants in a p53-/- background in lung cancer models increased metastasis, glucose uptake,
glycolysis rate, and lactate secretion in mouse and human lung cancer cells. Hence, in
scenarios marked by lower oxidative stress, BACH1 promotes glycolysis-dependent lung
cancer metastasis independently of p53 [248]. Multiple microRNAs (miRs) were found to
target the post-transcriptional regulation of BACH1 and reduce cancer progression, such
as miR-142-3p, which can target BACH1 in breast cancer cells, leading to reduced cellular
proliferation, invasion, and migration [249]. The induction of miR-330 also inhibits the
proliferation of colorectal cancer cells by suppressing BACH1 gene expression [250].

In addition to these studies, BACH1 was also found to be linked to an age-dependent
decline in adaptive homeostasis. Its levels were elevated in various tissues, including the
heart, liver, and lungs, in aging mice [247]. Furthermore, BACH1 expression was higher in
human bronchial epithelial cells obtained from older adults compared to those from young
adult donors [251]. Thus, BACH1 attenuates adaptive redox homeostasis in both aging
mice and older individuals. Taken together, these studies show that BACH1 is a potential
metabolism-targeting therapy for cancer. This suggests that the inhibition of BACH1 can
modulate the metabolic profile in resistant cancers such that the OXPHOS pathway is
restored, glycolysis is reduced or omitted, cancer growth is halted, and cancer cells are
sensitized to therapy.

4.1.2. Dichloroacetate and EGFR-Inhibitors Reverse the Warburg Effect in Cancer

Sun et al. demonstrated that the generic drug dichloroacetate (DCA) can reverse
the glycolytic phenotype in metastatic breast cancer cells both in vitro and in vivo and
can inhibit tumor growth and metastasis [252]. DCA works by inhibiting PDK activity,
wherein PDK inactivates PDH via phosphorylation. PDH controls the conversion of
pyruvate to acetyl Co-A, which in turn enters the TCA cycle and generates ATP via the
action of OXPHOS. Thus, treatment with DCA stops the inhibition of PDH, increases
the flux of pyruvate into the mitochondria, and promotes mitochondrial OXPHOS over
glycolysis [252].

In 2015, De Rosa et al. demonstrated that the use of EGFR inhibitors, including erlotinib
or WZ4002 in human non-small cell lung cancer cell lines (H1975, HCC827, and H1993)
and PHA-665,752 in the H1993 cell line, succeeded in the reversal of the Warburg effect
and reactivation of OXPHOS in these cell lines [253]. This effect was mediated through
the upregulation of ETC mitochondrial complexes, in addition to reduced expression
levels of key glycolysis enzymes, such as hexokinase II and p-PKM2 Tyr105. Concomitantly,
decreased lactate secretion and increased intracellular ATP levels were observed in response
to EGFR inhibition [253]. In conclusion, these results revealed that the effective inhibition
of EGFR signaling can reverse the Warburg effect in cancer cell lines and restore OXPHOS.

clinicaltrials.gov
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4.1.3. Metformin Activates AMPK to Induce Apoptosis in Cancer

Targeting AMPK in cancer cells to either sensitize tumor cells to chemotherapy,
cause cell cycle arrest, or induce apoptosis are promising therapeutic approaches. For
instance, the activation of AMPK inhibited cervical cancer cell proliferation through
AKT/FOXO3a/FOXM1 signaling cascade by counteracting the function of Forkhead box
M1 (FOXM1) [192]. Previously, several pharmacological AMPK activators, such as met-
formin, the AMP-mimetic 5-aminoimidazole-4-carboxamide (AICAR), and the ATPase in-
hibitor A23187, were able to suppress cervical cancer cell growth by activating AMPK [192].

In 2008, Keith et al. were able to induce cell cycle arrest in the MDA-MB-231 breast
cancer cell line by treating the cells with metformin only in the presence of cyclin-dependent
kinase inhibitors (p27kip and/or p21cip1). Metformin was able to activate the AMPK
pathway and downregulate cyclin D1 [254]. Mills et al. further demonstrated that the LKB1-
AMPK pathway regulates p27kip1 phosphorylation; they were able to induce apoptosis in
cell lines after AMPK activation in the absence of p27kip1. Downstream of AMPK, p27Kip1

is phosphorylated at Thr198, which stabilizes p27, leading to autophagy and cell-cycle
progression. When p27 was knocked down in the cancer cell line, LKB1-AMPK activation
induced apoptosis [255].

4.1.4. Targeting PI3K/AKT Pathway in Cancer

The dysregulation of the PI3K/AKT pathway is a common feature in many can-
cers [256]. Evidence indicates that inhibiting the PI3K/AKT pathway hinders tumor
progression [256]. However, the use of PI3K-AKT-mTOR inhibitors in treating various
cancer types has been observed to induce hyperglycemia in patients [257]. A study by
Khan et al. investigated the clinical data of 341 cancer patients from 12 phase I clinical
trials treated with PI3K, AKT, or mTOR inhibitors as well as dual inhibitors. There was
evident hyperglycemia in 87.4% of these patients. However, grade-three hyperglycemia
was only seen in 6.7% of these patients. Hence, hyperglycemia was mostly manageable
in those patients. Thus, caution is necessary when treating cancer patients who are also
diabetics with PI3K-AKT-MTOR inhibitors [257]. This study may seem paradoxical, as
the inhibition of the PI3K-AKT-mTOR pathway, which generally leads to inhibition of
cell proliferation, is expected to activate the AMPK pathway. AMPK activation would
exhibit beneficial effects in diabetes and lower glucose levels. However, this is not the case
with PI3K-AKT-mTOR inhibitors alone. Nevertheless, the combination of metformin and
PI3K-AKT-mTOR inhibitors in vitro enhances apoptosis of ovarian cancer cells [258] and
induces drug sensitivity in pancreatic cancer cells [259].

To understand how PI3K-AKT-mTOR inhibitors work, we will take a quick look at
PI3K signaling. PI3K produces phosphatidylinositol (3,4,5)-trisphosphate (PIP3), which in
turn activates phospholipase D (PLD) [260]. PLD catalyzes the hydrolysis of the membrane
phospholipid phosphatidylcholine to generate choline and metabolically active phospha-
tidic acid (PA) [261]. PA is a signaling lipid involved in processes such as cell proliferation
and vesicular trafficking. PLD can influence mTOR activity by generating PA [262], which
directly activates mTOR complex 1 (mTORC1) under certain conditions [263]. PA stimu-
lates mTORC1 function and suppresses the activation of mTORC2 as part of a mTORC1/2
feedback loop [264]. PI3K inhibitors decrease PLD activation after insulin receptor stim-
ulation [265], and the mutation of the PIP3 binding site on PLD prevents PLD activation
and membrane recruitment [266]. A study by Toschi et al. demonstrated that by inhibiting
PLD activity, mTORC2 could be targeted therapeutically with rapamycin [267]. Thus, the
combination of rapamycin, metformin, and PI3K/PLD inhibitors can have a favorable
therapeutic outcome in cancer therapy.

PIP3 generation mediates downstream signaling events that inhibit glycogen syn-
thase kinase-3β (GSK-3β) [268,269]. GSK-3β in turn hinders NRF2 by directing it towards
ubiquitination and subsequent degradation [270]. NRF2 plays a pivotal role in combating
oxidative stress and regulating redox homeostasis, thereby safeguarding cells against car-
cinogenesis [271]. However, studies over the last decade reveal a “dark side” of NRF2 [272],



Biomedicines 2024, 12, 211 21 of 45

where its constitutive stabilization leads to increased glutaminolysis [273], cancer pro-
gression [274], metastasis [275], and chemoresistance [276,277]. Indeed, NRF2 redirects
glucose and glutamine into anabolic pathways during metabolic reprogramming [273,278].
Consequently, strategies such as inhibiting PI3K and NRF2 or activating GSK-3β, along
with NRF2 repressor Kelch-like ECH-associated protein 1 (KEAP1) [279], hold promising
therapeutic potential against cancer.

4.2. Pharmacological-Based Approaches Targeting Mitochondrial Metabolism in T2D
4.2.1. Apoptosis-Inducing Factor Ablation in Diabetic Mice Inhibited OXPHOS

A study by Penninger‘s team in 2007 showed that global or tissue-specific gene
ablation (liver and muscle) of apoptosis-inducing factor (AIF) in mice caused a deficiency
in OXPHOS, which was accompanied by improved glucose tolerance, increased insulin
sensitivity, and reduced fat mass [220]. AIF has been known to cause progressive OXPHOS
dysfunction in mice [280,281]. Mutation analysis performed in several model organisms
found that AIF was an essential regulatory gene for maintaining fully active and functional
mitochondrial ETC [282,283]. Therefore, AIF deletion caused a progressive loss of ETC
activity and function [280,282]. In the study by Penninger’s team, impaired OXPHOS
prevented weight gain, insulin resistance, and T2D, which is contrary to other studies
reporting that OXPHOS deficiency is associated with insulin resistance and T2D [220].

4.2.2. Targeting PI3K/AKT Pathway in T2D

Su et al., in a comprehensive review, explain the effects of PI3K-AKT signaling on
obesity and T2D. The review summarizes the findings of many studies done in vitro and
in vivo on diabetic cells and mouse models in which the activity of the PI3K-AKT was
targeted [284].

Su et al. argue that, under normal physiologic conditions, the PI3K-AKT pathway
actively regulates body functions, including metabolism and proliferation. The PI3K-
AKT pathway regulates glucose metabolism through FOXO1 and GSK-3. PI3K-AKT also
regulates lipid metabolism through mTORC1 and SREBP. Active AKT inhibits FOXO1,
which reduces glucose levels [285,286]. Similarly, active AKT inhibits mTOR complex 1,
which consequently reduces lipid and protein production [287]. GSK-3 is also inhibited
by AKT, which leads to glycogen synthesis, thus reducing glucose levels [288]. Lipid
metabolism is regulated by AKT activity through sterol regulatory element-binding proteins
(SREBP). SREBP increases fatty acid and cholesterol accumulation [284,287,289].

However, when there is chronic excessive energy intake, as in obesity, PI3K-AKT
signaling becomes suppressed, a state in which re-activating PI3K-AKT would lessen
obesity and insulin resistance. Nevertheless, it is in the established disease states of cancer
and/or obesity where there is dysregulation and/or overexpression of PI3K-AKT. At this
point, therapeutic inhibition of PI3K-AKT becomes an effective anti-obesity and anti-cancer
treatment approach [284].

Thus, Su et al. detail the mechanism by which the PI3K-AKT pathway acts in an
organ-specific manner [284]. That further explains why targeting PI3K, whether by in-
hibition or activation, would be favorable depending on the context [284]. For instance,
one study showed that pharmacological inhibition of PI3K-AKT activity reduced adipos-
ity and metabolic syndrome in obese mice and rhesus monkeys [290]. They used two
small molecules with selective inhibitory action on PI3K (CNIO-PI3Ki and GDC-0941)
as pharmacological inhibitors [290]. In contrast, overexpression of FAM3A in the liver
activates PI3K p110α-AKT signaling in the liver and decreases hepatic gluconeogenesis
and lipogenesis [291].

4.2.3. Metformin as a Metabolic Inhibitor in T2D

For decades, metformin has shown great success in the treatment of T2D. Metformin
can stimulate glucose uptake and glycolysis in patients with T2D [203]. Glycolysis plays
two major roles in glucose homeostasis. The first role is through inhibiting hepatic gluco-
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neogenesis, thereby decreasing the amount of glucose released into the blood [203,292], and
the second role is through enhancing insulin secretion by pancreatic β cells [203,208,293].
In this context, metformin works by augmenting glycolysis, which leads to a decrease in
liver gluconeogenesis. Metformin exerts its effects by suppressing mitochondrial OXPHOS
by inhibiting complex I (NADH dehydrogenase) of the ETC [294,295]. Inhibiting complex
I increases the AMP/ATP ratio, which further activates AMPK [185]. The idea behind
metabolic inhibition is that any injury caused to the mitochondrial metabolic machinery
leads to the activation of AMPK to compensate for the mitochondrial dysfunction. Met-
formin was also found to exert its function by upregulating UCP2 in adipocytes in mouse
models, thus playing a protective role against oxidative damage [296]. Therefore, AMPK
activation is an effective therapeutic strategy for enhancing insulin sensitivity in T2D [43].

4.3. Metformin and Other AMPK-Activators in Cancer Clinical Trials

Metformin, a standard anti-diabetic medication, has been an attractive therapeutic tar-
get in cancer patients. Clinical data on the effect of metformin and other AMPK activators
in cancer patients strengthen our argument about targeting the metabolic shifts in both
diabetes and cancer. Several meta-analysis studies over the last decade have reported that
diabetic patients receiving metformin are at lower risk of developing cancer [3,297,298].
Moreover, metformin was able to improve survival and response to treatment in cancer
patients [297–300]. These studies corroborated previous in vitro and in vivo studies in
animal models that showed metformin exhibiting anti-cancer effects [192,297,298,301]. For
instance, Noto et al. (2012) conducted a systematic meta-analysis on 6 studies (4 cohort
studies, 2 RCTs), with data from a total of 210,829 diabetic patients [3]. They found that
diabetic patients taking metformin had a significantly lower risk of cancer incidence and
cancer mortality using pooled relative risk measures. One of the earliest meta-analysis
studies, conducted by DeCensi et al. in 2010, showed a 31% reduction in overall relative
risk of cancer incidence in subjects receiving metformin compared to other anti-diabetic
treatments [302]. Another meta-analysis study, by Wang et al. (2014) [303], performed on
data from 13 observational studies (10 cohort, 3 case-control), found that the use of met-
formin was associated with reduced risk of pancreatic cancer in T2D patients. In another
observational study, by Kim et al. (2020), involving a Korean cohort of 323,430 individuals
with a median follow-up of 12.7 years, data were extracted from national health records
spanning from 2002 to 2015. The findings indicated that diabetic individuals undergoing
metformin treatment had a reduced risk of cancer incidence compared to diabetic patients
not receiving metformin, with an incidence percentage of 10.3% in metformin users com-
pared to 11.1% in non-metformin users [304]. Similar results have been reported in other
retrospective meta-analysis studies [305–310]. However, a study conducted in the UK
showed no protective effect of metformin against cancer incidence in diabetic patients [311].
An insightful review by Saraei et al. (2019) aimed to explain the mechanisms by which
metformin exerts its beneficial effects in cancer [297]. The review also encompassed clinical
trials conducted to confirm the beneficial effects of metformin on cancer. Based on this
analysis, several clinical trials took place in non-diabetic patients to test the effects of
metformin, but the results were inconclusive in proving a protective anti-cancer effect in
non-diabetic patients. Therefore, further investigations are needed.

An inquiry arises regarding the potential anti-cancer effects in diabetic patients of
other AMPK activators similar to metformin. Although metformin is extensively studied
as an AMPK activator, there exist additional physiological and pharmacological agents that
can activate AMPK either directly or indirectly. For instance, thiazolidinediones (TZDs),
such as troglitazone, pioglitazone, and rosiglitazone, belong to another class of anti-diabetic
medications recognized for their ability to activate AMPK.

Some studies showed the absence of any significant association between cancer risk
and taking TZDs in diabetic patients [312–314]. Other studies have shown that T2D patients
who are taking TZD have lower cancer risk in certain cancer types [312,314–316]. Interest-
ingly, some clinical studies have shown that patients taking TZD have an increased risk of
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cancer [317,318]. Thus, observations and associations have been conflicting and inconclu-
sive in meta-analysis studies. This is attributed to methodological variations within these
studies and the intricacy of the disease [319]. Thus, more studies are needed. However,
the evidence that associates metformin use in T2D patients with a lower risk of cancer
is stronger and more consistent among studies [319]. Although metformin (belonging to
biguanides) and TZDs can indirectly activate AMPK by inhibiting complex 1 in the mito-
chondrial respiratory chain (ETC cycle), metformin also acts in a non-AMPK-dependent
manner [320]. Metformin’s impact on the liver is mediated by antagonizing glucagon signal-
ing through cyclic AMP and PKA, operating independently of AMPK [321,322]. In contrast,
TZDs activate AMPK by targeting the nuclear hormone receptor peroxisome proliferator-
activated receptors (PPARs), which in turn stimulate the secretion of adiponectin and,
consequently, activate AMPK [323]. Other AMPK activators, such as polyphenols and
5-aminoimidazole-4-carboxamide riboside (AICAR), have not been studied in the context
of anti-diabetic drugs and the risk of cancer. Yet, it is worth noting that similar anti-cancer
effects to those of metformin have also been observed with other AMPK activators in vitro
and in vivo. This suggests that metformin may not be the only drug with dual effects
and that other AMPK activators might exhibit promising anti-cancer effects as well as
anti-diabetic ones [323].

5. Nutritional Therapeutic Approaches in Cancer and T2D

In this context, we highlight three dietary compounds suitable for oral consumption:
alpha-lipoic acid (ALA), flavonoids, and glutamine. Acknowledged for their minimal to
no side effects, these compounds have demonstrated promising results in both in vitro
and in vivo studies, as well as in combination therapies for individuals with diabetes and
cancer [324–327]. Nevertheless, these are just a subset of various alternative nutritional
approaches, including omega-3 polyunsaturated fatty acids (ω-3 PUFA) and artemisinin,
which are beyond the scope of this review.

5.1. Nutritional- and Dietary-Based Approaches Targeting Mitochondrial Metabolism in Cancer
5.1.1. Alpha-Lipoic Acid as a Metabolic Modulator in Cancer

ALA is a naturally occurring dithiol compound that is produced physiologically in the
body from octanoic acid in the mitochondria. It can also be found in a variety of food and
dietary supplements. ALA, through its various metabolic regulatory effects, can inhibit
the proliferation, migration, and invasion of tumor cells and can induce apoptosis [328].
ALA has been well known for acting as a metal chelator and an ROS scavenger [328–330].
More importantly, ALA acts as a cofactor for several enzyme complexes, such as PDC, and
promotes mitochondrial respiration [328]. Earlier studies reported that treatment with ALA
decreased serum levels of pyruvate and lactate in both lean and obese individuals with
T2D [331]. Later, ALA was reported to increase PDC activity in rat hepatocytes and in the
mitochondria of hepatocytes in diabetic rat models [332,333]. In 2004, Patel et al. reported
that ALA could minimize or block the inhibitory phosphorylation of the E1 subunit of the
PDC complex via pyruvate kinase, thereby increasing the activity of PDC [332].

ALA is well known for its antioxidant action, which increases glutathione peroxi-
dase activity and in turn reduces oxidative stress [329,334,335]. These antioxidant effects
were seen in advanced-stage cancer patients who were administered ALA treatment for
10 consecutive days [335,336]. Nevertheless, ALA also plays the role of a prooxidant by
increasing the production of free oxygen radicals in the mitochondria of colon cancer cell
lines but not in non-transformed cells [334]. This prooxidant effect is a result of ALA
stimulating mitochondrial OXPHOS and inducing a cytotoxic effect on cancer cells in both
in vitro and in vivo models [328,337]. In 2005, Wenzel et al. discovered that ALA induced
mitochondrial OXPHOS in a colon cancer cell line (HT-29) and stimulated apoptosis [334].
ALA-induced apoptosis occurred selectively in colon cancer cells but not in the non-
transformed cells [334]. Moreover, ALA-induced apoptosis ensued predominantly via the
intrinsic mitochondrial apoptotic pathway and was independent of p53 [338]. Wenzel et al.
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further reported that ALA, along with its reduced form, i.e., dihydrolipoic acid (DHLA),
was able to trigger apoptosis in cancer cells by increasing the production of mitochondrial
ROS following an increased influx of lactate and pyruvate into the mitochondria. This
effect was also associated with the downregulation of antiapoptotic protein BCL-XL [334].
While studying two ovarian cancer cell lines (cisplatin-resistant and cisplatin-sensitive),
Kafar et al. showed that ALA treatment induced apoptosis by downregulating the gene
expression of antiapoptotic genes MCL-1 and BCL2L1 and by upregulating the expression
of Bim, a pro-apoptotic gene [339]; another study showed similar results [329]. In line
with these findings, Kim et al. reported that ALA treatment caused apoptosis in a dose-
dependent manner in an in vitro setting in the MDA-MB-231 breast cancer cell line [329].
ALA promoted apoptosis by increasing the mRNA and protein expression of BAX and
by decreasing the mRNA and protein expression of BCL2 [329]. In other cellular contexts,
ALA prevented apoptosis [340,341]. Interestingly, ALA successfully reversed the Warburg
effect and inhibited glycolysis through inhibition of PDK [325,342].

ALA has also been shown to modulate mitochondrial metabolism through the acti-
vation of AMPK signaling. Shen et al. (2007) revealed that ALA activated AMPK with an
increased phosphorylation of AMPK at Thr172 in C2CL2 myotubes. Shen and colleagues
found that ALA acted by enhancing Ca+2/calmodulin-dependent protein kinase kinase
(CAMKK) and not through AMP-LKB1 signaling [343]. ALA activation of AMPK and
the subsequent inhibition of mTOR-S6 signaling suppressed thyroid cancer cell prolifera-
tion in vivo in several thyroid cancer cell lines, including BCPAP, HTH-83, CAL-62, and
FTC-133 [330]. Additionally, ALA decreased the migration and invasion of cancer cells in
thyroid cancer cell lines by inhibiting transforming growth factor β (TGFβ) production and
signaling cascade [330]. ALA further induced cell cycle arrest through the upregulation of
cyclin-dependent kinase inhibitors p27kip1 and p21cip1 [344].

Altogether, studies point towards a pleiotropic effect of ALA on cancer cells depending
on the type of cell and tumor.

5.1.2. Flavonoids as a Metabolic Modulator in Cancer

Similar to ALA, flavonoids are a family of natural polyphenolic compounds found in
fruits and vegetables that have promising anticancer effects [326,327,345]. They appear to
modulate mitochondrial metabolism in cancer and reverse Warburg glycolysis [346–348].
In 2017, Wei et al. reported that didymin, a natural flavonoid, inhibited the proliferation of
the liver cancer cell line HepG2 by decreasing cyclin B1, cyclin D1, and cyclin CDK4 [346].
Didymin also induced apoptosis in HepG2 cells by altering the BCL-2/BAX ratio and by
stimulating caspase-mediated apoptosis. Moreover, Wei et al. showed that didymin could
downregulate the ERK/MAPK and PI3K/Akt pathways by upregulating the Raf kinase
inhibitory protein (RKIP). This study confirmed earlier observations made by Singhal et al.
(2012), which demonstrated both in vivo and in vitro that didymin induced G2/M arrest
and apoptosis in neuroblastoma cells and upregulated RKIP [349]. Zhao et al. recently
reported that brosimone I, another flavonoid, induced apoptosis and cell cycle arrest
through ROS-mediated endoplasmic reticulum stress and AMPK pathway activation in the
human colon cancer cell line HCT116. The activation of AMPK depended on an increase
in Ca+2 ions and the activation of the CaMKKβ-AMPK pathway but not on AMP [347].
Reportedly, other members of the flavonoid family have reversed Warburg glycolysis and
promoted OXPHOS in several in vitro and in vivo preclinical cancer studies [350]. Table 4
summarizes a few of these findings of a group of flavonoids.
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Table 4. Summary of a group of flavonoids reported to reverse Warburg glycolysis towards mito-
chondrial respiration in preclinical studies.

Flavonoid Name Flavonoid Subfamily Mechanism of Targeting Warburg Glycolysis Warburg
Glycolytic Target References

Apegenin Flavones • Inhibited PKM2 activity and expression PKM2 [351]

Epigallocatechin-3-
gallate (EGCG)

Flavan-3-ols

• Significant inhibition of PK activity and mRNA
expression levels was observed at
high concentrations.

• Inhibited HK2 enzymatic activity and reduced
its protein levels.

• Decreased HIF-1a expression levels.

PKM2

HK2

HIF-1a

[352]

Proanthocyanidin B2
(PB2)

Anthocyanidins

• Inhibited PKM2 enzyme through inhibition of
its nuclear translocation and expression by
interrupting interaction between PKM, HSP90
and HIF-1α

PKM2 [353]

Shikonin (SHI) Naphthoquinone
flavonoid

• Repressed PKM2 activity PKM2 [354,355]

Quercetin (QUE) Flavonol
• Suppressed PKM2 activity by regulating

Akt-mTOR pathway PKM2 [356]

• Inhibited HK2 by inhibiting Akt-mTOR
pathway signaling HK2 [356]

• Decreased levels of LDHA LDH [356]

Xanthohumol (XA) Prenylated flavonoid
• Suppressed HK2 activity by inhibiting

EGFR-Ak signaling HK2 [357]

10v Synthetic flavonoid • Downregulated HK2 HK2 [358]

GL-V9 Synthetic flavonoid

• Downregulated HK2
• Detachment of HK2 from VDAC in the outer

mitochondrial membrane induced apoptosis
and inhibited glycolysis.

HK2 [359]

FV-429 Synthetic flavonoid
• Detachment of HK2 from VDAC in the outer

mitochondrial membrane induced apoptosis
and inhibited glycolysis.

HK2 [360]

Gen-27 Synthetic flavonoid

• Downregulated HK2
• Detachment of HK2 from VDAC in the outer

mitochondrial membrane induced apoptosis
and inhibited glycolysis.

HK2 [361]

Astragalin (ASG) O-glycoside flavonoid
• Upregulated miR-125b expression, which

reduced HK2 expression HK2 [362]

Morin (MO) Flavonol • Inhibited LDH activity LDH [363]

Methylalpinumisoflavon
(MF) Isoflavone • Suppressed HIF-1α activation HIF-1α [364]

Oroxylin A (OX-A) Flavone • Destabilized HIF-1α through SIRT-3 HIF-1α [365]

Baicalein (BA) Flavone • Decreased HIF-1α expression HIF-1α [366]

Wogonin O-methylated flavone

• Suppression of HIF-1α by inhibiting
PI3K/Akt pathway

• Induced phosphorylation and acetylation of P53
and inhibited MDM2 expression, which
stabilized P53. P53 decreased the expression of
key glycolytic enzymes.

HIF-1α [367,368]
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Table 4. Cont.

Flavonoid Name Flavonoid Subfamily Mechanism of Targeting Warburg Glycolysis Warburg
Glycolytic Target References

Berberine (BBR) Isoquinoline flavonoid
• Inhibit expression of HK2 by

upregulating miR-145
• Inhibited activity of PKM2 enzyme

HK2 [369,370]

Resveratrol

• Deactivated HK2 by downregulating
Akt signaling.

• Activated pyruvate dehydrogenase complex.
• Increased mitochondrial biogenesis

and function.

HK2
PDH complex

[371–373]

Although preclinical studies have positioned dietary flavonoids as potential candidates
for treating and/or preventing cancer [345,350,374], these supplements have not yet shown
substantial efficacy in clinical trials. In 2020, Bisol et al. published a systematic review of
clinical trials where flavonoids were studied as potential therapeutic agents in cancer [375].
They identified 22 phase 2 clinical trials and 1 phase 3 clinical trial that administered
flavonoids as either monotherapy or in combination with other chemotherapeutic agents.
Twelve of these clinical trials enrolled patients with solid tumors, whereas the other eleven
trials included patients with hematopoietic or lymphoid malignancies [375]. Overall, low
rates of complete or partial response to flavonoid treatment were reported in clinical trials.
Additionally, positive outcomes were mostly associated with hematopoietic or lymphoid
tumors compared to solid tumors [375]. These clinical trials had various limitations,
including small sample sizes and variations in the administered doses, design of the
randomized trials, and tumor subtypes of the patients [375]. In addition to this, the
limited bioavailability and varied absorption of administered flavonoids further limit its
efficacy [376]. Studies are being performed to improve the bioavailability of flavonoids by
enhancing the metabolic stability and absorption of the administered flavonoids [376,377].

Therefore, a greater number of well-designed clinical trials is required to test the
efficacy of flavonoids for cancer treatment.

5.1.3. Glutamine as a Nutritional Supplement in Cancer

Several studies have demonstrated the beneficial effects of glutamine in cancer both in
animal models and cancer patients. For example, Martins et al. found that supplementation
with 2% l-glutamine in Walker-256 tumor-bearing rats prevented tumor growth and cancer-
associated cachexia while restoring cell proliferation in the normal intestinal mucosa [378].

Another study by Chang et al. suggests that glutamine supplementation in advanced
non-small cell lung cancer (NSCLC) patients undergoing concurrent chemoradiotherapy
prevented radiation-induced injury and weight loss [379]. Similarly, Pehlivan and col-
leagues showed that glutamine supplantation in NSCLC patients receiving concurrent
chemoradiotherapy showed that glutamine reduced the incidence and severity of radiation-
induced esophagitis, improved survival, and prevented weight loss. Interestingly, it did
not negatively impact tumor growth [380]. Generally, several studies support the use of
glutamine supplementation in combination with standard treatments to alleviate chemo-
and radiotherapy-associated side effects, leading to improved outcomes [381]. Another
approach suggested by Kodama et al. is to target glutaminase (GLS1) and phosphoribosyl
pyrophosphate amidotransferase (PPAT) enzymes, rebalancing the PPAT/GLS1 enzyme
ratio. Restoring GLS1 expression and/or downregulating PPAT enzyme might be effective
in redirecting glutamine metabolism and inhibiting tumor growth [35].

5.2. Nutritional- and Dietary-Based Approaches Targeting Mitochondrial Metabolism in T2D

Accumulating evidence shows that ALA, flavonoids, and glutamine have beneficial
effects as adjuvant and dietary supplements for the treatment of patients with T2D.
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5.2.1. ALA as a Metabolic Modulator in T2D

ALA functions as an antioxidant and an anti-inflammatory agent and is reportedly
beneficial in treating patients with T2D. It exerts its antioxidant effects by quenching ROS,
chelating metallic ions, and reducing the oxidized forms of glutathione, vitamin C, and
vitamin E. Moreover, it boosts antioxidant machinery by enhancing NRF-2-mediated antiox-
idant gene expression. It also acts by activating AMPK in SKM and inhibiting NFκB [324].
Moreover, ALA activates hepatic AMPK, leading to decreased gluconeogenesis and glucose
output from the liver [382]. It also activates AMPK in the SKM, which leads to an increase
in glucose uptake and fatty acid oxidation [383]. Research suggests that ALA activates
AMPK in the liver and SKM through increased intracellular calcium ion concentration and
not through LKB1 activation [343]. Surprisingly, ALA was found to inhibit hypothalamic
AMPK, leading to a reduction in food intake and body weight [324]. These metabolic effects
of ALA have been tested in pre-diabetic volunteers in a randomized, placebo-controlled
pilot study [384]. Twelve volunteers who were eligible and met the criteria for prediabetes
were included in the study and took ALA supplementation (600 mg/day) for 30 days. ALA
improved glycemic control and insulin sensitivity in pre-diabetic volunteers (assessed by
HOMA-IR and fasting serum insulin); it, however, did not affect the lipid profile. In another
study, diabetic individuals who orally consumed 600 mg of ALA supplementation (twice a
day) also showed improved insulin sensitivity, assessed by a 2 h manual hyper-insulinemic
euglycemic clamp technique, expressed as a glucose disposal rate and insulin sensitivity
index [385]. Moreover, patients with diabetic nephropathy were shown to benefit from the
oral administration of ALA [386].

5.2.2. Flavonoids as a Metabolic Modulator in T2D

Flavonoids have demonstrated beneficial effects in T2D via metabolic reprogramming
in pancreatic β-cells, hepatocytes, adipocytes, and SKM [326].

In an in vitro study by Kyriakis et al., two flavonoids, gallic acid and its dimer ellagic
acid, were found to bind to glycogen phosphorylase and inhibit its action, thus decreasing
glycogen metabolism and glucose production [387]. Therefore, it was suggested that gallic
acid and ellagic acid could be administered as antihyperglycemic agents.

Lagouge et al. showed that mice fed a high-fat diet and administered a flavonoid
called resveratrol did not develop obesity or insulin resistance. Resveratrol induced mito-
chondrial OXPHOS and improved muscle respiratory capacity by activating peroxisome
proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) through sirtuin-1
(SIRT-1)-mediated deacetylation [388].

Recently, the therapeutic effects of flavonoids were further confirmed by Meng et al. [389].
Their study showed that flavonoids extracted from mulberry leaves activated AMPK in mice
with spontaneous T2D and enhanced glucose uptake and OXPHOS in the L6 SKM cell line.
Flavonoids also induced the expression of PGC-1α and the upregulation of GLUT4 [389].

Generally, flavonoids were reported to enhance insulin sensitivity, decrease ROS, and
mitigate inflammation in SKM and adipose tissues [326]. Flavonoids could enhance insulin
secretion by pancreatic β cells and reduce apoptosis in these cells. They also enhanced
glucose uptake by SKM and white adipose tissue [326]. These encouraging results need
to be further navigated and confirmed in clinical trials to be administered for therapeutic
purposes in patients with T2D.

5.2.3. Effects of Glutamine Supplementation on T2D

The glutamine pathway plays a protective role in T2D. Studies have shown that glu-
tamine metabolism plays an important role in insulin signaling and glucose metabolism [390].
Specifically, the TCA cycle intermediates generated from glutamine metabolism can stimu-
late insulin secretion and enhance insulin sensitivity in various tissues, including the liver,
muscle, and adipose tissue [391–394]. For example, α-ketoglutarate has been shown to stim-
ulate insulin secretion in pancreatic beta cells. α-Ketoglutarate is converted to succinyl-CoA,
which in turn activates the ATP-sensitive potassium channel, leading to depolarization
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of the cell membrane and subsequent calcium influx. The calcium influx triggers insulin
secretion from the beta cells [395]. In addition, other TCA cycle intermediates, such as citrate
and malate, have also been shown to stimulate insulin secretion. Citrate can enhance insulin
secretion by activating the exocytotic machinery in pancreatic β cells [396], whereas malate
can increase ATP production and stimulate insulin secretion [397].

Interestingly, α-ketoglutarate and succinate can activate the mTOR signaling pathway,
which in turn enhances insulin signaling and glucose uptake [398,399]. The activation of
mTOR stimulates the activity of IRS-1, a key signaling molecule in the insulin signaling
pathway. This enhances the translocation of GLUT4 to the membrane and increases glucose
uptake in insulin-sensitive tissues such as skeletal muscle and adipose tissue [400].

In addition to mTOR signaling, TCA cycle intermediates can also enhance insulin sen-
sitivity by regulating the activity of key metabolic enzymes. For example, α-ketoglutarate
can induce the activity of PDH, thus enhancing glucose oxidation and improving insulin
sensitivity [401]. Likewise, succinate has been shown to inhibit the activity of HIF-1α.
In addition to its role in cancer, it plays a role in glucose metabolism and insulin sensi-
tivity [107,402]. Previous studies indicate a possible impact of glutamine on oxidative
stress and inflammatory markers. In animal studies, supplementation with glutamine
demonstrated a notable elevation in antioxidant proteins such as superoxide dismutase,
glutathione peroxidase (GPx), and catalase levels [403–406], along with significant improve-
ments in levels of inflammatory markers such as c-reactive protein, interleukins 6 and 23,
and monocyte chemoattractant protein-1 [407]. The antioxidant effect of glutamine may
be attributed to its involvement in glutathione synthesis, leading to increased enzymatic
activity of GPx and a reduction in ROS production [403,404].

A comprehensive systematic review conducted by Maleki’s team in 2020 revealed
interesting findings. Among the 19 examined studies, nine highlighted a significant in-
crease GLP-1 levels in the sera. Furthermore, eight studies showed a reduction in fasting
blood sugar levels, with four studies reporting decreases in postprandial blood sugar and
triglyceride levels after glutamine supplementation. Although seven studies demonstrated
a significant increase in insulinemia with glutamine, the outcomes regarding Hb-A1c levels
were inconclusive [408].

Overall, the TCA cycle intermediates generated from glutamine metabolism can en-
hance insulin sensitivity by regulating multiple signaling pathways and metabolic enzymes.
Understanding the complex interplay between glutamine metabolism and insulin signaling
may provide insights into the development of new therapies for insulin resistance and
related metabolic disorders.

6. Conclusions

Cancer and T2D present distinct metabolic shifts, with cancer exhibiting a predom-
inantly glycolytic nature in contrast to the intricate metabolic profile of T2D. In cancer,
various factors, such as mitochondrial dysfunction, low AMPK, elevated PDK levels, LDH,
HIF-1α, decreased PDC levels, NADH, and mutations in oncogenes and tumor suppressor
genes, along with influences from the tumor microenvironment, contribute to a pronounced
bioenergetic shift known as the Warburg effect. The presence of one or more of these factors
determines the tumor’s bioenergetic profile.

In the context of T2D, conflicting findings in the literature regarding OXPHOS status
create challenges in clearly delineating an opposing metabolic shift between cancer and dia-
betes. Discrepancies emerge regarding the functionality of mitochondria and the activation
of OXPHOS in various studies, a situation influenced by variations in experimental designs,
examined tissues, employed methodologies, and possible misinterpretations, as argued by
Wiseman et al. in 2019 [223]. Notably, in prediabetic conditions, there is evidence support-
ing an elevated insulin-induced OXPHOS status in response to persistent hyperglycemia.
However, in T2D, OXPHOS exhibits either inactivity or activity in a tissue-specific manner,
potentially linked to insulin resistance. Furthermore, T2D is characterized by heightened
ROS levels, increased hepatic gluconeogenesis, and insulin resistance.
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Targeted interventions designed to address the metabolic irregularities in both cancer
and diabetes demonstrate promising outcomes in preclinical analyses, encompassing both
in vivo and in vitro studies, as well as ongoing clinical trials. Further investigations into
the efficacy and safety of potential nutrient adjuvants for patients with cancer and diabetes
are much warranted.

Supplementary Materials: The following supporting information can be downloaded at: https://
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