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Abstract: The gut microbiota (GM) plays a vital role in human health, with increasing evidence
linking its imbalance to chronic kidney disease and end-stage kidney disease. Although the exact
methods underlying kidney-GM crosstalk are not fully understood, interventions targeting GM
were made and lay in three aspects: diagnostic, predictive, and therapeutic interventions. While
these interventions show promising results in reducing uremic toxins and inflammation, challenges
remain in the form of patient-specific GM variability, potential side effects, and safety concerns.
Our understanding of GMs role in kidney disease is still evolving, necessitating further research to
elucidate the causal relationship and mechanistic interactions. Personalized interventions focusing
on specific GM signatures could enhance patient outcomes. However, comprehensive clinical trials
are needed to validate these approaches’ safety, efficacy, and feasibility.
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1. Introduction

Microbes colonize every surface of the human body, but an increasing proportion of
microbes inhabit the intestine. Consequently, gut microbiota (GM) is regarded as a “forgot-
ten organ”. In a healthy state, GM plays several critical roles in our bodies, such as helping
to metabolize nutrients, preserving the structural soundness of the gut’s mucosal barrier,
moderating immune responses, and providing defense against harmful pathogens [1,2].
A microbiota describes all microorganisms that colonize the epidermis, respiratory tract,
genital system, and especially the gastrointestinal tract. GM is constantly evolving and
displaying a wide diversity within the same person and in comparison, to others [3]. GM
connects with vital organs, including the brain, bone marrow, cardiovascular system (CVS),
kidney, body’s immune system, and the central nervous system, and has been seen as a
potential cause for a variety of diseases in the aforementioned organs [4–10]. GM activates
immune cells derived from bone marrow, resulting in a low-grade inflammatory reaction
that affects the brain and kidneys via circulation [11]. Simultaneously, peripheral stimuli
affect the brain and modulate neural inputs to the kidney, intestine, and lymphoid or-
gans [11]. This bidirectional relationship lends credence to the notion that GM modulation
is an innovative method for the management of kidney diseases [12,13].

Dysbiosis is an imbalance or perturbation in the GMs composition that results in a
proliferation of harmful bacteria like Enterobacteriaceae or a reduction in beneficial bacteria
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like Bifidobacterium and Lactobacillus [14]. For individuals dealing with ongoing kidney con-
ditions, such as chronic kidney disease (CKD) and terminal kidney failure, often referred
to as end-stage kidney disease (ESKD), the harmonious and mutually advantageous con-
nection is disrupted, leading to an imbalance known as dysbiosis [15]. The consequences
of this dysbiosis go beyond the gut and impact the kidneys via the so-called gut–kidney
axis [13]. One of these adverse outcomes is the overproduction of uremic toxins such as
indoxyl sulfate and p-cresyl sulfate, which are derived from bacterial metabolism of dietary
amino acids [16]. In healthy individuals, these toxins are efficiently excreted by the kidneys,
but in CKD and ESKD, their clearance is significantly reduced, leading to a high plasma
concentration of these toxins [17]. Increasing evidence confirms that dysbiosis by itself
contributes to CKD development and progression [18].

CKD and ESKD affect roughly 10 percent of the world’s population and impose
a substantial financial burden on the healthcare system [19]. Owing to an insufficient
understanding of both the origin and the bodily responses associated with CKD, there have
not been any significant advances in decades, despite efforts to slow the progression of
CKD [20,21].

Recently, interest in modulating GM has increased; the kidney–GM bidirectional
relationship has emerged as a novel modulator for kidney diseases [22]. A growing body
of research has recently been directed toward GMs role in forecasting and improving
health [23]. Though GMs role in CKD and ESKD was researched, the clinical perspective
of GM application in those specific patients was not well examined. Here, we discuss the
kidney-GM interplay and how this bidirectional relationship can be appreciated in practice
in diagnosing and preventing CKD-related morbidities. Moreover, therapeutic avenues for
modulating GM were evaluated along with their safety profile.

2. The Kidney GM Crosstalk

A. How do CKD and ESKD contribute to disturbed GM?

CKD cases have common dietary restrictions, like low protein intake and avoiding
foods rich in potassium and phosphorus [24–26], which affect the composition of GM [27].
Building-up of waste products (uremia toxin) in the blood owing to impaired kidney
function directly affects the GM and leads to dysbiosis [28]. Prescribed Medications:
Patients are often on antibiotics, immunosuppressants, and phosphate binders [29,30].
Collectively, they can disrupt the balance of GM [31]. Patients with ESKD often require
dialysis, which involves filtering waste products from the bloodstream via a machine or
peritoneal dialysis fluid [32]. Dialysis by itself can impact GM composition [33]. A state
of systemic inflammation associated with CKD and ESKD may alter the GM composition
and function [34]. Chronic kidney disease patients often suffer altered intestinal motility,
leading to constipation or diarrhea. These bowel changes can impact the GM [35] (Figure 1).

B. How does disturbed GM impact CKD and ESKD Progression?

It is important to note that these causes may interact with each other, leading to a
complex interplay between gut dysbiosis and chronic renal disease progression. As renal
function declines, the capacity to eliminate toxins decreases, leading to a detrimental cycle
of gut dysbiosis and exacerbating uremia [36]. Reduced microbial diversity has been linked
to an increase in disease severity and deteriorating health outcomes [37]. Some GM can
transform specific toxins into perilous byproducts, which intensify renal damage and induce
widespread inflammation within the body [38]. GM plays a pivotal role in the processes of
nutrient metabolism and energy extraction [39]. However, when dysbiosis occurs, it can
have detrimental effects on nutrient assimilation and metabolism, leading to conditions
such as malnutrition or an imbalanced energy equilibrium [40]. The presence of altered
gut microbiota leads to the disruption of the intestinal barrier function, which permits the
passage of microbial components and harmful substances into the bloodstream [41]. This,
commonly referred to as “Leaky gut syndrome” or “endotoxemia”, subsequently initiates
a systemic inflammatory response [42]. Dysbiosis and the associated modification of GM
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can result in an impaired immune response, making the host more susceptible to infections
and inflammatory diseases [43,44].
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C. How does disturbed GM contribute to CKD- and ESKD-related complications?

There is growing data indicating a connection between dysbiosis and complications
associated with CKD, including high blood pressure, cardiovascular incidents, disorders
related to minerals and bones (MBD), and cognitive impairments.
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CKD- and ESKD-related cardiovascular disease

Several studies find that diverse mechanisms play a role in the development and
progression of cardiovascular disease, a major mortality cause among those patients [45,46].
These include increased reactive oxygen species (ROS) production, leukocyte activation,
pro-inflammatory cytokines production, myocyte hypertrophy, and dyslipidemia. This
relationship between the digestive tract and the heart is known as the gut–heart axis [47,48].
Lin et al. [49] found an association between elevated pCS levels and increased CVS mortality
in CKD patients. Conversely, low TMAO was associated with a 1.7-fold greater risk of
severe CVS events [50].
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Cognitive psychiatric disorders

Cognitive psychiatric disorders are prevalent among CKD patients and are associated
with an increase in morbidity and mortality [51]. The gut–brain axis promotes dysregulation
of the hypothalamus–pit axis [52]. The contribution of gut-microbiota-derived toxins to
cognitive dysfunction is conveyed through mechanisms like direct toxicity or other potential
influences, such as oxidative stress, inflammation, dysfunction of endothelial cells, and
vascular calcification [53]. Lin et al. [54] demonstrated in a study involving 260 hemodialytic
cases that the circulating free form of IS is substantially associated with decreased cognitive
function, especially in the memory domain, mental manipulation, and language ability.
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CKD—disorder of bone and minerals

This syndrome was recently renamed to encompass biochemical, skeletal, and CVS
pathogenesis in addition to bone disease [55]. It was suggested that elevated GM-derived
toxins contribute to the onset of bone abnormalities in CKD [56]. Previous research has
shown that increased levels of IS can impede the function of osteoblasts and have a re-
straining effect on osteoclasts and parathyroid hormone, which may consequently affect
the bone remodeling process in patients with CKD [57,58].
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D. How does disturbed GM affect the production of key metabolic intermediates such as short-
chain fatty acids?

Multifaceted interactions characterize the relationship between GM and the health
of individuals with CKD. Entities such as GM are responsible for the production of key
metabolic intermediates, such as short-chain fatty acids (SCFAs), via the process of fer-
menting dietary fiber [59,60]. Compromised renal function has the potential to disturb the
equilibrium of these entities and metabolic pathways, thereby potentially exacerbating
CKD and disease progression [59,60]. SCFAs were intimately linked to diverse physio-
logical processes, such as immune function, inflammation, and metabolism [59]. SCFAs
are a class of organic compounds with short carbon chains (2 to 6 carbons, typically). The
intestinal GM produces them along with other complex carbohydrates [59].

The principal SCFAs synthesized are acetate, propionate, and butyrate. SCFAs role
has been extensively investigated in patients with CKD and may be summarized as energy
metabolism, modulating immunity, maintaining gut integrity, and CVS wellbeing [61].

First, SCFAs once absorbed into the circulation act as a host’s energy source. They are,
presumably, influencing insulin sensitivity and weight management through their effect on
glucose and lipid metabolism [62]. Second, SCFAs stimulate the production of regulatory
T cells (Tregs) and other immune cells that assist in maintaining immune homeostasis and
reducing excessive inflammation [63]. Thus, SCFAs modulate immunity and affect the
equilibrium between pro-inflammatory and anti-inflammatory responses [63]. For that,
reduced SCFA production tends to impair the immune system, amplify inflammation, im-
pair immunological function, and contribute to the advancement of chronic kidney disease
(CKD) [63]. Third, butyrate was shown to improve the intestinal barrier’s integrity [64]. It
stimulates the production of mucins and tight junction proteins, which are crucial for main-
taining the gut barrier integrity. This effect is vital in avoiding the translocation of toxins
and bacterial products into the circulation, thereby reducing systemic inflammation [64].
Fourth, SCFAs have been linked with cardiovascular health [65]. They affect blood pressure
regulation, lipid metabolism, and endothelial function [65]. All of these are relevant factors
in CKD patients, who suffer from an increased risk of cardiovascular complications and
form a significant cause of mortality [65].

The impact of short-chain fatty acids within the setting of chronic kidney disease is
intricate and diverse. It is essential to note that this relationship is still the subject of active
research, and the precise mechanisms by which SCFAs influence CKD have not been fully
elucidated [66]. In addition, interventions targeting the intestinal microbiota and SCFA
production are being investigated as potential therapeutic strategies for managing the
progression of CKD; however, additional research is warranted to establish their efficacy,
safety, and possibly lead to innovative methods for treating CKD and its complications.

3. What Are the Clinical Applications for Implementing GM in Patients with CKD
and ESKD?

The understanding and exploration of GM have paved the way for numerous clinical
applications in the management of CKD and ESKD. These applications extend to diagnostic,
prognostic, and therapeutic domains (Figure 2).

A. Diagnostic Applications:

Investigation of the GMs composition and functionality offers valuable diagnostic
insights. In individuals with CKD and ESKD, GM shows a reduction in advantageous
bacteria like Bifidobacterium and Lactobacillus, along with a surge in pathogenic species,
including Enterobacteriaceae and Clostridium [67]. Moreover, the generation of excessive
nephrotoxins by dysbiotic GM may determine the development and progression of CKD.
Additionally, GM biomarkers can mirror disease severity [68].

The serum levels of two microbiota-derived nephrotoxins, pCS and IS, were signifi-
cantly linked with GM biomarkers, which suggests a link of gut-metabolite–kidney axis as
an etiological factor in renal impairment and confirms their utility as an early diagnostic
and prognostic biomarker in CKD [53,69].
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Bacterial genes involved in aromatic amino acid metabolism were different across the
stages of CKD. For instance, Escherichia Shigella spp. (ES spp.) predominates CKD patients’
urine and feces [70,71].

The overrepresented ES spp. was strongly linked to IS levels and was associated with
a deteriorating kidney function. Among cases with early stage kidney decline, microbes
belonging to the Ruminococcaceae family were associated with IS and pCS [72]. Escherichia
coli (EC) was recognized as an advanced CKD cases biomarker and discriminated cases
vs. controls [72]. EC can convert tryptophan into indole [73], which opens a therapeutic
avenue added to the diagnostic role via genetic manipulation aiming to reduce indole and
IS levels [74]. Despite these appealing results, further clinical trials should be warranted to
demonstrate the reduction in IS and pCS through manipulation of GM since the current
research was hindered by small sampling and inconclusive results [75].
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B. Prognostic Application:

The prognostic applications for GM in CKD and ESKD are a burgeoning research field
with enormous potential. Those can be grouped into three aspects: mortality prediction,
prediction of cardiovascular, and inflammatory complications.

Mortality Prediction:
Recent work identified specific GM compositions linked to higher mortality risk among

ESKD, such as Enterococcus [76]. Moreover, a lower GM diversity was associated with poor
outcomes [37]. By advanced sequencing techniques, we may identify GM composition and
activity. Hopefully, it will help in establishing a prediction model for high-risk cases [77].

Cardiovascular Complications:
Hypertension, atherosclerosis, and heart failure are significant contributors to mor-

bidity and mortality in ESKD [78]. Certain microbial metabolites produced by GM can
have direct effects on CVS by interfering with blood pressure regulation or lipid absorption
and metabolism [79]. These associations play a prognostic and therapeutic function in
preventing or treating CVS challenges [47,80].

Inflammatory Complications:
Inflammation is a prevalent manifestation in renal failure patients and plays a role

in disease progression and complications [81]. Changes in gastrointestinal permeability
caused by dysbiosis lead to the translocation of bacterial products into the blood, resulting
in a systemic inflammatory state [82]. Furthermore, the immunomodulatory effect of
GM affects cytokine production. Understanding the contribution of GM to inflammatory
consequences in CKD patients is a promising strategy for predicting and managing these
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complications [83]. Despite these encouraging results, additional research is required to
validate these findings and develop clinically applicable, robust predictive models.

C. Therapeutic Applications:

Restoring Gut–Renal Symbiosis: GM holds a key role in our comprehensive health, in-
cluding renal well-being. Disturbances of this delicate ecosystem trigger a series of adverse
events that fuel the progression of CKD and ESKD [84–86]. Thus, targeted modulation GM
could potentially provide a means to restore renal function by damping inflammation and
reducing oxidative stress.

Uremic Toxins as Instigators: CKD and ESKD patients suffer a marked buildup of uremic
toxins which cannot be eliminated by a diseased kidney. Losing the harmony of GM creates
a perpetuating cycle of renal damage [87]. By harnessing the power of specific microbial
agents or beneficial bacteria, it might be possible to facilitate the removal of these uremic
toxins via alternative routes.

Reinforcing the Gut Barrier: the “leaky gut” phenomenon, where increased permeabil-
ity of the gut wall induces alterations in GM, thereby fostering inflammation [88]. GM
modulation strategies have the potential to reinforce gut barrier integrity. By cultivating a
balanced microbiota, it is possible to create an environment that minimizes toxin leakage
and inflammatory responses, thereby improving renal function.

Mitigating Metabolic Disruptions: The presence of CKD is frequently accompanied by
metabolic aberrations, including dyslipidemia, insulin resistance, and glucose metabolism
irregularities. The GM wields substantial influence on the host metabolism, including
aspects such as the production of short-chain fatty acids and the metabolism of bile acids,
which has been linked to systemic metabolic health [89]. Efforts to recalibrate the gut
microbiota composition might represent an effective strategy to ameliorate these metabolic
dysfunctions associated with CKD.

Promoting Cardiovascular Well-being: GMs role in promoting CVS health has been
increasingly recognized [90,91]. Consequently, the modulation of the gut microbiome
might provide substantial benefits in regulating blood pressure and lipid metabolism and
reducing vascular inflammation [92]

Enhanced nutrient absorption: patients often suffer from malnutrition caused by im-
paired absorption. GM modulation may improve the absorption of vitamins and minerals,
leading to improved nutritional status [93].

GM can mitigate drug-induced liver injury (DILI) and alcoholic liver disease: GM signifi-
cantly influences drug metabolism and elimination in CKD and renal disease patients [94].
The capacity of GM to metabolize and modulate drug absorption and distribution con-
tributes to protecting the liver from drug-induced damage [95]. GMs beneficial effect is
mediated via multiple pathways: (1) enzymes can metabolize drugs, altering their chemical
structure and reducing their toxicity in a process known as biotransformation [96,97], (2) by
modulating the body’s immunity [98], and (3) maintaining gut barrier integrity can further
protect against hepatic damage [99]. Manipulation of GM can have a potential therapeutic
avenue to mitigate hepatotoxicity in CKD patients. GMs beneficial effect in reducing liver
toxicity is also seen in alcoholic liver disease (ALD). Where GM interferes with alcohol
metabolism, modulates gut permeability, regulates bile acid metabolism, and modulates
the immune responses [100]. These interactions can offer a therapeutic target for preventing
the progression of ALD [101]. The same effect was noticed in patients with gastrointesti-
nal malignancy, where modulating GM was proposed to reduce cytotoxic drugs’ adverse
effects [102].

Methods by Which GM Balance Is Restored in CKD and ESKD

Methods for restoring GM have recently emerged as a novel approach for treating
many diseases among patients with CKD and ESKD. Many methods exist, and they are
summarized in Figure 3.
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Maintaining an overall healthy lifestyle can positively enhance health. Regular physi-
cal activity, techniques for managing tension, enough sleep, and avoiding smoking
and excess alcohol consumption may all contribute to a healthier digestive environ-
ment [103].
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Dietary modifications: a personalized dietary plan is often made for CKD and ESKD
patients. They are already on low protein intake, limited phosphorus, potassium-
rich food, and fluid intake aiming to reduce uremic toxin precursor [104,105]. These
modifications can indirectly impact GM [104,106]. Another dietary intervention is the
high-fiber diet aimed to improve the reno-protective precursors [107].

Krishnamurthy et al. [108] study (that included 14,543 participants) revealed a notable
association between a high-fiber diet, reduced inflammation, and decreased all-cause
mortality. However, in the later stages of CKD, diets rich in fiber may possess certain
drawbacks, primarily due to the presence of elements like potassium and phosphorus. As a
result, it is crucial to offer practical cooking techniques and guidance to ensure their safety.
Furthermore, the consumption of foods rich in choline and L-carnitine, which serve as
precursors to trimethylamine-N-oxide, such as egg yolk, kidney, liver, meat, and milk, has
been found to correlate with a significant buildup of uremic toxins and a decline in the
glomerular filtration rate [73].

A new dietary modulation therapy to regulate GM is resistant starch (RS), a distinct form
of carbohydrate that experiences partial digestion by human pancreatic amylases, leaving
it incompletely broken down [104]. One notable RS variant, high-amylose maize-resistant
starch type 2 (HAM-RS2), is commonly found in starchy food sources, such as potatoes, corn,
and bananas [105]. When it enters the large intestine, HAM-RS2 serves as a valuable energy
resource for beneficial bacteria, such as Bifidobacterium and Lactobacillus [109,110].
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Certain medications prescribed for the management of chronic renal disease can affect
GM through multiple pathways, either by altering the composition of the gut mi-
crobiota or by eliminating both harmful and good bacteria [111]. Some medications
harm the intestinal mucosa and alter the gut microbiome [112]. Additionally, immune
suppressors tend to depress the immune response and alter the gut environment [113].
Even though these drugs may affect GM, their benefits for dealing with chronic renal
disease typically outweigh their potential adverse effects [114].
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Probiotics are primarily live bacteria, such as Bifidobacteria and Streptococci species [111].
Their principal therapeutic action is their ability to recalibrate the GM [115]. This equilib-
rium is reinstated through various mechanisms, including displacing harmful bacteria,
fortifying gut barrier integrity, and adjusting the host’s immune response [116–118].
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Research on probiotics suggested improved renal function and quality of life in CKD
patients [119–123].
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Prebiotics are indigestible food components that help stimulate the growth of specific
bacteria in the colon [124]. Various prebiotics have been found to foster the expansion
of advantageous bacterial strains such as Bifidobacteria and Lactobacilli species [125].
Simultaneously, these prebiotics appear to inhibit the growth of certain other bacterial
clusters [125]. Prebiotics resist digestion until they reach the colon, where they’re
fermented by native bacteria, producing short-chain fatty acids (SCFAs) [126]. These
SCFAs enhance gut health and boost the immune response [81]. Research has shown
that certain prebiotics can reduce the serum concentrations of specific uremic tox-
ins in patients undergoing hemodialysis [127,128]. Furthermore, lactulose has been
found to improve kidney function in animal models by modifying the gut micro-
biota, inhibiting the production of uremic toxins, and suppressing tubulointerstitial
fibrosis [129,130].
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Synbiotics are a combination of probiotics and prebiotics, used to potentiate the
beneficial effects of probiotics. A study found that introducing synbiotics to patients
with CKD lowered uremic toxins, specifically pCS [131]. Additionally, a randomized
trial was conducted in 2023, which investigated the effects of synbiotics on non-
dialyzed CKD patients [132] and reported that synbiotic regimens fostered the
proliferation of beneficial bacteria in the gut [127]. It also notably decreased the
serum levels of indoxyl sulfate, improved the glomerular filtration rate indicative of
better kidney function, and attenuated inflammation [132]. Apart from minor side
effects like increased flatulence, synbiotics were deemed to be a safe and effective
therapeutic strategy to curb the levels of uremic toxins and inflammation in CKD
patients [132].
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Fecal Microbiota Transplantation (FMT) is a method that entails transferring fecal bacte-
ria and other microscopic entities from a person in good health to another person [133].
The primary goal of FMT is to replace good bacteria that have been killed or sup-
pressed, often using antibiotics, causing harmful bacteria, particularly Clostridium
difficile, to overpopulate the colon [134]. The idea stems from the observation that
CKD and ESKD patients often have altered GM, with an overgrowth of bacteria that
produce uremic toxins, such as indoxyl sulfate and p-cresyl sulfate [135]. It is worth
mentioning that modulation of gut microbiota is the principal mechanism in probi-
otics, prebiotics, synbiotics, and fecal microbiota transplantation. Early animal studies
have provided some promising findings for treating CKD [136,137]. These findings
suggest that FMT could potentially improve kidney function in patients with CKD
and ESKD by reducing the levels of uremic toxins. However, it is important to note
that these are preliminary findings, and more research is needed to determine the
optimal protocol for FMT, including donor selection, preparation and administration
of the fecal material, and long-term safety and efficacy monitoring.
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Miscellaneous Methods include [138]:
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To summarize, GM modulation presents an exciting frontier in the management of CKD
and ESKD. The choice of method must be personalized based on the patient’s condition, the
safety and efficacy of the approach, and the patient’s preferences. More research is needed
to optimize these interventions and to better understand their long-term effects.

4. Evaluation of GM Modulation, Potential Risks, and Considerations

GM modulation in CKD and ESKD is an area of ongoing research. Limited studies have
explored the potential benefits, efficacy, and serious side and safety concerns. Although
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GM modulation is still considered safe, there are potential contraindications for using them
in CKD and ESKD. Some factors to consider are summarized in Table 1. Additionally,
modulating GM has been evaluated regarding safety concerns, pros, and cons, summarized
in Table 2.

Table 1. Potential Risks and Considerations in Gut Microbiota Modulation.

Potential Contraindications Proposed Side Effect References

Compromised immunity state Introducing new GM may disrupt the delicate gut
balance and potentially lead to infections. Thursby et al. [139]; 2017

Medication interaction

Those patients are often on multiple medications, such
as immunosuppressants and antibiotics, which impact

GM composition and may interact with any
introduced microbial modulation.

Chakraborty et al. [32]; 2016

Fluid and electrolyte imbalance Altering the GM in cases with these imbalances
potentially worsens the condition. Rapa et al. [140]; 2020

Dialysis consideration The impact of GM therapies on dialysis efficiency or
complications is not well understood. Tang et al. [141]; 2015

Table 2. Evaluation of Methods for Modulating Gut Microbiota: Pros, Cons, and Associated Risks.

Method
Modulating GM Pros Cons References

Dietary
interventions

Effective, non-invasive, and
generally well-tolerated

have additional benefits, such as
improving cardiovascular health.

• They require patient compliance.
• Can be challenging to implement

due to individual food preferences
and dietary restrictions.

Kaesler et al. [142]; 2021

Probiotics
and/or

prebiotics
Safe for most individuals.

• Effects can be strain-specific
and transient, requiring
continuous intake.

• People with compromised
immune systems or who are
critically ill may be at higher risk
for adverse events related to
probiotic use.

• Some strains may interact with
medications.

• Others cause gastrointestinal
symptoms, and in addition to that,
the cost can also be a limiting
factor for some patients.

Simon et al. [143]; 2021
Doron et al. [144]; 2015
Dore et al. [145]; 2019

Lenoir-Wijnkoop et al. [146];
2019

Fecal Microbiota
Transplantation

Safe when it performed under
appropriate medical supervision

and with proper screening
protocols for donors.

• Infection transmission; bacterial
or viral.

• Allergic reactions or adverse
events related to the
procedure itself.

Wynn et al. [147]; 2023

5. Applications and Limitation of GM Modulation in CKD and ESKD

The research concerning GM application in practice has rapidly evolved in the last
decade, especially in CKD and ESKD; we have summarized the latest meta-analytic studies
published in the last years in Table 3. While the body of evidence linking GM dysbiosis to
the progression and complications of CKD and ESKD is rapidly expanding, many factors
still limit its implementation in practice. The utilization of FMT as a therapeutic inter-
vention for CKD and ESKD remains a nascent field of study, characterized by a dearth of
comprehensive clinical trials conducted thus far. The complex nature of the subject makes
it challenging to formulate precise guidelines for its utilization [148]. Variability among
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individuals is another limitation since GM composition is distinct for each person, posing
challenges in accurately predicting an individual’s response to treatment [149]. Further-
more, the efficacy of the intervention may exhibit individual variability. The potential
adverse effects caused by the new strains of GM, such as bloating, diarrhea, or allergic
reactions, is another limiting fact [150]. Finally, the potential risks and safety implications
of modified GM have yet to be fully understood and evaluated. Additional investigation is
required to evaluate possible hazards, complexities, safety issues, and optimal usage.

Table 3. Gut Microbiota in CKD Patients: A Compilation of Recent Meta-Analysis and Systematic
Reviews.

References
Study Modality

Number and Type of
Studies Examined

Number of Participants
and Their Criteria Key Findings

Thongprayoon et al.
[151]; 2018

Meta-analysis was
conducted on five

randomized controlled trials
(RCT)

161 participants with
chronic kidney cases

(CKD)

Beneficial effects of probiotics on uremic
toxins in CKD patients.

Nguyen et al. [152]; 2021
Systematic Review and

Meta-analysis
on 23 RCT

931 participants
On hemodialysis patients

Supplementation with probiotics,
prebiotics, and synbiotics significantly
decreased circulating levels of various

uremic toxins and
inflammatory biomarkers.

A potential therapeutic benefit in
alleviating uremic toxin levels, oxidative

stress, and inflammation in
hemodialysis patients.

McFarlane et al. [153];
2019

Systematic Review and
Meta-analysis

On 16 RCT

645 participants
adults and children

with CKD.

Prebiotics supplementations have slightly
reduced serum urea concentration.

However, the evidence was limited.

Yu et al. [128]; 2022 Network Meta-analysis on
25 RCT

1106 participants
in ESKD With Dialysis

Prebiotics were found to be effective in
reducing certain inflammatory markers

and uremic toxins. Synbiotics were
effective in reducing CRP and endotoxin

levels. Probiotics were beneficial in
alleviating gastrointestinal symptoms.

This study provides better clinical
decisions in treating ESRD patients.

Takkavatakarn et al.
[154]; 2021

Systematic Review and
Meta-analysis on 38 articles

including observational
and RCTs.

2492 participants with
CKD on dialysis

Protein-bound uremic toxins, including
indoxyl sulfate and p-cresyl sulfate, are

linked with increased cardiovascular
risks in CKD.

Strategies such as prebiotics, synbiotics,
and AST-120 effectively reduce

these toxins.

Liu et al. [155]; 2022 Systematic Review and
Meta-analysis on 23 RCT 842 participants with CKD

Probiotics favorably influenced markers
of creatinine, oxidant stress,

inflammation, and certain uremic toxins
in CKD patients.

Yang et al. [107]; 2021 Meta-analysis on 10 RCT 292 participants
With CKD

Dietary fiber supplementation can
significantly reduce levels of specific

uremic toxins in CKD patients.
This provides evidence for the clinical

recommendation in practice.
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Table 3. Cont.

References
Study Modality

Number and Type of
Studies Examined

Number of Participants
and Their Criteria Key Findings

Liu et al. [156]; 2020
Systematic Review and

Meta-analysis on
16 RCT

605 participants with CKD

Probiotics significantly decreased serum
levels of certain inflammatory cytokines
in CKD patients, such as CRP and IL-6.
They did not significantly affect serum
uremic toxin levels, including creatine,
urea, uric acid, PCS, and IS. The results

help treatment decisions in
clinical practice.

Tao et al. [157]; 2019 Meta-analysis on
10 RCT

359 cases with CKD to
assess progression

The study suggests that probiotics can
reduce urea levels in non-dialysis

CKD patients.

Jia et al. [158]; 2018
Systematic Review and

Meta-analysis on
8 RCT

261 CKD patients (stage 3
to 5) with and without

dialysis

Dysbiosis of the intestinal microbiota
may accelerate CKD progression by

increasing urea toxin levels. Probiotics
have been recognized to maintain the

physiological balance.

Jia et al. [159]; 2021
Systematic Review and

Meta-analysis on
5 RCT

179 CKD cases

A significant reduction in blood urea
nitrogen, serum creatinine, and

interleukin (IL)-6 levels in the RS2 group.
The findings suggest that RS2 might

improve residual renal function in MHD
patients and reduce

proinflammatory responses.

Chen et al. [160]; 2023 Meta-analysis on
18 RCT 237 cases on Dialysis

Probiotics, prebiotics, and synbiotics
supplements could reduce levels of

C-reactive protein, interleukin 6, and
indoxyl sulfate and increase high-density
lipoprotein cholesterol compared to the

control group.

Wang et al. [161]; 2022
Meta-Analysis examined 16

case-control or
cross-sectional studies

1022 participants
(578 patients with Diabetic

KD and 444 Healthy
controls)

Patients with diabetic kidney disease
(DKD) had significantly decreased

bacterial richness.
The gut microbiota of patients with DKD
had specific features characterized by the

expansion of genera like Escherichia,
Citrobacter, and Klebsiella, and depletion

of Roseburia.
These microbial taxa might be closely

related to DKD and could serve as
potential targets for DKD management.

Zheng et al. [162]; 2021 Meta-Analysis examined
13 RCT 671 CKD cases

Microbial therapies significantly reduced
levels of C-reactive protein,

malondialdehyde, total cholesterol, and
low-density lipoprotein cholesterol.
Increased glutathione levels, total

antioxidant capacity, and high-density
lipoprotein cholesterol in CKD patients

compared to placebo groups.
The findings support the potential use of

probiotic, prebiotic, and synbiotic
supplements in improving cardiovascular

risk factors in CKD patients.
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Table 3. Cont.

References
Study Modality

Number and Type of
Studies Examined

Number of Participants
and Their Criteria Key Findings

Dai et al. [123]; 2022 Meta-Analysis examined
10 RCT

552 participants with
diabetic KD

Probiotics can delay renal function injury,
improve glucose and lipid metabolism,
and reduce inflammation and oxidative

stress in DKD patients.

Li et al. [163]; 2023

Meta-Analysis examined 21
cohort, case-control, nested

case-control, or analytic
cross-sectional studies

15,637 participants
that were non-CKD vs.

non-black
dialysis patients.

Non-dialysis CKD patients and non-black
dialysis patients with the highest

circulating TMAO concentration had an
increased risk of all-cause mortality.
Non-black dialysis patients with the

highest TMAO concentration also had an
increased risk of cardiovascular mortality.

Increased circulating TMAO
concentrations are associated with higher

mortality risks in specific CKD
patient groups.

6. Future Perspective and Further Research

Identification of GM as a potential target in the management of CKD and ESKD con-
tinues to encounter several challenges. GMs intrinsic variety and diversity among those
populations are frequently overlooked in research [164]. Various factors, such as dietary pat-
terns, pharmaceutical interventions, and the presence of concurrent medical conditions, can
potentially impact the diversity of GM [165,166]. It is imperative to incorporate strategies
to control relevant factors and address individual variations [166]. Unraveling mechanisms
of how dysbiosis contributes to CKD progression and ESKD is another aspect that future
research should consider. Moreover, addressing various approaches manipulating GM
to enhance kidney health allows the evaluation of their efficacy in restoring a healthy
GM equilibrium [167]. The tailored treatment procedures that address the unique GM
composition added to the patient’s specific characteristics, showing promising potential to
enhance patient outcomes [168].

Dietary modification is another promising intervention that potentially influences
GM composition, improving kidney function [169,170]. Finally, using state-of-the-art
methodologies like metagenomics, met transcriptomics, and metabolomics to thoroughly
examine the GM and their functional behaviors in individuals with CKD and ESKD is a
new emerging field of research [171]. Despite significant progress in understanding the
importance of GM in those populations, there are still significant gaps in knowledge that
require deeper investigation and clarification. It is crucial to give precedence to collect
mechanistic information, tailored interventions, and assess the broader implications linked
to microbial metabolites, dietary patterns, and pharmacological compounds [172]. Investi-
gating the intricate connections between GM and kidney health necessitates the adoption
of a multi-disciplinary methodology, which encompasses the expertise of nephrologists,
gastroenterologists, immunologists, and microbiome specialists.

7. Conclusions

The management of CKD and ESKD presents significant challenges due to their
complex nature and the substantial implications they have on the patient’s quality of life.
With the increasing understanding of the gut–kidney axis, the role of the GM in these
conditions has come to the fore. There is emerging evidence that GM dysbiosis plays a
role in the progression and complications of these renal conditions. Thus, GM modulation
using various approaches such as dietary interventions, probiotics, prebiotics, synbiotics,
and fecal microbiota transplantation could be potential game-changers in this field. While
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the preliminary findings of these approaches are promising, the evidence is still nascent,
and further research is needed to confirm their efficacy, safety, and feasibility. Issues such
as individual variability in GM composition, potential adverse effects, interactions with
existing medications, and long-term impacts of GM modulation are critical aspects to be
addressed. Additionally, the nuanced understanding of whether GM dysbiosis is a cause
or a consequence of renal dysfunction is yet to be fully established.

Ultimately, the promising horizon of GM modulation in CKD and ESKD management
underscores the importance of further research. Expanding our understanding of the
gut–kidney axis and optimizing these interventions could potentially open new avenues in
managing these chronic conditions. This underscores the necessity of multi-disciplinary
methods to improve the outcomes for these patients and provides hope for a more holistic
and effective approach to kidney disease management.
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Chronic Kidney Disease and Gut Microbiota in Immunological and Nutritional Aspects. Nutrients 2021, 13, 3637. [CrossRef]

61. Parada Venegas, D.; De la Fuente, M.K.; Landskron, G.; González, M.J.; Quera, R.; Dijkstra, G.; Harmsen, H.J.M.; Faber, K.N.;
Hermoso, M.A. Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for
Inflammatory Bowel Diseases. Front. Immunol. 2019, 10, 277. [CrossRef]

62. He, J.; Zhang, P.; Shen, L.; Niu, L.; Tan, Y.; Chen, L.; Zhao, Y.; Bai, L.; Hao, X.; Li, X.; et al. Short-Chain Fatty Acids and Their
Association with Signalling Pathways in Inflammation, Glucose and Lipid Metabolism. Int. J. Mol. Sci. 2020, 21, 6356. [CrossRef]

63. Liu, X.; Shao, J.; Liao, Y.-T.; Wang, L.-N.; Jia, Y.; Dong, P.; Liu, Z.; He, D.; Li, C.; Zhang, X. Regulation of Short-Chain Fatty Acids in
the Immune System. Front. Immunol. 2023, 14, 1186892. [CrossRef]

https://doi.org/10.1016/j.ajcnut.2023.01.019
https://doi.org/10.1093/ndt/gfy172
https://www.ncbi.nlm.nih.gov/pubmed/29939312
https://doi.org/10.3389/fimmu.2021.651191
https://www.ncbi.nlm.nih.gov/pubmed/33912174
https://doi.org/10.3390/ijms24108549
https://doi.org/10.1038/s41392-022-00974-4
https://www.ncbi.nlm.nih.gov/pubmed/35461318
https://doi.org/10.3389/fphys.2020.572355
https://doi.org/10.1159/000528560
https://doi.org/10.1038/s41440-018-0144-z
https://doi.org/10.21037/atm.2017.06.27
https://doi.org/10.1371/journal.pone.0132589
https://doi.org/10.1007/s13668-018-0252-z
https://doi.org/10.1161/JAHA.116.004947
https://www.ncbi.nlm.nih.gov/pubmed/28663251
https://doi.org/10.1253/circj.CJ-12-0647
https://www.ncbi.nlm.nih.gov/pubmed/23037589
https://doi.org/10.1016/j.biopha.2017.06.066
https://www.ncbi.nlm.nih.gov/pubmed/28654798
https://doi.org/10.1038/s41598-019-57004-7
https://doi.org/10.23876/j.krcp.18.0099
https://www.ncbi.nlm.nih.gov/pubmed/31067609
https://doi.org/10.3904/kjim.2016.298
https://www.ncbi.nlm.nih.gov/pubmed/28992684
https://doi.org/10.1111/j.1744-9987.2010.00813.x
https://www.ncbi.nlm.nih.gov/pubmed/20649763
https://doi.org/10.1038/sj.ki.5002097
https://doi.org/10.3390/ijms23105354
https://doi.org/10.3390/nu13103637
https://doi.org/10.3389/fimmu.2019.00277
https://doi.org/10.3390/ijms21176356
https://doi.org/10.3389/fimmu.2023.1186892


Biomedicines 2023, 11, 2480 16 of 20

64. Zhang, Y.; Zhu, X.; Yu, X.; Novák, P.; Gui, Q.; Yin, K. Enhancing Intestinal Barrier Efficiency: A Novel Metabolic Diseases Therapy.
Front. Nutr. 2023, 10, 1120168. [CrossRef] [PubMed]

65. Wu, Y.; Xu, H.; Tu, X.; Gao, Z. The Role of Short-Chain Fatty Acids of Gut Microbiota Origin in Hypertension. Front. Microbiol.
2021, 12, 730809. [CrossRef]

66. Zheng, L.; Luo, M.; Zhou, H.; Chen, J. Natural Products from Plants and Microorganisms: Novel Therapeutics for Chronic Kidney
Disease via Gut Microbiota Regulation. Front. Pharmacol. 2023, 13, 1068613. [CrossRef] [PubMed]

67. Voroneanu, L.; Burlacu, A.; Brinza, C.; Covic, A.; Balan, G.G.; Nistor, I.; Popa, C.; Hogas, S.; Covic, A. Gut Microbiota in Chronic
Kidney Disease: From Composition to Modulation towards Better Outcomes—A Systematic Review. J. Clin. Med. 2023, 12, 1948.
[CrossRef]

68. Lim, Y.J.; Sidor, N.A.; Tonial, N.C.; Che, A.; Urquhart, B.L. Uremic Toxins in the Progression of Chronic Kidney Disease and
Cardiovascular Disease: Mechanisms and Therapeutic Targets. Toxins 2021, 13, 142. [CrossRef]

69. Zeng, Y.; Guo, M.; Fang, X.; Teng, F.; Tan, X.; Li, X.; Wang, M.; Long, Y.; Xu, Y. Gut Microbiota-Derived Trimethylamine N-Oxide
and Kidney Function: A Systematic Review and Meta-Analysis. Adv. Nutr. 2021, 12, 1286–1304. [CrossRef] [PubMed]

70. Kramer, H.; Kuffel, G.; Thomas-White, K.; Wolfe, A.J.; Vellanki, K.; Leehey, D.J.; Bansal, V.K.; Brubaker, L.; Flanigan, R.; Koval,
J.; et al. Diversity of the Midstream Urine Microbiome in Adults with Chronic Kidney Disease. Int. Urol. Nephrol. 2018, 50,
1123–1130. [CrossRef] [PubMed]

71. Jiang, S.; Xie, S.; Lv, D.; Wang, P.; He, H.; Zhang, T.; Zhou, Y.; Lin, Q.; Zhou, H.; Jiang, J.; et al. Alteration of the Gut Microbiota in
Chinese Population with Chronic Kidney Disease. Sci. Rep. 2017, 7, 2870. [CrossRef]

72. Barrios, C.; Beaumont, M.; Pallister, T.; Villar, J.; Goodrich, J.K.; Clark, A.; Pascual, J.; Ley, R.E.; Spector, T.D.; Bell, J.T.; et al.
Gut-Microbiota-Metabolite Axis in Early Renal Function Decline. PLoS ONE 2015, 10, e0134311. [CrossRef]

73. Fernandez-Prado, R.; Esteras, R.; Perez-Gomez, M.; Gracia-Iguacel, C.; Gonzalez-Parra, E.; Sanz, A.; Ortiz, A.; Sanchez-Niño, M.
Nutrients Turned into Toxins: Microbiota Modulation of Nutrient Properties in Chronic Kidney Disease. Nutrients 2017, 9, 489.
[CrossRef]

74. Devlin, A.S.; Marcobal, A.; Dodd, D.; Nayfach, S.; Plummer, N.; Meyer, T.; Pollard, K.S.; Sonnenburg, J.L.; Fischbach, M.A.
Modulation of a Circulating Uremic Solute via Rational Genetic Manipulation of the Gut Microbiota. Cell Host Microbe 2016, 20,
709–715. [CrossRef] [PubMed]

75. Crespo-Salgado, J.; Vehaskari, V.M.; Stewart, T.; Ferris, M.; Zhang, Q.; Wang, G.; Blanchard, E.E.; Taylor, C.M.; Kallash, M.;
Greenbaum, L.A.; et al. Intestinal Microbiota in Pediatric Patients with End Stage Renal Disease: A Midwest Pediatric Nephrology
Consortium Study. Microbiome 2016, 4, 50. [CrossRef] [PubMed]

76. Uda, A.; Shigemura, K.; Kitagawa, K.; Osawa, K.; Onuma, K.; Yan, Y.; Nishioka, T.; Fujisawa, M.; Yano, I.; Miyara, T. Risk
Factors for the Acquisition of Enterococcus Faecium Infection and Mortality in Patients with Enterococcal Bacteremia: A 5-Year
Retrospective Analysis in a Tertiary Care University Hospital. Antibiotics 2021, 10, 64. [CrossRef] [PubMed]

77. Lin, T.-Y.; Wu, P.-H.; Lin, Y.-T.; Hung, S.-C. Gut Dysbiosis and Mortality in Hemodialysis Patients. NPJ Biofilms Microbiomes 2021,
7, 20. [CrossRef] [PubMed]

78. Jankowski, J.; Floege, J.; Fliser, D.; Böhm, M.; Marx, N. Cardiovascular Disease in Chronic Kidney Disease. Circulation 2021, 143,
1157–1172. [CrossRef]

79. Rahman, M.M.; Islam, F.; Or-Rashid, M.H.; Al Mamun, A.; Rahaman, M.S.; Islam, M.M.; Meem, A.F.K.; Sutradhar, P.R.; Mitra, S.;
Mimi, A.A.; et al. The Gut Microbiota (Microbiome) in Cardiovascular Disease and Its Therapeutic Regulation. Front. Cell Infect.
Microbiol. 2022, 12, 903570. [CrossRef]

80. Wang, L.; Wang, S.; Zhang, Q.; He, C.; Fu, C.; Wei, Q. The Role of the Gut Microbiota in Health and Cardiovascular Diseases. Mol.
Biomed. 2022, 3, 30. [CrossRef] [PubMed]

81. Mihai, S.; Codrici, E.; Popescu, I.D.; Enciu, A.-M.; Albulescu, L.; Necula, L.G.; Mambet, C.; Anton, G.; Tanase, C. Inflammation-
Related Mechanisms in Chronic Kidney Disease Prediction, Progression, and Outcome. J. Immunol. Res. 2018, 2018, 2180373.
[CrossRef] [PubMed]

82. Widhani, A.; Djauzi, S.; Suyatna, F.D.; Dewi, B.E. Changes in Gut Microbiota and Systemic Inflammation after Synbiotic
Supplementation in Patients with Systemic Lupus Erythematosus: A Randomized, Double-Blind, Placebo-Controlled Trial. Cells
2022, 11, 3419. [CrossRef] [PubMed]

83. Seikrit, C.; Schimpf, J.I.; Wied, S.; Stamellou, E.; Izcue, A.; Pabst, O.; Rauen, T.; Lenaerts, K.; Floege, J. Intestinal Permeability in
Patients with IgA Nephropathy and Other Glomerular Diseases: An Observational Study. J. Nephrol. 2022, 36, 463–474. [CrossRef]

84. Stenvinkel, P.; Chertow, G.M.; Devarajan, P.; Levin, A.; Andreoli, S.P.; Bangalore, S.; Warady, B.A. Chronic Inflammation in
Chronic Kidney Disease Progression: Role of Nrf2. Kidney Int. Rep. 2021, 6, 1775–1787. [CrossRef]

85. Kakey, M.I.S.; Abdoulrahman, K.K. Estimation of Liver Parameters and Oxidative Stress in Chronic Renal Failure Patients on
Hemodialysis in Erbil Governorate. AIP Conf. Proc. 2017, 1888, 020029. [CrossRef]

86. Tecklenborg, J.; Clayton, D.; Siebert, S.; Coley, S.M. The Role of the Immune System in Kidney Disease. Clin. Exp. Immunol. 2018,
192, 142–150. [CrossRef]
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