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1 Supplementary Text 

1.1 Methods 

1.1.1 Train-test splitting 

We split the data into training and testing sets to train and evaluate machine learning 

models, and ensuring the testing set was fair is essential for the evaluation to be 

meaningful. Usually, this means stratified sampling for the test set, i.e., maintaining the 

same class distribution of the original dataset whose samples are independent. However, 

our dataset’s samples may originate from the same patients, making the naive stratified 

sampling leak information between sets. Here we describe our train-test splitting method 

that ensures training and testing sets are stratified without data leakage. Briefly, we 

randomly select patients without replacement and add the corresponding samples to the 

test set. If the selected testing set yields the class distribution allowed within an error term 

δ with regard to the original class distribution, the testing set is acceptable. Otherwise, we 

repeat the random selection of patients. For our experiments, we set δ to 0.075. 

1.1.2 5-fold splitting 

For 5-fold training and validation splits, we maintain the same philosophy defined in the 

previous section. However, since we now have five splits, using the same method to 

ensure each split is stratified while avoiding data leakage is challenging. We describe a 

different splitting method for cross-validation splits to counter the computational 

complexity. Given a set of unique patient IDs, we randomly divide the patients into five 

equal-sized groups. We then create five cross-validation splits by retrieving the 

corresponding samples, guaranteeing that each patient is exclusively contained in one 
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split. Then we measure the absolute error of class distribution between a split and the 

original class distribution. The total error of the splitting is then the sum of errors measured 

for five splits. We repeat the random separation of patients N times, where the splitting of 

the least error is used for the model training. In our experiment, N was set to 1000. 

2 Supplementary Tables 

Supplementary Table S4. Model selection pipeline configuration. The pipeline was 

implemented with the Scikit-learn [1] Python library. LR, SVM, RF, AB, and MLP stand 

for Logistic Regression, Support Vector Machine, Random Forest, AdaBoost, and 

Multilayer Perceptron, respectively. Features were standardized, except for tree-based 

models, i.e., RF and AB. 

Classifier Preprocessing Grid Search Space Best 

Hyperparameter 

LR Standard ‘penalty’: [‘l2’, None] 
‘C’: [0.01, 0.1, 1] 
‘solver’: [‘lbfgs’] 
'max_iter': [100, 500, 1000] 

‘C': 0.01 
'max_iter': 500 
'penalty': 'l2' 
'solver': 'lbfgs' 

SVM Standard ‘C’: [0.01, 0.1, 1] 
‘kernel’: [‘linear’, ‘poly’, ‘rbf’] 

'C': 0.01 
'kernel': 'linear' 

RF - ‘n_estimators’: [100, 500], 
‘max_depth’: [2, 3, 4, 5, 6, 7] 

'max_depth': 7 
'n_estimators': 500 

AB - ‘n_estimators’: [25, 50, 100, 500] 
‘learning_rate’: [0.01, 0.1, 1] 

'learning_rate': 0.1 
'n_estimators': 50 

MLP Standard ‘hidden_layer_sizes’: [(200,), 
(100,), (100, 100)] 
‘learning_rate’: [‘constant’, 
‘adaptive’] 
‘learning_rate_init’: [0.001, 0.01, 
0.1] 
‘early_stopping’: [True] 

'early_stopping': 
True 
'hidden_layer_sizes': 
(200,) 
'learning_rate': 
'adaptive' 
‘learning_rate_init': 
0.01 
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Supplementary Table S5. Performance of classifiers with the best hyperparameters on 

the holdout testing set. All metrics were micro-averaged. Mean and standardiviation were 

computed based on 20 independed training runs with different random seeds. 

Classifier Accuracy Precision Recall F1 

LR 0.52 ± 0.00 0.52 ± 0.00 0.52 ± 0.00 0.52 ± 0.00 

SVM 0.41 ± 0.00 0.41 ± 0.00 0.41 ± 0.00 0.41 ± 0.00 

AB 0.81 ± 0.00 0.81 ± 0.00 0.81 ± 0.00 0.81 ± 0.00 

MLP 0.49 ± 0.05 0.49 ± 0.05 0.49 ± 0.05 0.49 ± 0.05 

RF 0.81 ± 0.03 0.81 ± 0.03 0.81 ± 0.03 0.81 ± 0.03 

RF + SFS 0.82 ± 0.02 0.82 ± 0.02 0.82 ± 0.02 0.82 ± 0.02 
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