
1

Machine Learning Classifier for Glioblastoma Treatment Stages

Fangzhou Li1,2,3 and Ilias Tagkopoulos1,2,3

1Department of Computer Science, the University of California at Davis

2Genome Center, the University of California at Davis

3USDA/NSF AI Institute for Next Generation Food Systems (AIFS)

SUPPLEMENTARY INFORMATION

2

Table of Contents

1 Supplementary Text ... 3

1.1 Methods ... 3

1.1.1 Train-test splitting .. 3

1.1.2 5-fold splitting .. 3

2 Supplementary Tables ... 4

3 References ... 6

3

1 Supplementary Text

1.1 Methods

1.1.1 Train-test splitting

We split the data into training and testing sets to train and evaluate machine learning

models, and ensuring the testing set was fair is essential for the evaluation to be

meaningful. Usually, this means stratified sampling for the test set, i.e., maintaining the

same class distribution of the original dataset whose samples are independent. However,

our dataset’s samples may originate from the same patients, making the naive stratified

sampling leak information between sets. Here we describe our train-test splitting method

that ensures training and testing sets are stratified without data leakage. Briefly, we

randomly select patients without replacement and add the corresponding samples to the

test set. If the selected testing set yields the class distribution allowed within an error term

δ with regard to the original class distribution, the testing set is acceptable. Otherwise, we

repeat the random selection of patients. For our experiments, we set δ to 0.075.

1.1.2 5-fold splitting

For 5-fold training and validation splits, we maintain the same philosophy defined in the

previous section. However, since we now have five splits, using the same method to

ensure each split is stratified while avoiding data leakage is challenging. We describe a

different splitting method for cross-validation splits to counter the computational

complexity. Given a set of unique patient IDs, we randomly divide the patients into five

equal-sized groups. We then create five cross-validation splits by retrieving the

corresponding samples, guaranteeing that each patient is exclusively contained in one

4

split. Then we measure the absolute error of class distribution between a split and the

original class distribution. The total error of the splitting is then the sum of errors measured

for five splits. We repeat the random separation of patients N times, where the splitting of

the least error is used for the model training. In our experiment, N was set to 1000.

2 Supplementary Tables

Supplementary Table S4. Model selection pipeline configuration. The pipeline was

implemented with the Scikit-learn [1] Python library. LR, SVM, RF, AB, and MLP stand

for Logistic Regression, Support Vector Machine, Random Forest, AdaBoost, and

Multilayer Perceptron, respectively. Features were standardized, except for tree-based

models, i.e., RF and AB.

Classifier Preprocessing Grid Search Space Best

Hyperparameter

LR Standard ‘penalty’: [‘l2’, None]
‘C’: [0.01, 0.1, 1]
‘solver’: [‘lbfgs’]
'max_iter': [100, 500, 1000]

‘C': 0.01
'max_iter': 500
'penalty': 'l2'
'solver': 'lbfgs'

SVM Standard ‘C’: [0.01, 0.1, 1]
‘kernel’: [‘linear’, ‘poly’, ‘rbf’]

'C': 0.01
'kernel': 'linear'

RF - ‘n_estimators’: [100, 500],
‘max_depth’: [2, 3, 4, 5, 6, 7]

'max_depth': 7
'n_estimators': 500

AB - ‘n_estimators’: [25, 50, 100, 500]
‘learning_rate’: [0.01, 0.1, 1]

'learning_rate': 0.1
'n_estimators': 50

MLP Standard ‘hidden_layer_sizes’: [(200,),
(100,), (100, 100)]
‘learning_rate’: [‘constant’,
‘adaptive’]
‘learning_rate_init’: [0.001, 0.01,
0.1]
‘early_stopping’: [True]

'early_stopping':
True
'hidden_layer_sizes':
(200,)
'learning_rate':
'adaptive'
‘learning_rate_init':
0.01

5

Supplementary Table S5. Performance of classifiers with the best hyperparameters on

the holdout testing set. All metrics were micro-averaged. Mean and standardiviation were

computed based on 20 independed training runs with different random seeds.

Classifier Accuracy Precision Recall F1

LR 0.52 ± 0.00 0.52 ± 0.00 0.52 ± 0.00 0.52 ± 0.00

SVM 0.41 ± 0.00 0.41 ± 0.00 0.41 ± 0.00 0.41 ± 0.00

AB 0.81 ± 0.00 0.81 ± 0.00 0.81 ± 0.00 0.81 ± 0.00

MLP 0.49 ± 0.05 0.49 ± 0.05 0.49 ± 0.05 0.49 ± 0.05

RF 0.81 ± 0.03 0.81 ± 0.03 0.81 ± 0.03 0.81 ± 0.03

RF + SFS 0.82 ± 0.02 0.82 ± 0.02 0.82 ± 0.02 0.82 ± 0.02

6

3 References

1. Pedregosa, F. et al. Scikit-learn: Machine Learning in Python. Preprint at

https://doi.org/10.48550/arXiv.1201.0490 (2018).

