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Abstract: Oleuropein (OLE), a main constituent of olives, displays a pleiotropic beneficial dynamic in
health and disease; the effects are based mainly on its antioxidant and hypolipidemic properties, and
its capacity to protect the myocardium during ischemia. Furthermore, OLE activates the peroxisome
proliferator-activated receptor (PPARα) in neurons and astrocytes, providing neuroprotection against
noxious biological reactions that are induced following cerebral ischemia. The current study investi-
gated the effect of OLE in the regulation of various neural plasticity indices, emphasizing the role of
PPARα. For this purpose, 129/Sv wild-type (WT) and Pparα-null mice were treated with OLE for
three weeks. The findings revealed that chronic treatment with OLE up-regulated the brain-derived
neurotrophic factor (BDNF) and its receptor TrkB in the prefrontal cortex (PFC) of mice via activation
of the ERK1/2, AKT and PKA/CREB signaling pathways. No similar effects were observed in
the hippocampus. The OLE-induced effects on BDNF and TrkB appear to be mediated by PPARα,
because no similar alterations were observed in the PFC of Pparα-null mice. Notably, OLE did not
affect the neurotrophic factors NT3 and NT4/5 in both brain tissues. However, fenofibrate, a selective
PPARα agonist, up-regulated BDNF and NT3 in the PFC of mice, whereas the drug induced NT4/5 in
both brain sites tested. Interestingly, OLE provided neuroprotection in differentiated human SH-SY5Y
cells against β-amyloid and H2O2 toxicity independently from PPARα activation. In conclusion, OLE
and similar drugs, acting either as PPARα agonists or via PPARα independent mechanisms, could
improve synaptic function/plasticity mainly in the PFC and to a lesser extent in the hippocampus,
thus beneficially affecting cognitive functions.

Keywords: oleuropein; neural plasticity; BDNF; PPARα; neurotrophin

1. Introduction

Over the last twenty years, intensive research indicated that the revolution in adult
brain functionality largely depended on neural plasticity, a property describing the ability
of the brain to adapt to various intrinsic and extrinsic stimuli by reorganizing its structure,
function and connections [1–3].

Accumulating evidence suggests that neurotrophins (NTs) along with their cognate
tyrosine kinase receptors (Trks) hold key roles in neural plasticity, thus determining the
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development and function of the nervous system [4,5]. They belong to a family of neu-
rotrophic factors that are secreted by presynaptic and postsynaptic neurons, microglia
and glial cells, astrocytes and oligodendrocytes or other types of cells including muscle
cells, and display paracrine and autocrine actions on these cells [6–15]. In particular, NTs
determine the development of neuronal networks by regulating the growth of neuronal
processes, the development of synapses and synaptic plasticity, as well as neuronal survival,
differentiation and myelination. They decisively affect cognitive functions, such as learning
and memory, brain development and homeostasis, sensorial training and recovery from
brain injury [1].

NTs exert their effects on the central and sympathetic nervous system via activation of
their specific tyrosine kinase (TrkA, TrkB and TrkC) receptors belonging to the family of
tropomyosin-related kinase receptors [16,17]. Brain-derived neurotrophic factor (BDNF) is
the most abundant neurotrophin in the adult brain, and is one of the major regulators of
neurotransmission and neural plasticity [13,18,19]. It is an essential regulator of cellular sig-
naling that underlies cognition, and in particular, synaptic efficacy, which is a determinant
parameter in learning and memory [20]. Deficits in BDNF signaling are associated with
the pathogenesis of various neurological and psychiatric disorders, including Alzheimer’s
disease (AD) and depression [20–22], whereas BDNF administration attenuates amyloid-β
peptide-induced memory deficits [23].

Neurotrophin 3 (NT3) is structurally related to BDNF and is linked to neurogenesis
mainly in the hippocampus, as it promotes hippocampal cell growth, differentiation and
survival. NT3 has also neuroprotective effects on sympathetic and sensory neurons [24,25].
Neurotrophin 4/5 (NT4/5) also plays a significant role in neurogenesis [26], and affects
neuritic morphology and synapse formation [27]. It is worth noting that BDNF, NT3 and
NT4/5 levels are decreased in the hippocampus of AD patients [28].

Normal aging and neurodegenerative disorders are usually associated with cognitive
deficits, and researchers focus on finding compounds that could prevent, delay or restore
this cognitive deterioration. Polyphenols, such as resveratrol, isolated from medicinal
plants, are intensively studied due to their beneficial effects on memory and neuropro-
tection [29]. Other polyphenolic compounds, including curcumin [30,31], fisetin [31] and
epicatechin [32], were found to improve synaptic plasticity.

Oleuropein (OLE) and its hydrolysis product, hydroxytyrosol, are the main con-
stituents of the leaves and unprocessed olive drupes of Olea europaea. Preclinical studies
reported that these compounds display pleiotropic health benefits, mainly associated with
their cardioprotective [33–40], anti-inflammatory [41], anti-diabetic [42] and anti-oxidant
properties [43]. Current studies employing murine models of AD indicated that OLE
also displays neuroprotective properties [44,45]. In particular, OLE ameliorated cognitive
impairment and improved synaptic function in TgCRND8 mice, a well-known model
of Alzheimer’s disease expressing a double mutant form of human amyloid-β precursor
protein via inhibition of β-amyloid peptide aggregation, which is associated with neural
toxicity [46]. Furthermore, OLE prevented the colchicine-induced cognitive dysfunction in
rats [47]. It is also of note that long-term treatment of old mice with phenol-rich extra-virgin
olive oil improved their memory and learning ability [48]. Olive oil also improved the
performance of senescence accelerated mouse-prone (SAMP8) mice, a naturally occurring
model of accelerated aging, in the T-maze test [49].

A previous study reported that fenofibrate (FEN), a PPARα agonist, markedly acti-
vated the hippocampal peroxisome proliferator-activated receptor gamma coactivator-1
alpha (PGC-1α)/irisin/BDNF pathway, and induced synaptic plasticity in rats following a
high-fat, high-fructose diet [50]. Therefore, the present study investigated the effect of OLE,
a PPARα agonist [39], on neural plasticity, emphasizing the role of this nuclear transcription
factor in the OLE-mediated regulation of the neurotrophins, BDNF, NT3 and NT4/5. For
this purpose, 129/Sv wild-type (WT) and Pparα-null mice were treated with either OLE or
FEN, a selective PPARα agonist. The data indicated that OLE up-regulated BDNF and its
receptor TrkB in the PFC of mice, while it had no effect in their hippocampus, though it
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increased the synthesis of NT4/5. FEN also triggered a strong induction of BDNF, NT3 and
TrkB in the PFC of mice, and increased the synthesis of NT4/5 in their hippocampus and
PFC. The OLE- and FEN-induced effects on these important neural plasticity factors were
PPARα-dependent, because they did not occur in the PPARα-deficient mice.

2. Materials and Methods
2.1. Animals

Adult male 129/Sv WT and Ppara-null mice [51,52] were used in this study. The WT
and Pparα-null mice received ad libitum the standard rodent chow diet (diet 1324 TPF,
Altromin Spezialfutter GmbH & Co., KG, Lage, Germany). All of the animals were housed
up to five per cage under a standard 12-h light, 12-h dark cycle, and had continuous
access to drinking water. The mice were monitored on a daily basis for outward signs of
distress or adverse health effects. All procedures involving the animals were reviewed
and approved by the ethics committee of the Medical School of the University of Ioannina.
They conformed to the International European Ethical Standards (86/609-EEC) for the care
and use of laboratory animals.

2.2. Drugs and Treatment

OLE (100 mg/kg) was administered daily in the food pellets for three consecutive
weeks. The dosing regime of OLE was designed using findings from previous dose–
response experiments [40]. At the end of the experiment, the mice were killed by CO2
asphyxiation, and trunk blood was collected in BD microtainer serum separator tubes
(Becton, Dickinson and Company, Franklin Lakes, NJ, USA) for biochemical analyses. The
hippocampus and prefrontal cortex were dissected from the brain for total RNA and total
cellular protein extraction. All of the brain tissues and serum samples were kept at −80 ◦C
until assayed.

2.3. In Vivo Experiments

Adult male (129/Sv) WT and Ppara-null mice were randomly assigned into groups
of 8–10 mice. OLE (100 mg/kg) was administered daily in the food pellets for three
consecutive weeks in both WT and Ppara-deficient mice. The controls received the normal
rodent diet.

The dose of OLE was based on our previous findings [40,53] and on the literature [54].
OLE was administered in the food pellets, because it has been shown that even under
normal iso-osmotic luminal conditions, OLE is poorly absorbed. Its absorption can be
significantly improved by solvent flux through paracellular junctions, made possible by
hypotonic conditions in the intestinal lumen [55]. The presence of glucose or amino
acids in the intestinal lumen that follows a meal stimulates water flux via the opening
of paracellular junctions. It is possible that this mechanism has a similar effect on OLE
absorption as a hypotonic solution [56]. Although the pharmacokinetic profile of OLE has
not been determined in mice, Boccio and colleagues indicated that a single oral dose of OLE
(100 mg/kg) is absorbed in rats, reaching 200 ng/mL in tmax of 2 h [57]. The experiment
was terminated when the mice of all groups were killed with CO2 asphyxiation.

2.4. Quantitative Real-Time PCR

The total RNA from the hippocampus and PFC was isolated using Trizol reagent
(Invitrogen, Carlsbad, CA, USA), following the manufacturer’s protocol. The concentration
of total RNA in each sample was determined spectrophotometrically. Quantitative real-time
PCR (qPCR) was performed with cDNA, which was generated from 1 µg of total RNA
using a SuperScript II reverse transcriptase kit (Invitrogen). The sequences of the forward
and reverse gene-specific primers that were used in this study are shown in Table 1. The
SYBR Green PCR Master Mix (Applied Biosystems, Foster City, CA, USA) was used for the
real-time reactions, which were performed employing a C1000 Touch thermal cycler with a
real-time detection system (Bio-Rad Laboratories, Hercules, CA, USA). The relative mRNA
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expression was normalized to β-actin levels (QuantiTect primer assay; QIAGEN, Valencia,
CA, USA), and the values were quantified using the comparative threshold cycle method.

Table 1. Oligonucleotide sequences for quantitation of gene mRNA concentration using quantitative
PCR assays.

Gene Sequences of Primers

BDNF
F 5′-TGAGTCTCCAGGACAGCAAA-3′

R 5′-GACGTTTACTTCTTTCATGGGC-3′

TrkB
F 5′-TGATGTTGCTCCTGCTCAAG-3′

R 5′-CCCAGCCTTTGTCTTTCCTT-3′

NT3
F 5′-CGGATGCCATGGTTACTTCT-3′

R 5′-AGTCTTCCGGCAAACTCCTT-3′

NT4/5
F 5′-AGCCGGGGAGCAGAGAAG-3′

R 5′-CACCTCCTCACTCTGGGACT-3′

2.5. Western Blot Analysis

Immunoblot analysis of BDNF, TrkB, phospho-ERK, phospho-CREB and phospho-
AKT protein levels was performed using total cellular extracts from the hippocampus,
PFC and differentiated into neurons of human SH-SY5Y neuroblastoma cells. The total
cellular proteins were extracted using the RIPA buffer supplemented with protease in-
hibitors, phenylmethylsulfonyl fluoride (1 mM), β-glycerophosphate (5 mM), NaF (5 mM),
Na2MoO4 (2 mM) and NaVO3 (1 mM). The BCA protein assay kit (Pierce, IL, USA) was
used for the determination of the protein concentration in the samples. The proteins
were subjected to SDS-polyacrylamide gel electrophoresis and immunoblotting using the
following antibodies: rabbit polyclonal BDNF-specific IgG (Santa Cruz Biotechnology,
Dallas, TX, USA), rabbit polyclonal phosphorylated (Ser133) CREB-1-specific IgG (cell
signaling, Danvers, MA, USA), rabbit monoclonal TrkB (cell signaling), rabbit monoclonal
phospho-ERK (cell signaling) and rabbit monoclonal phospho-AKT (cell signaling). Sec-
ondary antibodies conjugated with horseradish peroxidase (Santa Cruz Biotechnology)
were used, and the proteins were detected using an enhanced chemiluminescence detection
kit (GE Healthcare, Chalfont St. Giles, Buckinghamshire, UK). Immunoblotting with either
α-tubulin- or β-actin-specific antibodies (Santa Cruz Biotechnology) and anti-goat IgG
horseradish peroxidase-conjugated secondary antibody was used as a loading control.

2.6. In Vitro Experiments
2.6.1. Cell Culture

The human neuroblastoma cell line, SH-SY5Y, was obtained from the American Type
Culture Collection (ATCC, Manassas, VA, USA). The SH-SY5Y cells were cultured in a
mixture of Dulbecco’s modified Eagle’s medium (DMEM GlutaMAX) and Ham’s F12
NutrientMix (1:1), containing glucose (25 mM) and L-glutamine (2 mM). This medium
was supplemented with 10% (v/v) heat-inactivated fetal bovine serum (FBS) and 1%
penicillin–streptomycin (P/S). The cells kept at a confluence below 70% (100,000 cells per
well) were cultivated in 12-well plates at 37 ◦C with 5% CO2 and saturated humidity.

2.6.2. Cell Differentiation and Viability

Following 24 h of incubation, the human neuroblastoma SH-SY5Y cells were differen-
tiated into cholinergic neurons using retinoic acid (RA, 5 µM), which was added to culture
medium that did not contain FBS. The cell incubation lasted for 5 days, and the culture
medium supplemented with fresh RA was changed every three days.

Following 5 days of incubation, differentiated human SH-SY5Y cells were treated for
4 h with the culture medium without FBS, containing only either OLE (10 µM) or fenofi-
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brate (FEN, Sigma-Aldrich, Burghausen, Germany, 10 µM), or the highly selective PPARα
agonist, 4-Chloro-6-(2,3-xylidino)-2-pyrimidinylthioacetic acid (Wy-14643, Sigma-Aldrich,
Germany, 10 µM). Subsequently, either H2O2 (final concentration 750 µM) or 7PA2-CHO
supernatant (final concentration 75% v/v) from a CHO (Chinese hamster ovary) cell line
stably expressing a mutant form of the human amyloid precursor protein (APP) [58] was
added in the cell culture, in order to induce β-amyloid toxicity. CHO-K1 supernatant at a
final concentration of 75% v/v was used in the control cell cultures. Following incubation of
the differentiated cells for an additional 48 h, MTS reagent [20 µL of MTS (1.90 mg/mL)]
was added, and the plates were incubated at 37 ◦C and 5% CO2 for 120 min. The absorbance
was measured using a spectrophotometer at 492 nm, and the results were expressed as
% cell viability compared to DMSO- or medium-treated cells, which represented 100% of
cell viability.

2.7. Statistical Analysis

The present data are presented as the mean ± SE. They were analyzed using the one-
way analysis of variance (ANOVA) program, followed by multiple comparisons employing
the Bonferonni’s and Tuckey’s list honest significant difference methods. The significance
level for all of the analyses was set at probability of less than 0.05.

3. Results
3.1. Assessment of Chronic OLE Treatment in Neural Plasticity Indices in PFC

The treatment of WT mice with OLE, a PPARα agonist [39], for 21 days increased
BDNF mRNA and protein expression in their PFCs. This effect was Pparα-dependent,
because OLE did not increase BDNF in Ppara-null mice (Figure 1A). Similarly, chronic
treatment of WT mice with OLE increased TrkB mRNA and protein expression in their
PFCs, an effect apparently involving PPARα, because no change in TrkB expression was
observed in this brain region of Pparα-null mice (Figure 1B). Notably, OLE repressed
BDNF mRNA and protein expression in the PFC of Pparα-deficient mice (Figure 1A), an
effect that underscores the distinct role of PPARα in the effects of OLE on BDNF in this
brain area. Chronic treatment of WT mice with OLE had no effect on NT3 and NT4/5
mRNA expression in their PFCs (Figures 1C and 1D, respectively). Interestingly, baseline
NT3 mRNA levels were higher in Pparα-null than in WT mice, and OLE repressed them
(Figure 1C). Constitutive NT4/5 mRNA expression raged at lower levels in the PFC of
Pparα-null mice than in WT mice, and OLE further repressed it (Figure 1D).
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(BDNF) mRNA levels were analyzed in 129/Sv wild-type (WT) and Pparα-null mice by qPCR and
protein levels using Western blot. (B) TrkB receptor mRNA and protein levels were also analyzed
using qPCR and Western blot analysis, respectively. (C) Neurotrophin NT3 and (D) NT4/5 mRNA
levels were also analyzed with qPCR. Values were normalized to β-actin, and are expressed as
mean ± SE (n = 8–10). Comparisons were between controls C and OLE-treated mice. Treatment
group differences were calculated using one-way ANOVA, followed by Bonferroni’s test. * p < 0.05,
** p < 0.01, *** p < 0.001.

3.2. Assessment of Chronic OLE Treatment on Neural Plasticity Indices in the Hippocampus

Chronic treatment of WT mice with OLE did not affect BDNF and TrkB mRNA and
protein expression in their hippocampuses (Figures 2A and 2B, respectively). Importantly,
however, OLE significantly repressed BDNF mRNA and protein expression in the hip-
pocampus of Pparα-deficient mice (Figure 2A), an effect that indicates the preventive role of
PPARα in the OLE-mediated down-regulation of BDNF in the hippocampus. In WT mice
following chronic OLE treatment, no alteration was observed in NT3 mRNA expression in
their hippocampuses compared to controls (Figure 2C). Notably, constitutive NT3 mRNA
expression ranged at higher levels in the hippocampus of Pparα-null mice than in WT mice
(Figure 2C). OLE did not affect NT4/5 mRNA expression in the hippocampus of WT and
Pparα-null mice (Figure 2D).
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Figure 2. The effect of chronic treatment with oleuropein (OLE) on neural plasticity indices in the
hippocampus of mice. (A) Following treatment with OLE, brain-derived neurotrophic factor (BDNF)
mRNA levels were analyzed in 129/Sv wild-type and Pparα-null mice using qPCR, and protein levels
using Western blot. (B) TrkB receptor mRNA and protein levels were also analyzed using qPCR and
Western blot analysis, respectively. (C) Neurotrophin NT3 and (D) NT4/5 mRNA levels were also
analyzed with qPCR. Values were normalized to β-actin, and are expressed as mean ± SE (n = 8–10).
Comparisons were between controls C and OLE-treated mice. Treatment group differences were
calculated using one-way ANOVA, followed by Bonferroni’s test. ** p < 0.01, *** p < 0.001.

3.3. OLE-Induced ERK, AKT and PKA/CREB Activation

Chronic treatment of WT mice with OLE increased the phosphorylation of ERK1/2,
CREB and AKT in their PFCs compared to controls (Figure 3A). The role of PPARα in
ERK1/2, CREB and AKT activation by OLE appears to be determinant, because the drug
did not affect the activation of these signaling pathways in Pparα-null mice (Figure 3A).
Interestingly, pCREB protein levels were markedly lower in the PFCs of Pparα-deficient
mice, and OLE did not affect them (Figure 3A). OLE had no similar activating effects on
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ERK1/2-, AKT- and PKA/CREB-linked signaling pathways in the hippocampus of WT
mice (Figure 3B).
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PKA/CREB and PI3K/AKT signaling pathways. Phosphorylated ERK1/2, CREB and AKT ex-
pression levels were examined in proteins extracted from the prefrontal cortex and hippocampus of
mice using Western blot analysis. WT: wild-type mice. The numbers underneath the lanes represent
the relative protein expressions that are defined as the ratio between the OLE-treated and control
expression, which is set at 1.

3.4. Assessment of Subacute OLE Treatment in Neural Plasticity Indices in PFC

The treatment of WT mice with OLE for 4 days had no effect on BDNF mRNA and
protein expression in their PFC compared to controls (Figure 4A); however, FEN, a more
potent PPARα agonist, up-regulated BDNF in this brain area (Figure 4A). The inducing
effect of FEN on BDNF expression in the PFC was PPARα-dependent, because the drug
did not affect BDNF expression in the PFC of Pparα-null mice (Figure 4A).

As in the case of BDNF, subacute treatment of WT mice with OLE had no effect on
TrkB mRNA expression in their PFCs when compared to controls (Figure 4B). Interestingly
though, OLE markedly repressed NT3 mRNA expression in the PFC of WT mice potentially
via PPRAα activation, because no similar effect was observed in Pparα-deficient mice
(Figure 4C). FEN up-regulated both NT3 and NT4/5 in the PFC of WT mice, and this
effect appears to be PPARα-dependent, because it was not observed in Pparα-null mice
(Figure 4C,D).
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Figure 4. The effect of subacute treatment with oleuropein (OLE) on neural plasticity indices in the
prefrontal cortex (PFC) of mice. (A) Following treatment with either OLE or fenofibrate (FEN), brain-
derived neurotrophic factor (BDNF) mRNA levels were analyzed in 129/Sv wild-type (WT) and Pparα-
null mice using qPCR, and protein levels using Western blot. (B) TrkB receptor mRNA and protein
levels were also analyzed using qPCR and Western blot analysis, respectively. (C) Neurotrophin NT3
and (D) NT4/5 mRNA levels were also analyzed with qPCR. Values were normalized to β-actin and
are expressed as mean ± SE (n = 8–10). Comparisons were between controls C and OLE-treated mice.
Treatment group differences were calculated using one-way ANOVA, followed by Bonferroni’s test.
* p < 0.05, ** p < 0.01, *** p < 0.001.

3.5. Assessment of Subacute OLE Treatment in Neural Plasticity Indices in Hippocampus

Treatment of mice with either OLE or FEN for 4 days had no effect on BDNF, TrkB and
NT3 expression in their hippocampus compared to controls (Figure 5A–C, respectively).
Nonetheless, both drugs up-regulated NT4/5 in the hippocampus, and this up-regulation
appears to be PPARα-mediated, because no NT4/5 up-regulation was induced by FEN and
OLE in Pparα-null mice (Figure 5D).
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Figure 5. The effect of subacute treatment with oleuropein (OLE) on neural plasticity indices in the
hippocampus of mice. (A) Following treatment with either OLE or fenofibrate (FEN), brain-derived
neurotrophic factor (BDNF) mRNA levels were analyzed in 129/Sv wild-type (WT) and Pparα-null
mice via qPCR, and protein levels using Western blot. (B) TrkB receptor mRNA and protein levels
were also analyzed using qPCR and Western blot analysis, respectively. (C) Neurotrophin NT3 and
(D) NT4/5 mRNA levels were also analyzed with qPCR. Values were normalized to β-actin, and are
expressed as mean ± SE (n = 8–10). Comparisons were between controls C and OLE-treated mice.
Treatment group differences were calculated using one-way ANOVA, followed by Bonferroni’s test.
* p < 0.05, ** p < 0.01.

3.6. Effect of OLE on Differentiated Human SH-SY5Y Neuroblastoma Cells

An in vitro investigation using human SH-SY5Y neuroblastoma cells differentiated
into cholinergic neurons indicated that OLE and FEN activated both the ERK1/2 and
PKA/CREB signaling pathways (Figure 6A), whereas Wy-14643 did not affect these sig-
naling pathways (Figure 6A). Moreover, all three substances induced PPARα expression in
these cells. Interestingly, OLE increased the phosphorylation of GSK3β, whereas FEN and
Wy-14643 had a weaker effect on it (Figure 6A).

It is noteworthy that preincubation of the differentiated SH-SY5Y cells with OLE (but
not with FEN or Wy-14643) protected them most prominently from natural amyloid β (Aβ)
peptides (Figure 6B), and to some extent from the H2O2-induced cell toxicity (Figure 6C).
In particular, OLE at a concentration of 5–10 µM provided 50% neuroprotection against
Aβ-induced toxicity. These OLE-induced neuroprotective effects appear to be PPARα-
independent, because two other more selective PPARα agonists, Wy-14643 and FEN, either
did not protect or even dose-dependently exaggerated the toxic effects of Aβ amyloid
peptides, respectively (Figure 6B).
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on (A) PPARα and TrkB protein expression and on the phosphorylated expression levels of GSK3β,
S6, ERK1/2 and PKA/CREB in differentiated human SH-SY5Y neuroblastoma cells into cholinergic
neurons; (B) β-amyloid neurotoxicity and (C) H2O2-induced neurotoxicity. Phosphorylated GSK3β,
S6, ERK1/2 and CREB expression levels were analyzed in proteins extracted from differentiated
human SH-SY5Y cells using Western blot analysis. The numbers underneath the lanes represent
the relative protein expressions that are defined as the ratio between the drug-treated and control
expression, which is set at 1. Beta-amyloid- and H2O2-induced neurotoxicity was assessed using a
spectrophotometric analysis of the samples at 492 nm to determine the percentage of cell viability.
C: control (DMSO-treated cells). * p < 0.05, ** p < 0.01, *** p < 0.001.

4. Discussion

The current study investigated the impact of OLE on neural plasticity in the hippocam-
pus and PFC of mice, emphasizing the role of the nuclear receptor and transcription factor,
PPARα. The findings indicated that chronic treatment of WT mice with OLE increased the
synthesis of BDNF, as previously reported [59], and its receptor, TrkB, in their PFC as com-
pared to controls; however, the drug had no effect on them in the PFC of Pparα-null mice.
This finding underscores the crucial role of PPARα in the OLE-induced up-regulation of
these important indices of neural plasticity in the PFC, which is potentially triggered by ac-
tivation of the ERK1/2, AKT and PKA/CREB signaling pathways that possess crucial roles
in the regulation of neurotrophins [4], neural plasticity [60,61] and survival [61–64]. The
present findings are in line with those of a previous study reporting that plant compounds,
including resveratrol and OLE among others, improve synaptic plasticity by activating neu-
ronal signaling pathways, which control the memory and long-term potentiation (LTP) of
synapses. The OLE-induced LTP in the hippocampus indicates increased synaptic activity,
which is usually followed by a long-lasting increase in signal transmission among neurons,
and is triggered by activation of signaling pathways including the PKA/CREB [29,65,66].

Unlike long-term OLE treatment, the subacute administration of WT mice with the
drug at the given dose did not manage to increase BDNF and TrkB synthesis in their PFCs.
Nonetheless, subacute treatment of WT mice with FEN, a selective PPARα agonist [67],
up-regulated BDNF in their PFCs, but it did not affect TrkB expression in this brain tissue.
The FEN-induced BDNF up-regulation in the PFC is PPARα-dependent, because the drug
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did not increase this neurotrophic factor in the PFC of Pparα-null mice. Interestingly, FEN
also increased the synthesis of NT3 in the PFC of WT mice, and NT4/5 in both the PFC
and hippocampus via PPARα activation, as no similar up-regulating effects were detected
in Pparα-deficient mice. Both the long-term and subacute treatments with OLE had no
up-regulating effect on NT3 expression in the PFC and hippocampus of WT mice. Although
subacute OLE administration had a down-regulating effect on NT3 in the PFC of WT mice,
the drug up-regulated NT4/5 in their hippocampus via a mechanism potentially involving
PPARα activation, because it did not affect NT4/5 expression in Pparα-null mice. Unlike
previous studies indicating that OLE can improve synaptic plasticity in the dentate gyrus of
the rat hippocampus, thus attenuating Alzheimer’s disease-like pathology [68], the present
study indicated that either chronic or subacute treatment of WT mice with OLE at the given
dose did not up-regulate the effect on BDNF and TrkB in their hippocampus; however,
subacute OLE increased the synthesis of NT4/5 in this brain region. Apparently, the effect
of OLE on neuronal plasticity indices is species-, dose- and time-dependent.

It is also noteworthy that OLE protected differentiated human SH-SY5Y neuroblas-
toma cells from β-amyloid- and H2O2-induced toxicity. This neuroprotective effect of
OLE against β-amyloid-induced toxicity was unrelated to PPARα activation, because
both selective PPARα agonists, FEN and Wy-14643, did not prevent neurotoxicity in this
in vitro neuronal model. It appears that OLE may exploit both PPARα-dependent and
independent pathways to promote neural plasticity and protect against oxidative stress
and β-amyloid neurotoxicity. This hypothesis is supported by the findings of a previous
study reporting that the neuroprotective effect of PPARα agonists do not necessarily di-
rectly depend on PPARα-regulated pathways [69]. The present findings, along with those
from previous studies reporting that OLE prevents the aggregation of β-amyloids, tau,
amylin, α-synuclein and ubiquitin proteins in the brain, reducing neuronal apoptosis and
activating several antioxidant pathways [70], indicate that OLE and similar drugs such as
hydroxytyrosol provide neuroprotection and could be used to prevent or delay the onset
of neurodegenerative disorders, a subject that should be thoroughly investigated in the
framework of clinical studies.

5. Conclusions

The present findings indicate that neuroprotection against oxidative stress and β-
amyloid toxicity, as well as the induction of neural plasticity in several brain sites, belongs
to the broad spectrum of the beneficial effects of OLE, the main constituent of olive products,
a basic constituent of the Mediterranean diet. In this concept, OLE and similar drugs acting
predominantly as PPARα agonists could modulate a diverse repertoire of functions in the
central and peripheral nervous systems, as well as in non-neuronal tissues. Therefore, it is
of particular interest to further investigate the potential beneficial effects of PPARα agonists
on synaptic plasticity/function and dendritic outgrowth, which are critical parameters,
among others, in the regulation of cognitive functions.
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Abbreviations

PPARα peroxisome proliferator-activated receptor α
BDNF Brain-derived neurotrophic factor
TrkB tyrosine kinase receptor B
NT3 neurotrophic factor 3
NT4/5 neurotrophic factor 4/5
PGC-1α peroxisome proliferator-activated receptor gamma coactivator-1 alpha
OLE Oleuropein
FEN Fenofibrate
WY Wy-14643
PFC prefrontal cortex
AD Alzheimer’s disease
WT wild type
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