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Abstract: Myopic choroidal neovascularization (mCNV) is a common cause of vision loss in patients
with pathological myopia. However, predicting the visual prognosis of patients with mCNV remains
challenging. This study aimed to develop an artificial intelligence (AI) model to predict visual acuity
(VA) in patients with mCNV. This study included 279 patients with mCNV at baseline; patient
data were collected, including optical coherence tomography (OCT) images, VA, and demographic
information. Two models were developed: one comprising horizontal/vertical OCT images (H/V
cuts) and the second comprising 25 volume scan images. The coefficient of determination (R2)
and root mean square error (RMSE) were computed to evaluate the performance of the trained
network. The models achieved high performance in predicting VA after 1 (R2 = 0.911, RMSE = 0.151),
2 (R2 = 0.894, RMSE = 0.254), and 3 (R2 = 0.891, RMSE = 0.227) years. Using multiple-volume
scanning, OCT images enhanced the performance of the models relative to using only H/V cuts.
This study proposes AI models to predict VA in patients with mCNV. The models achieved high
performance by incorporating the baseline VA, OCT images, and post-injection data. This model
could assist in predicting the visual prognosis and evaluating treatment outcomes in patients with
mCNV undergoing intravitreal anti-vascular endothelial growth factor therapy.

Keywords: myopic choroidal neovascularization; optical coherence tomography; visual acuity;
anti-vascular endothelial growth factor

1. Introduction

Myopic choroidal neovascularization (mCNV) is a major vision-threatening complica-
tion of pathologic myopia and one of the most frequent causes of central vision loss [1,2].
Numerous therapeutic strategies for myopic CNV have been investigated, including focal
thermal laser photocoagulation, verteporfin photodynamic therapy, surgical intervention,
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and intravitreal anti-vascular endothelial growth factor (VEGF) therapy [2]. Of these,
optical coherence tomography (OCT) has emerged as the primary medical intervention
for mCNV, providing invaluable insights for clinicians to gauge treatment responses and
monitor patients [3–5].

Several baseline OCT biomarkers, such as mCNV size and location, outer retina
integrity, and subfoveal choroidal thickness, have been reported to be associated with
visual prognosis [6–9]; however, an inconsistent consensus remains in the prediction of
visual prognosis, while literature analyzing biomarkers for visual acuity (VA) prediction is
lacking; therefore, new imaging biomarkers in mCNV require additional study [2,4].

With the advancement of artificial intelligence (AI), several research findings have been
reported regarding the diagnosis and screening of retinal diseases, including pathologic
myopia [10–14]. However, to the best of our knowledge, no attempt has been made to use
AI to predict the VA of patients with mCNV undergoing antiangiogenic therapy. Thus, we
aimed to develop an AI model to predict the VA of patients receiving intravitreal anti-VEGF
injections for mCNV using OCT images prior to anti-VEGF therapy. We also investigated
whether the predictive performance of the model could be improved using information
(e.g., VA, OCT images, and injection number) after intravitreal anti-VEGF treatment, as
well as preinjection information. In addition, we compared the performance of the model
achieved using only horizontal/vertical (H/V) OCT images with that achieved using
multiple OCT images.

2. Materials and Methods
2.1. Ethics Statement

This study followed the principles outlined in the Declaration of Helsinki. The research
protocol was approved by the Ethics Committee of Hangil Eye Hospital (IRB-21018).
Owing to the retrospective observational design of the study, the committee waived the
requirement to obtain informed consent.

2.2. Data Collection and Labelling

We analyzed the records of patients who sought treatment at Hangil Eye Hospital
between July 2014 and June 2021. MCNV was identified using color fundus photography,
fluorescein angiography (FA), and spectral-domain OCT (SD-OCT) (Heidelberg Spectralis,
Heidelberg Engineering, Heidelberg, Germany). Patients received 0.5 mg/0.05 mL intravit-
real bevacizumab injections (Avastin; Genentech Inc., South San Francisco, CA, USA) using
a 30-gauge needle through the pars plana. After the initial injection, an intravitreal injection
was administered based on the PRN regimen according to the doctor’s judgment. Patients
eligible for the study were diagnosed with mCNV, with foveal subretinal hyperreflective
material (SHRM) visible on OCT. The inclusion criteria for mCNV were as follows: high
myopia with an axial length greater than 26.0 mm; evident myopic retinal pathological
changes like posterior staphyloma, chorioretinal atrophy, papillary crescent, and lacquer
cracks; FA revealing active CNV in the subfoveal region; and newly identified CNV cases.
The study ruled out patients with age-related macular degeneration (AMD), a history of
ocular trauma or surgery, previous subfoveal or juxtafoveal laser treatments, hereditary eye
diseases, or any other secondary causes of CNV. Independent retinal specialists diagnosed
all mCNV cases using color fundus photography, FA, and OCT. Among these, we used
SD-OCT images of patients with mCNV as the data.

We first divided the SD-OCT dataset into two types: H/V cuts and volume scan
images. H/V cuts contained a pair of H/V SD-OCT scans, and the volume scan images
included 25 volume scan image cuts. Subsequently, we divided them again based on the
presence or absence of data 1, 2, and 3 years after the baseline point, as we aimed to predict
the VA at these time points. If no data were available at particular and preceding time
points, the patient was not included in the corresponding prediction dataset. We also
excluded cases in which intraocular surgery was performed within the predicted timeframe
from baseline. The six constructed SD-OCT datasets are listed in Table 1.
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Table 1. Characteristics of patients in each SD-OCT dataset.

Horizontal/Vertical Cut Images Volume Scan Images

After 1 Year After 2 Years After 3 Years After 1 Year After 2 Years After 3 Years

Images, n 8444 5302 3290 107,975 67,850 42,375

Patients, n 279 192 142 279 192 142

SD-OCT, spectral-domain optical coherence tomography.

In addition to the SD-OCT datasets, demographic information of the patients, such
as age, sex, and best-corrected VA, was collected. Best-corrected VA was converted to
the logarithm of the minimum angle of resolution (logMAR). As the treatment for mCNV
is intravitreal bevacizumab injection, we also concentrated on the number of injection
treatments performed annually. Table 2 shows the data lists used for VA prediction 1, 2,
and 3 years after the baseline point.

Table 2. Data lists used for VA prediction after 1, 2, and 3 years from baseline point.

Data

After 1 year
- VA and SD-OCT images at baseline and next visit
- The number of injections in 1 year
- Age and sex

After 2 years
- VA and SD-OCT images at baseline and after 1 year
- The number of injections in 1 year and 2 years
- Age and sex

After 3 years
- VA and SD-OCT images at baseline and after 1 and 2 year(s)
- The number of injections in 1, 2, and 3 years
- Age and sex

VA, visual acuity; SD-OCT, spectral-domain optical coherence tomography.

2.3. Data Preprocessing

To utilize each SD-OCT dataset, we initially downsampled the images to a size of
120 × 120 RGB channels. This was necessary because the deep neural network only
accepts images of a fixed size. To prevent overfitting, we performed data augmentation to
develop a robust model that can accommodate various input images. This process included
random horizontal image flips and random rotations of up to 15◦. Data augmentation was
performed only during the training phase.

2.4. Model Architecture

Two models were developed to predict VA after N years (N = 1, 2, and 3) from baseline.
One model used H/V cuts, and the other model used volume scan images as inputs.
VGG-19 [15] was chosen as the base feature extractor instead of other CNN architectures
like Resnet-50 [16] and Inception-V3 [17] because it performed better. Transfer learning
was applied to prevent overfitting and expedite model training [18] by initializing the
CNN layers with pretrained weights from VGG-19 obtained from a large-scale ImageNet
dataset [19].

The model for H/V cuts (see Figure 1) uses a feature extractor, followed by four fully
connected layers and dropout layers with a leaky ReLU [20] as the activation function. VA,
age, sex, and the number of injections were also passed through two fully connected layers
before being concatenated with the features from the H/V cuts. Finally, the concatenated
feature was fed into two fully connected layers to predict the VA.

For the volume scan image model (see Figure 2), a multi-instance model structure was
adopted to consider multiple SD-OCT images simultaneously. An attention module [21]
was used to combine all the volume scan image information by calculating the attention
score of each image. The fused feature was then passed through three dropout and two fully
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connected layers using a leaky ReLU [20] as the activation function. Similarly, VA, age, sex,
and the number of injections were passed through two fully connected layers. Finally, all
features were concatenated and passed through two fully connected layers to predict the VA.

Figure 1. An illustration of the proposed model for horizontal and vertical images. To process
variables such as visual acuity (VA), age, sex, and the number (#) of injections, a set of two fully
connected (FC) layers was used. The horizontal and vertical cuts were subjected to feature extraction
and subsequently traversed a sequence of four FC layers supplemented with dropout. Then, the
three extracted features were concatenated and fed into another pair of FC layers to predict VA.

Figure 2. An illustration of the proposed model for 25 volume scan images. The proposed model
is a multi-instance model with an attention module to handle multiple SD-OCT images. The fused
features were processed through dropout and fully connected (FC) layers, while the demographic
information (i.e., age and the number (#) of injections) was processed with a set of two FC layers
separately. The resulting features were then concatenated and passed through two FC layers for VA
prediction. SD-OCT, spectral-domain optical coherence tomography; VA, visual acuity.
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2.5. Experiment Setup

We assessed our models through two distinct tasks: (i) comparing the two models
proposed in this study and (ii) contrasting our model with existing models.

In the former task, we conducted three experiments to predict the VA at 1, 2, and
3 years from baseline. Therefore, we constructed six datasets depending on the type of SD-
OCT image and the predicted year. These datasets were divided into training, validation,
and test sets in a 70:10:20 ratio, with patient stratification to ensure each patient appeared
in only one set. To ensure a fair comparison between the model architectures, we trained
them using the same parameters, except for the batch size. The models were trained for
100 epochs with a learning rate of 0.0001 using the mean squared error (MSE) as the loss
function with Adam optimization [22]. To prevent overfitting, we used a dropout rate of
0.5 and early stopping with a patience value of 5. We set the batch size to 4 and 64 for
the models using volume scan images and H/V cuts, respectively, because the models
for volume scan images process multiple images simultaneously, which incurs a higher
computational cost.

In the latter task, we compared our model (the volume scan image model) with
existing models. Among them, none handled 25 volume scan images and meta-information
(i.e., age, number of injection) simultaneously to predict VA. Additionally, no studies
have processed multiple time-point volume scan images together for prediction at 1–3 year
intervals. Consequently, we performed comparative experiments with research that utilized
25 or more volume scan images together and studies that solely relied on metainformation
for 1-year VA prediction. The compared models are summarized as follows:

• ResNet-50 v2 [23]: ResNet-50 v2 CNN architecture [24]. Afterward, it passes through
the final dense layer;

• LassoCV [25]: Linear regression method with an L1-norm penalty. It trains the weights
to be close to zero, thereby identifying the most important features in the model and
finding a generalized model;

• LR + RF [26]: Combination of LR and RF into an ensemble algorithm using a stacking
approach. LR refers to linear regression, and RF stands for random forest regressor.

For a fair comparison, our model only utilized baseline OCT and VA, along with
injection data from the first year, without considering multiple time points (i.e., next visit).

3. Results

We conducted a study based on OCT images from 279 Korean patients with 8444 H/V
OCT images and 107,975 volume scan images 1 year after the initial anti-VEGF injection.
Thereafter, in the second and third years, fewer images were used, the details of which are
presented in Table 1. Among the 279 patients, 65 were male (23.3%), and the mean age was
50.85 ± 15.89 years at baseline. The VA values at baseline and after 1, 2, and 3 years were
0.48 (0.33), 0.47 (0.34), 0.51 (0.31), and 0.56 (0.27) logMAR (decimal BCVA), respectively. No
significant improvement in the VA was observed in the first year (p = 0.156); however, a
significant change was observed in the second (p = 0.005) and third years (p = 0.021). The
average number of injections was 1.06 ± 0.83 in the first year, 1.30 ± 1.20 in the second
year, and 1.63 ± 1.54 in the third year.

3.1. Prediction 1 Year from the Baseline

Our study found that baseline SD-OCT images alone were not very effective in pre-
dicting VA 1 year after baseline, with low R2 accuracy of −0.009 (RMSE = 0.503) and 0.016
(RMSE = 0.471) for H/V cuts and volume scan images, respectively (Table 3). On the
other hand, baseline VA alone led to a higher performance, but the models that included
both baseline SD-OCT images and VA had better R2 accuracy (R2 = 0.849 (RMSE = 0.194)
and 0.854 (RMSE = 0.194), respectively). While demographic information and the number
of injections in the first year were not helpful, SD-OCT images and VA at the next visit
markedly increased the prediction performance. The next visit refers to the first followup
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visit after the injection, which usually occurs within 1–2 month. The models achieved the
highest performance when using SD-OCT images and VA at the baseline and next visits
(R2 = 0.905 (RMSE, 0.154) and 0.911 (RMSE = 0.151), respectively).

Table 3. Performance of the proposed models in predicting VA 1 year after the baseline.

H/V Cut Volume Scan Image

RMSE R2 RMSE R2

OCT at baseline 0.50346 −0.00979 0.47105 0.01619

VA at baseline 0.19883 0.84251 0.19626 0.84937

OV(B) a 0.19448 0.84931 0.19354 0.85352

OV(B) + sex + age 0.22167 0.80785 0.20682 0.82959

OV(B) + Inject(1) b 0.20599 0.83096 0.20234 0.83989

OV(B) + OV(N) c 0.15446 0.90496 0.15069 0.91120

OV(B) + OV(N) + Inject(1) 0.16023 0.89772 0.15662 0.90407
a OV(B): SD-OCT images at baseline + VA at baseline. b Inject(1): the number of injections in the first year. c OV(N):
SD-OCT images at the next visit + VA at the next visit. SD-OCT, spectral-domain optical coherence tomography;
VA, visual acuity.

3.2. Prediction 2 Years from the Baseline

Table 4 demonstrates that using either baseline SD-OCT images or VA alone had a low
ability to predict VA 2 years after baseline, as indicated by the low R2 values for both H/V
cuts and volume scan images. However, including both baseline SD-OCT images and VA in
the models achieved better R2 accuracy (R2 = 0.729 (RMSE = 0.374) and 0.753 (RMSE = 0.336),
respectively). Furthermore, when SD-OCT images and VA 1 year after baseline were added,
the model showed higher performance (R2 = 0.725 (RMSE = 0.373) and 0.809 (RMSE = 0.339),
respectively). The highest accuracy was achieved by utilizing all available data, except de-
mographic information (R2 = 0.839 (RMSE = 0.285) and 0.894 (RMSE = 0.254), respectively).
Interestingly, the number of injections administered in 1 and 2 years was helpful in predic-
tion. Notably, the number of injections in the first year was observed to have a positive
impact on performance only when used in conjunction with VA at the 1-year prediction time
point (R2 = 0.813 (RMSE = 0.308) and 0.877 (RMSE = 0.272), respectively) and not otherwise
(R2 = 0.662 (RMSE = 0.432) and 0.671 (RMSE = 0.426), respectively). This implies that the
correlation between the number of injections in the first year and VA 1 year after the baseline
contributed to the successful prediction of VA after 2 years.

Table 4. Performance of the proposed models in predicting VA 2 years after the baseline.

H/V Cut Volume Scan Image

RMSE R2 RMSE R2

OCT at baseline 0.72555 −0.03815 0.71943 0.04066

VA at baseline 0.37775 0.71859 0.37080 0.72102

OV(B) a 0.37366 0.72886 0.33639 0.75303

OV(B) + sex + age 0.44571 0.64150 0.41487 0.69102

OV(B) + Inject(1) b 0.43218 0.66193 0.42637 0.67138

OV(B) + OV(1) c 0.37321 0.72532 0.33949 0.80934

OV(B) + OV(1) + Inject(1) 0.30815 0.81273 0.27233 0.87732

OV(B) + OV(1) + Inject(1) + Inject(2) d 0.28549 0.83927 0.25370 0.89353
a OV(B): SD-OCT images at baseline + VA at baseline. b Inject(1): the number of injections in the first year.
c OV(1): SD-OCT images 1 year after the baseline + VA 1 year after the baseline. d Inject(2): the number of
injections in the second year. SD-OCT, spectral-domain optical coherence tomography; VA, visual acuity.
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3.3. Prediction 3 Years from the Baseline

As shown in Table 5, predicting VA 3 years after the baseline was difficult using only
baseline SD-OCT images and VA. Even with their combined use, the R2 value remained
at 0.579 (RMSE = 0.450) and 0.602 (RMSE = 0.433) for the H/V cuts and volume scan
images, respectively. However, the number of injections in the N-th year (N = 1, 2, and
3) and the SD-OCT images and VA after the M-th year (M = 1 and 2) from the baseline
significantly contributed to performance improvement. The highest accuracy was achieved
by incorporating all available data except demographic information, with R2 values of 0.818
(RMSE = 0.296) and 0.891 (RMSE = 0.227). This indicates that the events that occurred each
year (i.e., injection) and the SD-OCT and VA information at each time point are important
predictors of VA 3 years after baseline.

Table 5. Performance of the proposed models in predicting VA 3 years after the baseline.

H/V Cut Volume Scan Image

RMSE R2 RMSE R2

OCT at baseline 0.71571 −0.06554 0.69769 0.02714

VA at baseline 0.44776 0.57128 0.44478 0.57310

OV(B) a 0.45006 0.57866 0.43333 0.60151

OV(B) + sex + age 0.46143 0.55710 0.45674 0.55581

OV(B) + Inject(1) b 0.47352 0.53359 0.46282 0.54390

OV(B) + OV(1) c 0.39429 0.67661 0.35941 0.72495

OV(B) + OV(1) + Inject(1) 0.36825 0.71792 0.33943 0.75469

OV(B) + OV(1) + OV(2) d 0.32497 0.78032 0.27473 0.83928

OV(B) + OV(1) + OV(2)
Inject(1) + Inject(2) e 0.30425 0.80744 0.24435 0.87287

OV(B) + OV(1) + OV(2)
Inject(1) + Inject(2) + Inject(3) f 0.29614 0.81758 0.22661 0.89066

a OV(B): SD-OCT images at baseline + VA at baseline. b Inject(1): the number of injections in the first year.
c OV(1): SD-OCT images 1 year after the baseline + VA 1 year after the baseline. d OV(2): SD-OCT images
2 years after the baseline + VA 2 years after the baseline. e Inject(2): the number of injections in the second year.
f Inject(3): the number of injections in the third year. SD-OCT, spectral-domain optical coherence tomography;
VA, visual acuity.

Overall, R2 and RMSE were better when using all 25 volume scan images than when
using only H/V cuts. Among the baseline VA and OCT data, baseline VA was the most
important predictor of VA after 1, 2, and 3 years. The baseline volume scan OCT information
helped predict VA at 1, 2, and 3 years, whereas the baseline H/V cut OCT information was
helpful only in predicting VA at 1 and 2 years but offered no significant help in predicting
VA at 3 years. As the prediction time increased from 1 to 3 years, the contribution of
additional information, such as SD-OCT images and the number of injections, increased,
but the overall performance decreased.

3.4. Comparison with Existing Models

As shown in Table 6, our model outperformed other existing models. Specifically, rela-
tive to ResNet-50 v2 [23], the performance was notably poor (R2 = −0.130 (RMSE = 0.555)).
This indicates the importance of the attention module, as the performance of our model that
relying solely on SD-OCT images was higher. Moreover, with regards to meta-information
(VA and number of injections), previous models [25,26] exhibited approximately 4–6%
lower performance (R2 = 0.795 (RMSE = 0.237) and 0.765 (RMSE = 0.253), respectively)
compared to our model. This underscores the significance of combining volume scan
images and metainformation for accurate VA prediction.
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Table 6. Performance comparison with existing models in predicting VA 1 year after the baseline.

RMSE R2

O(B) a ResNet-50 v2 [23] 0.55545 −0.12990

V(B) b + Inject(1) c
LassoCV [25] 0.23657 0.79503

LR + RF [26] 0.25328 0.76507

OV(B) d + Inject(1) Ours 0.20234 0.83989
a O(B): 25 SD-OCT volume scan images at baseline. b V(B): VA at baseline. c Inject(1): the number of injections in
the first year. d OV(B): 25 SD-OCT volume scan images at baseline + VA at baseline.

4. Discussion

In our study involving patients with mCNV undergoing antiangiogenic therapy, we
were able to predict VA 1 year later with more than 80% accuracy using only baseline
VA and OCT images prior to injection. Furthermore, when post-injection VA and OCT
followup data were also provided, we demonstrated the ability of our model to predict
VA a year later with over 90% accuracy. While functional information such as VA was of
utmost importance in predicting VA, OCT images also contributed to further improvements
in predictive performance. Additionally, compared with using only H/V cuts, we found
that using multiple volume scan OCT images enhanced our predictive accuracy.

Research on the prediction of VA in patients with mCNV is scarcely found [27].
According to a recent study by Inoda et al. [27], prediction of VA in mCNV was inferior to
that in neovascular age-related macular degeneration (nAMD) or retinal vein occlusion,
with their estimated and actual VA corresponding to an R2 value of 0.36. However, their
study aimed to predict VA using cross-sectional OCT images at a single time point rather
than predicting post-injection VA with preinjection OCT images. In addition, the number
of patients with mCNVs was small (N = 13), making it difficult to directly compare the
results of our study. This discrepancy may also arise from differences in the study cohorts
and designs. Studies predicting VA post injection have primarily been conducted in nAMD.
Dun Jack Fu et al. [28] demonstrated approximately 40% (R2 = 0.378) predictive accuracy
for VA at 1 year using only baseline OCT and VA. They used quantitative OCT biomarker
information, unlike our study; however, similar to our findings, VA information was a
more important factor contributing to VA prediction than OCT imaging. In addition, the
fact that the predictive power increased further when VA and OCT change information was
added is similar to our results. In predicting post-injection VA in patients with mCNV, an
increase in predictive performance when functional and anatomical changes are reflected
may suggest that the response to the injection treatment itself is a predictive factor for
long-term visual outcome progression, which is consistent with the findings of previous
studies [28].

In our study, the significance of baseline VA information outweighed that of baseline
OCT images in predicting post-injection VA. This arises from the fact that predicting
the post-injection VA implies predicting the patient’s functional ability. As a result, the
preinjection VA may be more critical than the anatomical configuration reflected in the
OCT images. Nevertheless, we confirmed that predictive performance increased when
additional OCT information was provided. Based on our results, we believe that OCT
images can meaningfully contribute to VA prediction in patients with mCNV in clinical
settings using a deep learning model. Future research should identify how and to what
extent OCT images without segmentation can be meaningfully combined with VA to
increase the overall predictive value. In addition, demographic factors such as sex and age
did not provide additional help in predicting VA in years 1, 2, and 3. OCT images may
reflect information such as the sex and age of patients. Alternatively, this may be because
demographic factors such as age or sex have no special correlation with the injection effect
or treatment prognosis of mCNV. It is unclear why these demographic factors did not
provide additional help in predicting the VA, necessitating further studies.
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The accuracy of VA prediction decreased from the first to the second and third years.
The actual VA was significantly lower than baseline in the second and third years post
injection, potentially due to fibrous scar formation, with photoreceptor damage from SHRM
over time after the onset of mCNV, leading to a poor anti-VEGF response. Furthermore, as
the time to predict VA from baseline increases to 2 and 3 years, the likelihood of events such
as mCNV recurrence may increase, which may reduce the VA-predictive power. Although
our study did not investigate the recurrence of mCNV and only counted the number
of injections, the fact that the average number of injections increased as the followup
period increased suggests recurrence during followup. Along with these changes, changes
in lens status and functional changes in the optic nerve may have made VA prediction
more challenging. However, in the second and third years, the predictive power could be
improved by adding the number of previous injections and followup information from OCT
and VA. When predicting long-term VA, we learned that OCT images and VA information
obtained during followup observation—not just baseline—also helped predict later VA.

In our study, using 25 volume scan images at 1, 2, and 3 years improved the VA-
predictive power compared with using only H/V images. Previous deep learning studies
using OCT-based convolutional neural network (CNN) models predicted VA using fewer
than five H/V OCT images [27,29]. This implies that training with more OCT images
per eye, as in our study, enhances the model’s predictive performance, which requires
validation in future studies using OCT-based deep learning models for VA prediction.
Studies have predicted VA using quantitative OCT biomarker information obtained through
the segmentation of multiple OCT images in patients with nAMD [23,28,30]. Predicting VA
in mCNV using quantitative OCT image information would be interesting but is beyond
the scope of our current research.

As previously mentioned, incorporating multiple OCT images per eye resulted in
improved predictive performance for VA. However, this would not have been possible
without the inclusion of an attention module [21]. When the model for the 25 volume
scan images was trained without the attention module, the performance notably de-
clined. This disparity can be attributed to the fact that with only two images (horizontal
and vertical), the model can easily discern the relevant regions that contribute to the
prediction. In contrast, with 25 volume scan images, it is challenging for the model to de-
termine which areas are crucial and informative for accurate predictions. Consequently,
when deploying deep learning in various ophthalmology tasks and utilizing multiple
OCT images, the incorporation of an attention module becomes imperative to enhance
the model performance.

Our study is subject to several limitations. First, we used a relatively small number
of images from a single OCT device, and the retrospective nature of our study resulted in
fewer patients in the second and third years than in the first year. The difference in the
number of patients may affect the importance of factors (e.g., VA and OCT) that are helpful
in predicting long-term VA. Also, due to the retrospective nature of the study, the dataset
used in our study includes a higher proportion of patients who may not have experienced
significant improvement through anti-VEGF therapy or may have experienced relapse
or other concomitant conditions, leading them to continue visiting the hospital. Second,
our study used only macular OCT images and VA, age, and sex information; we did not
perform lens status or optic nerve evaluations. However, we initially intended for our
study to determine the extent to which post-injection visual acuity can be predicted using
VA and OCT. Third, our study was an OCT-based study using a CNN, and quantitative
OCT parameter analysis was not performed; therefore, we did not explore OCT biomarkers
affecting VA prediction separately. Fourth, our study has not been validated on other
databases, and only Koreans were included in the study. Therefore, further validation
studies utilizing other databases, particularly those including other ethnicities, are war-
ranted. Finally, it was difficult to determine the exact correlation between the number of
injections and mCNV condition because we did not investigate mCNV exacerbation or
recurrence after injection. However, because the PRN regimen was followed, an increase
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in the number of injections may have been positively correlated with the worsening or
recurrence of mCNV.

5. Conclusions

Our study proposed the use of deep neural networks to predict long-term VA in
patients with mCNV. Using a CNN, we were able to predict VA with more than 50%
accuracy for 3 years using only baseline information and more than 80% accuracy when
additional followup information was used. Our model can help predict the visual prognosis
of patients before injection in future clinical settings or assess the long-term VA prognosis
of patients during intravitreal anti-VEGF injection treatment.
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